
1

MWSUG 2024 - Paper 93

Enhancing Your SAS® Viya® Workflows with Python: Integrating

Python’s Open-Source Libraries with SAS® using PROC PYTHON

Ryan Paul Lafler, Premier Analytics Consulting, LLC

Miguel Ángel Bravo Martínez Del Valle, SDSU Climate Informatics Lab

ABSTRACT

Data scientists, statistical programmers, machine learning engineers, and researchers are increasingly leveraging a growing

number of open-source tools, libraries, and programming languages that can enhance and seamlessly integrate with their existing

data workflows. One of these integrations, built into SAS® Viya®, is its pre-configured Python runtime integration, PROC PYTHON,

that gives SAS programmers access to Python's open-source data science libraries for wrangling and modeling structured and

unstructured data alongside the validated procedures provided in SAS. This paper demonstrates how to install and import external

Python libraries into their SAS Viya sessions; generate Python scripts containing methods that can import, process, visualize, and

analyze data; and execute those Python methods and scripts using SAS Viya's PYTHON procedure. By integrating the added

functionalities of Python's libraries for data processing and modeling with SAS procedures, SAS programmers can enhance their

existing data workflows with Python's open-source data solutions.

INTRODUCTION

Beginning in 2021, SAS® introduced the PYTHON procedure (PROC PYTHON) into their SAS® Viya® cloud analytics platform to

integrate Python’s growing community of open-source libraries and packages with their proprietary statistical programming

language. This relatively new procedure integrates Python’s objects, methods, libraries, and vibrant open-source community with

the verified procedures developed by SAS. This integrated workflow offers advantages for both Python and SAS programmers,

allowing them to co-exist in an integrated SAS Viya environment to build data processing pipelines and train supervised and

unsupervised machine learning algorithms using Scikit-Learn, perform statistical modeling with PROC GLM and PROC REG, and

handle a variety of structured, semi-structured, and unstructured data sources using Python libraries including Pandas, NumPy,

OpenCV, Dask, and Xarray that come bundled with efficient, pre-built methods.

This application-oriented paper will demonstrate how to establish a connection between Python and SAS within SAS Viya using

PROC PYTHON to execute Python scripts, install and import Python libraries within SAS Viya, define custom Python methods to

help import and process data, convert Pandas DataFrame objects into recognizable SAS dataset objects stored in memory, and

investigate those SAS datasets exported from the Python code.

This paper was written to highlight the potential integration of Python and SAS programming within the SAS Viya ecosystem. By

showing this integration, organizations with existing SAS Viya workflows can experiment with, adopt, and implement scalable data

processing, analytical, and predictive systems using Python’s well-supported community of libraries together with the validated

procedures maintained by SAS.

1. PYTHON FUNDAMENTALS

Among the most important open-source programming languages in 2024 is Python, which is an interpreted, object-oriented, and

high-level programming language that features an active community of programmers and developers contributing libraries that

are published on the Python Package Index (PyPi) and GitHub for anyone to download and use. As time advances, so do the

languages used by organizations and businesses, which is why the integration of Python within SAS Viya offers SAS programmers

new ways to extend the capabilities of SAS by incorporating open-source Python tools to assist in processing, visualizing, analyzing,

and modeling data alongside the validated procedures created by SAS. Beginning with the basics, what exactly are the classes,

objects, data structures, methods, and libraries in Python used for storing, accessing, manipulating, and handling data?

1.1) PYTHON CLASSES, OBJECTS, DATA STRUCTURES, METHODS, AND LIBRARIES
A class in Python is a template for creating objects, or unique instances, belonging to that class. A Python class acts as a blueprint

for objects to share the same sets of attributes (options and methods) that can be customized and re-used when assigning unique

2

objects. In other words, a class encapsulates the data and functions into a single, cohesive, and re-usable blueprint to customize

objects from. Classes encourage the creation of complex and unique data structures through abstraction and code re-usability.

Python stores objects in different forms of mutable (editable) and immutable (permanent) data structures, including:

1. List (indexed, mutable structure containing elements of the same or different types)

2. Tuple (indexed, immutable structure of elements that cannot be changed once created)

3. Set (unordered list of elements that cannot contain duplicate values)

4. Dictionary (unordered, mutable JSON-like structure that relies on key → value mappings)

Methods in Python are typically defined within a class to carry-out tasks when creating objects. For example, a method can change

the attributes of an object as defined by its class and return some type of value(s) to the user. Methods are defined by using the

def keyword and are invoked using the dot notation (e.g., object.method()). Methods can modify/update/alter an object’s state

and perform operations using the object’s parameters (data) passed to it by the programmer.

A Python library consists of a set of modules that contain re-usable, pre-defined, sharable, and customizable methods and classes

developed and released in repositories like PyPi and GitHub by third-party authors. These modules typically include classes,

methods, and additional dependency libraries that can be imported into Python programs to perform specialized (and often,

optimized) tasks that reduce code duplication. All the methods of a library can be imported at once, or more efficiently, specific

methods can be called only when needed. Some libraries, such as Scikit-Learn and TensorFlow, load more slowly when imported

in their entirety as opposed to quicker-to-load libraries like NumPy and Pandas. All libraries must go through a one-time

installation in the Python environment and must then be imported into the active Python session either in their entirety or by

calling specific methods on an as-needed basis. Libraries facilitate code deployment by providing programmers with pre-built tools

to perform specialized tasks with optimal efficiency and minimal code duplication (eliminates “re-creating the wheel”).

NumPy extends the capabilities of Python to vectorize operations across entire columns (or rows) of data, rather than iterating

operations sequentially one element at-a-time. Scikit-Learn integrates well with NumPy, SciPy, and Pandas to build data processing

pipelines, train ML algorithms, and deploy them using minimal code and pre-defined classes in the form of data transformers and

model estimators. These libraries greatly contribute to the scalability and efficiency of Python when building data workflows, also

providing programmers with standardized frameworks of pre-built methods and documentation that teams can implement

cohesively.

After covering these fundamental Python concepts, let's delve a little deeper into one of the most important Python libraries in

the realm of data science and how it extends and enhances the capabilities of Python’s more rudimentary data structures: the

Pandas ecosystem.

1.2) UNDERSTANDING THE PANDAS LIBRARY, DATAFRAME OBJECTS, AND SAS DATASETS
Pandas is an open-source Python library that provides high-performance data structures along with methods and tools for data

cleaning, imputation, feature engineering, data analysis, and its own sets of feature types (called dtypes) that includes support

for integer, float, string (object), categorical, datetime, and boolean types. Pandas is primarily used when working with tabular

data (i.e., flat file formats such as CSV, JSON, spreadsheets) and includes methods for scraping data from the web and working

with unstructured text-based data sources.

Pandas facilitates tasks including data imports, data cleaning, filtering, subsetting, aggregating, summarizing, transforming, time

series management (using its vectorized datetime functions), and data exports using its ecosystem of well-defined methods. The

library offers two main structures: the DataFrame (tabular data comprised of rows and columns) and a Series (a vector of data

stored as either a row or column inside a DataFrame). Pandas DataFrames are created from Python dictionaries containing lists of

elements where the keys of the dictionary denote the DataFrame’s column names, and the dictionary’s values are contained

within Python lists to produce the columns of that DataFrame.

How are Pandas DataFrames and SAS datasets alike? Both share similarities in how they handle and organize data in a 2-

dimensional tabular format, particularly for data analysis, querying, and manipulation tasks. Pandas DataFrames and SAS datasets

both support:

• Mixed feature types including numeric, string, categorical, and datetime column types

• Encoding and representation of missing values (Pandas uses ‘NaN’ while SAS employs ‘.’ to denote missing values)

• Merging, joining, stacking, and concatenation between different datasets

3

• Generating statistical summaries that recognize and account for missing values

Although Pandas DataFrames and SAS datasets share many similarities in their formats and structures, there are, however, several

key differences with how data are retrieved, indexed, processed, and the methods in which data can be manipulated and

transformed. These differences include:

• Pandas DataFrames must be loaded entirely in Python’s memory (RAM), making methods such as data chunking and

lazy evaluation necessary with additional libraries like Dask and Polars. SAS datasets are stored on disk, allowing SAS to

naturally (out-of-the-box) process big data concurrently without running into memory constraints or limitations.

• Methods for processing, sorting, filtering, transforming, and engineering new features are built into DataFrame objects.

These operations are performed entirely in Python’s memory. Python programmers can even define, vectorize, and map

their own custom functions to DataFrames. SAS datasets require the use of pre-defined procedures (PROCs) to perform

similar functions.

• Pandas DataFrames support automatic and custom (multi- and hierarchical) indexing to denote rows and columns, while

SAS datasets require that indices be explicitly created on one or more columns. Since SAS datasets read data from the

disk, as opposed to Python DataFrames where the entire index is stored in memory, filtering by indices on a SAS dataset

for moderate-sized data is slower than its Python counterpart.

Therefore, when using PROC PYTHON in SAS Viya and importing data using the Pandas library, the entire dataset will be imported

into the Python session’s memory (stored for immediate access with RAM). This stands in contrast to the DATA step in base SAS

where the data are read from the disk and chunks of the data are loaded into SAS as needed (constant I/O for read/write

operations into SAS). Figure 1 shows a comparison of how the Pandas DataFrame and SAS dataset visually appear, respectively,

using the same tabular dataset source. Notice how Python automatically indexes the first observation starting at 0, and then

increments by 1 from its 0-based index (this is a significant and noteworthy difference from SAS).

Figure 1. Pandas DataFrame (top) and the equivalent SAS dataset (bottom) showing the first-5 observations. Notice how Python
implements automatic indexing starting at 0.

1.3) DEFINING A CUSTOM PYTHON METHOD FOR IMPORTING CSV DATA SOURCES WITH PANDAS
Leveraging pre-built methods from the Pandas library, let’s define our own Python method that can accomplish the following data

import tasks:

• Import any delimited file type (i.e., comma, tab, colon) into the Python session as a Pandas DataFrame

• Allow programmers to specify the input file name, exported SAS dataset name, and type of delimiter

• Elements in the first row of the delimited file are used as column header names

• Convert the Pandas DataFrame from an in-memory dataset to a SAS dataset stored on-disk

• Allow programmer to determine if data is temporarily saved or permanently saved on-disk using a LIBNAME

4

This custom method, defined in (1.3.1), is saved inside of a separate Python script file (saved with the .py file extension) as

import_data.py. Python script files can contain as many user-defined methods, classes, and objects that can be imported and

used directly inside of PROC PYTHON through the INFILE option and pointing it to the script file’s location in SAS Drive. For

simplicity, the authors recommend saving the Python script file, SAS program file, and CSV dataset to the same working folder

inside of SAS Viya’s SAS Drive.
--

Python Code (1.3.1) | Defining a Python Data Import Method in a Separate Script (.py) File

--
def import_data(self, file_name, export_name, delim=',', libname='/') :
 try :
 # Import using the Pandas library
 df = pd.read_csv(
 file_name ,
 delimiter = delim ,
 header = 'infer'
)

 # Export pathway
 export_path = f'{libname}.{export_name}'
 # Transform into a SAS Dataset
 SAS.df2sd(df, export_path)

 except :
 raise Exception(
 f'There was an issue importing {file_name}'
)

The code shown in (1.3.1) defines a method called import_data() that imports any delimited data source as a Pandas DataFrame

and converts it to a temporary SAS dataset. PROC PYTHON automatically links the SAS session to the Python environment, with

this connection stored in an object called SAS, using the SASPy library to do this when PROC PYTHON is executed. Therefore,

when converting the DataFrame to a SAS dataset, the object linking the SAS and Python sessions together, called SAS, includes a

method that does exactly that: SAS.df2sd(). The Pandas DataFrame is then exported as a SAS dataset that can be accessed outside

of the Python environment using any of the procedures built into SAS.

The import_data() method shown in (1.3.1) also incorporates a try-except statement to assist in debugging. Should an error occur

anywhere within the try block, then the except block executes and the error message is returned. If the try block executes

successfully, then the error message in the except block is not returned.

By default, the LIBNAME option is set to store the SAS dataset in on-disk temporary storage, typically called the WORK directory.

Any files stored inside of this temporary storage are deleted when the SAS Viya session is terminated. Programmers can persist

the resulting SAS dataset to permanent storage in the SAS Drive by changing the LIBNAME option to a permanent folder pathway.

2. CONNECTING TO PROC PYTHON IN SAS VIYA

With the Python script file containing the import method saved and exported, let’s focus on initializing a Python session within

SAS Viya using PROC PYTHON. Let’s first investigate the version of Python that has been installed in PROC PYTHON. Then let’s

examine which open-source libraries (and their versions) are installed in the PROC PYTHON environment.

Traditionally, the interaction between SAS and Python happens through the SASPy library. PROC PYTHON simplifies this process

by coming bundled with a pre-configured (and updated) version of Python that does not need to be connected to the SAS

environment, since PROC PYTHON is already running within the SAS Viya environment. This simplifies data workflows and session

management between Python and SAS but limits the programmer to only using the pre-defined Python environment and installed

libraries within PROC PYTHON. More flexibility is allowed by using the SASPy library which allows users of SAS 9.4 and SAS Viya

to connect their own customized Python environments to their SAS sessions, albeit with more complexity, time-to-setup,

maintain, and manage sessions.

2.1) CHECKING THE INSTALLED PYTHON VERSION IN SAS VIYA

Knowing the current version of Python installed within PROC PYTHON is helpful when handling libraries, managing their

dependencies, and avoiding deprecation and conflicts between libraries. This can be achieved by importing Python’s sys library,

which is installed alongside Python natively, and allows the programmer to interact directly with the Python runtime environment

installed within PROC PYTHON.

5

The following PROC PYTHON code in (2.1.1) includes a code chunk that prints the currently installed Python version natively used

in the procedure. Keep in mind that the version of Python installed in PROC PYTHON at the publication of this paper may be

different than what is shown in the resulting log output.
--

SAS Code (2.1.1) | Checking the Python Installation in SAS Viya

--
/* Check and verify Python Installation in SAS Viya */
PROC PYTHON ;
 SUBMIT ;

import sys
print(f'Installed Python Version: {sys.version}')

 ENDSUBMIT ;
RUN ;

SAS Log (2.1.1)

The resulting SAS log produced from running the PROC PYTHON code block in (2.1.1) shows the installed version of Python to be

3.9.18 on Red Hat version 8.5.0-20. When executing a PROC PYTHON block of code for the first time, the log will also show the

Python version and the operating system (OS) that it’s running on, which is the Linux distribution Red Hat.

2.2) VERIFYING INSTALLED PYTHON LIBRARIES WITHIN SAS VIYA’S PROC PYTHON

After understanding the Python runtime version within PROC PYTHON, it’s helpful to know which libraries come pre-installed

within the SAS Viya procedure, especially since the pre-configured Python environment receives occasional updates.

This is accomplished using the sys and subprocess libraries, both natively installed alongside Python, to issue pip terminal

commands that interact with the Python runtime. The PROC PYTHON code shown in (2.2.1) issues a pip terminal command that

retrieves the alphabetical listings of all the installed libraries within the Python runtime (including their specific versions) and

prints the listing of libraries to the SAS log.
--

SAS Code (2.2.1) | Checking the Installation of Python Libraries in SAS Viya

--
/* Check installation of Python libraries in SAS Viya */
PROC PYTHON ;
 SUBMIT ;

6

Import subprocess to run pip commands by accessing the Python terminal in SAS Viya
import sys
import subprocess

Run the pip freeze command to list all installed packages
installed_packages = subprocess.check_output([sys.executable, '-m', 'pip', 'freeze'])

Decode and print the result
print(installed_packages.decode("utf-8"))

 ENDSUBMIT ;
RUN ;

SAS Log (2.2.1)

The SAS log from the code in (2.2.1) shows only a small subset of the installed Python libraries within PROC PYTHON. These

include libraries that assist with processing different types of data (i.e., Pandas, GeoPandas, NumPy, SciPy, Pillow, NLTK, Regex);

accessing data from the cloud and servers on the web (i.e., Filesystem Spec, AIOHTTP); visualizing data (i.e., Matplotlib, Plotly,

Seaborn); performing statistical modeling and training machine learning algorithms (i.e., Statsmodels, Scikit-Learn, XGBoost); and

developing deep learning architectures (i.e., TensorFlow, PyTorch, Keras, NVIDIA CUDA toolkit).

3. LEVERAGING PROC PYTHON TO BUILD PYTHON WORKFLOWS IN SAS

With the Python script file containing the custom method saved to the SAS Drive folder and PROC PYTHON coming pre-installed

with the Pandas library, let’s use PROC PYTHON to import a CSV dataset from within the SAS Drive using Pandas and then export

the Pandas DataFrame as a SAS dataset temporarily saved to the WORK directory.

3.1) DEFINING REFERENCES TO THE CSV DATASET AND PYTHON SCRIPT FILE
The dataset and Python script file must first be uploaded into the SAS Drive. Following this, the next step is to define the pathways

to the Python script file and the CSV dataset itself. The SAS code in (3.1.1) achieves the following:

• Creates a file reference called SCRIPT for the Python script that is located on the DISK using the FILENAME statement

• Declares a macro variable called REFDATA that stores the CSV dataset pathway to be used inside of PROC PYTHON

7

In the SAS code in (3.1.1), two items are defined: a file reference for the Python script file and a macro variable containing the

pathway to the CSV dataset. By defining a file reference with the FILENAME statement, programmers can use the shorthand

reference name SCRIPT instead of its full pathway when importing the Python script into PROC PYTHON. The REFDATA macro

variable allows the pathway to the CSV dataset to be defined in SAS and shared with the Python session inside of PROC PYTHON

as a string input. Code (3.1.1) shows how to implement this in SAS Viya.
--

SAS Code (3.1.1) | Importing Libraries, Data, and Saving to a SAS Dataset with PROC PYTHON

--
/* Python script file input */
FILENAME SCRIPT DISK '/export/viya/homes/{user-email}/casuser/import_data.py' ;

/* Define macro variable for dataset path */
%LET REFDATA = /export/viya/homes/{user-email}/casuser/Chronic_Kidney_Disease_data.csv ;

3.2) DEFINING THE GLOBAL LOCATIONS TO THE DATASET AND PYTHON SCRIPT FILE
Initializing a Python session inside of SAS Viya can be executed by calling PROC PYTHON and specifying the Python script file’s

pathway and location using the INFILE option (if necessary: only used when Python code is saved to an external file with the .py

extension). In this example, the Python code from (1.3.1) was saved to an external Python script file, using the .py extension,

containing a custom method for importing delimited data sources using the Pandas library and then exporting that Pandas

DataFrame as a SAS dataset that can be accessed by any of SAS Viya’s procedures.

When executing Python code inside of PROC PYTHON, programmers must specify the SUBMIT; and ENDSUBMIT; statements to

mark the beginning and end of the executed Python code. The Python code is then executed sequentially, line-by-line, until the

entire chuck of code either results in completion (all lines execute without errors) or termination (one or more lines of code

produce an error).

The PROC PYTHON code shown in (3.2.1) can be summarized by the following steps:

1. Imports the Python script file,

2. imports the Pandas library into the active Python session,

3. Retrieves the macro variable string pathway pointing to the CSV dataset and stores it as a Python string in filename,

4. Imports the CSV dataset as a Pandas DataFrame object entirely in Python’s memory,

5. Coerces the Pandas DataFrame object to a SAS dataset stored on disk in the temporary WORK library

--

SAS Code (3.2.1) | Importing CSV Data using Pandas and Exporting as a SAS Dataset

--
/* Submit Python code into PROC PYTHON */
PROC PYTHON INFILE=SCRIPT ;
 SUBMIT ;

Python library imports
import pandas as pd

Specify filename pathway
filename = SAS.symget('REFDATA')

Retrieve method from Python script file to load the data
import_data(
 file_name = filename ,
 export_name = 'KIDNEY_SAS'
)

 ENDSUBMIT ;
RUN ;

8

SAS Log (3.2.1)

The code inside of PROC PYTHON can also retrieve and edit macro variables defined in the SAS session, which in the example

shown in (3.2.1), contains a string macro variable defined by the %LET statement called REFDATA that contains the pathway to

the location of the desired CSV file. Without having to import any additional libraries, PROC PYTHON allows the programmer to

store the SAS macro variable as a python object, which in this case, is a Python string object called filename.

Once this code block is executed, a new SAS dataset (.sas7bdat file) called KIDNEY_SAS is created and stored (temporarily) inside

of the WORK library and can be accessed by any of the descriptive, visualization, statistical, and modeling procedures in SAS.

4. PERSISTING THE SAS DATASET TO PERMANENT STORAGE

Currently, the resulting SAS dataset is saved to temporary storage inside of the WORK library. By setting a LIBNAME in the SAS

code that points to a persistent folder in the SAS Drive, programmers can utilize the SAS dataset across SAS Viya sessions without

having to import and process the original CSV data source in Pandas.

4.1) DEFINING A PERSISTENT DATA STORAGE DIRECTORY WITH LIBNAME AND LIBREF

The LIBNAME statement allows the programmer to define a persistent directory that can be invoked using an 8-character (max)

shorthand reference within SAS for convenient dataset storage. The LIBREF contains the reference to the dataset folder pathway

while the LIBNAME is the shorthand library name. The LIBNAME statement shown in (4.1.1) defines a library named USERLIB that

is stored in this designated folder location: ‘/export/viya/homes/{user-email}/casuser/Data’. The /Data folder was created to store

and persist SAS datasets between SAS Viya sessions.
--

SAS Code (4.1.1) | Defining a LIBNAME and LIBREF for Persistent SAS Dataset Storage

--
/* Create a persistent folder containing exported SAS Datasets */
LIBNAME USERLIB '/export/viya/homes/{user-email}/casuser/Data' ;

SAS Output (4.1.1)

Located inside of SAS Studio’s libraries tab, the output from (4.1.1) creates the USERLIB library that is added to the existing list of

default (locked) libraries and the temporary WORK library.

9

4.2) USING THE LIBNAME IN PROC PYTHON TO EXPORT THE PANDAS DATAFRAME
After setting up the persistent library connected with the location in SAS Drive, let’s amend the PROC PYTHON code to account

for this by setting the LIBNAME option in the import_data() Python method to point to the USERLIB library and persist the exported

SAS dataset to its designated reference folder. The SAS code in (4.2.1) shows how to do this.
--

SAS Code (4.2.1) | Using PROC PYTHON to Export and Persist the SAS Dataset Using LIBNAME

--
/* Submit Python code into PROC PYTHON */
PROC PYTHON INFILE=SCRIPT ;
 SUBMIT ;

Python library imports
import pandas as pd

Specify filename pathway
filename = SAS.symget('REFDATA')

Retrieve method from Python script file to load the data
import_data(
 file_name = filename ,
 export_name = 'KIDNEY_SAS' ,
 libname = 'USERLIB' # Set the LIBNAME to the `USERLIB` library
)

 ENDSUBMIT ;
RUN ;

SAS Output (4.2.1)

As shown in the SAS output for (4.2.1), the original CSV dataset is successfully exported as a SAS dataset file (.sas7bdat) that

persists between SAS Viya sessions. In summary, the original CSV dataset was imported into the PROC PYTHON runtime as an in-

memory Pandas DataFrame and then converted into a SAS dataset that was exported and saved to the LIBREF location specified

in the LIBNAME statement. This process showcases a framework for integrating the data wrangling capabilities of Python within

the SAS environment to generate SAS datasets from raw data sources that are now accessible by any of the procedures in SAS

workflows.

5. EXAMINING THE METADATA OF THE NEWLY CREATED SAS DATASET

Finally, let’s verify the integrity of the resulting SAS dataset to ensure that the data import, conversion, and export processes

performed in PROC PYTHON successfully transformed the raw CSV file. Let’s use PROC CONTENTS to generate and investigate the

metadata for this resulting SAS dataset.

10

5.1) RUNNING PROC CONTENTS TO VERIFY METADATA FOR THE SAS DATASET
The SAS code in (5.1.1) invokes PROC CONTENTS on the SAS dataset exported and saved to the USERLIB library.
--

SAS Code (5.1.1) | Importing CSV Data using Pandas and Exporting as a SAS Dataset

--
/* Check the contents of the created SAS Dataset */
PROC CONTENTS DATA=USERLIB.KIDNEY_SAS ;
 TITLE 'Metadata for the SAS Dataset' ;
RUN ;

SAS Output (5.1.1)

The PROC CONTENTS output shows there are a total of 1,659 observations and 54 features within this dataset. Each observation

accounts for approximately 440 bytes of data on disk. Therefore, it’s safe to assume that the integration of Python within SAS was

successful.

CONCLUSION

PROC PYTHON is a powerful tool for leveraging a pre-configured Python runtime within the SAS Viya cloud analytics platform to

import, access, process, manage, analyze, visualize, and model structured and unstructured data formats using pre-installed

Python libraries. By integrating the versatility of Python with the validated procedures of SAS, programmers can greatly enhance

and expand their existing SAS Viya workflows to handle more diverse types of data and define powerful methods in Python to

process those datasets and export them as SAS datasets to be used anywhere within the SAS environment.

This paper investigated and discussed the types of data structures and open-source libraries available in Python for users to adopt,

including the capabilities of the Pandas ecosystem and how it differs from the disk-based approach favored by SAS. An example

Python and SAS integration workflow was then shown that utilized PROC PYTHON to import delimited data (CSV file) as a Pandas

DataFrame that was then exported to a SAS dataset in temporary and persistent storage with the help of the LIBNAME statement.

Finally, the integrity of this newly created SAS dataset was tested using PROC CONTENTS which successfully confirmed its integrity.

The integration of Python and SAS greatly expands the capabilities of new and existing SAS workflows to incorporate open-source

solutions with the validated and well-maintained procedures in SAS.

REFERENCES

Box, J. (2023). Running Python code inside a SAS® program. In Proceedings of PharmaSUG 2023 Conference (Paper QT-165).

Retrieved from https://pharmasug.org/proceedings/2023/QT/PharmaSUG-2023-QT-165.pdf

SAS Institute. (2024, October 17). How PROC PYTHON Works. SAS® Help Center.

https://documentation.sas.com/doc/en/pgmsascdc/v_056/proc/p1m1pc8yl1crtkn165q2d4njnip1.htm

https://pharmasug.org/proceedings/2023/QT/PharmaSUG-2023-QT-165.pdf
https://documentation.sas.com/doc/en/pgmsascdc/v_056/proc/p1m1pc8yl1crtkn165q2d4njnip1.htm

11

ACKNOWLEDGEMENTS

The authors would like to extend their appreciation to the Midwest SAS Users Group (MWSUG) 2024 Conference, the Conference

Committee, the Academic Chair and the Operations Chair, and the Section Chair for accepting their paper. The authors express

their gratitude to the MWSUG 2024 Conference for giving him the opportunity to present, publish, and network with professional

colleagues, industry specialists, researchers, and students at this esteemed data science conference.

TRADEMARK CITATIONS

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

United States of America and other countries. ® indicates USA registration. Any other brand and product names are trademarks

of their respective companies.

ABOUT THE AUTHORS

Ryan Paul Lafler is the Founder, CEO, Chief Data Scientist, and Lead Consultant at Premier Analytics Consulting, LLC, a data science

consulting firm based in San Diego, California. Ryan is Adjunct Faculty at San Diego State University (SDSU) for the Big Data

Analytics Graduate Program and the Department of Mathematics and Statistics. He also serves as a Principal Investigator (PI) and

Research Scientist for the SDSU Climate Informatics Laboratory (SCIL) on funded grants and projects. Ryan’s programming

expertise in Python, R, SAS®, JavaScript (React.js), open-source API frameworks, and SQL has contributed to his success as a big

data scientist; consultant; ML engineer; statistician; and full-stack application developer. He received his Master of Science in Big

Data Analytics from San Diego State University in May 2023 following the publication of his thesis. He holds a Bachelor of Science

in Statistics, a minor in Quantitative Economics, and graduated magna cum laude from San Diego State University. Ryan’s

passionate about open-source programming languages; applied Machine Learning (ML) / Deep Learning (DL) / Artificial

Intelligence (AI); statistical analysis and modeling; full-stack application and interactive dashboard development; and data

visualization methods.

Miguel Ángel Bravo Martínez Del Valle is a second-year Master of Science student in the Big Data Analytics Graduate Program at

San Diego State University graduating in the Spring of 2025. Miguel earned his Bachelor of Science in Electronics, Robotics, and

Mechatronics Engineering at the University of Málaga, Spain. He is currently a Graduate Researcher in the SDSU Climate

Informatics Laboratory (SCIL) assisting in the development of full-stack climate applications; processing big climate data; training

ML workflows; and programming in Python, SAS, and JavaScript (React.js). Miguel’s interests include data analytics, training ML/AI

workflows, and developing full-stack climate applications.

CONTACT INFORMATION

Comments, suggestions, and/or any questions are encouraged and may be sent to:

Ryan Paul Lafler, M.Sc.
Premier Analytics Consulting, LLC and San Diego State University

Founder, CEO, Chief Data Scientist, Lead Consultant, and Adjunct Faculty

E-mail: rplafler@premier-analytics.com

Website: www.Premier-Analytics.com

LinkedIn: www.LinkedIn.com/in/RyanPaulLafler

Résumé: www.Premier-Analytics.com/ryan-paul-lafler

Miguel Ángel Bravo Martínez Del Valle
SDSU Climate Informatics Laboratory (SCIL)

Graduate Researcher and M.Sc. Big Data Analytics Student

E-mail: miguelangelbravo2000@gmail.com

Website: www.mabravo.com

LinkedIn: www.LinkedIn.com/in/Miguel-Angel-Bravo/

mailto:rplafler@premier-analytics.com
http://www.premier-analytics.com/
http://www.linkedin.com/in/RyanPaulLafler
http://www.premier-analytics.com/ryan-paul-lafler
mailto:miguelangelbravo2000@gmail.com
http://www.mabravo.com/
http://www.linkedin.com/in/Miguel-Angel-Bravo/

