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The Doctor Ordered a Prescription…Not a Description: 

Driving Dynamic Data Governance Through Prescriptive Data Dictionaries 

That Automate Quality Control and Exception Reporting 

Troy Martin Hughes 

ABSTRACT 

Data quality is a critical component of data governance and describes the accuracy, validity, completeness, and 

consistency of data. Data accuracy can be difficult to assess, as it requires a comparison of data to the real-world 

constructs being abstracted. But other characteristics of data quality can be readily assessed when provided a clear 

expectation of data elements, records, fields, tables, and their respective relationships. Data dictionaries represent a 

common method to enumerate these expectations and help answer the question What should my data look like? Too 

often, however, data dictionaries are conceptualized as static artifacts that only describe data. This text introduces 

dynamic data dictionaries that instead prescribe business rules against which SAS® data sets are automatically 

assessed, and from which dynamic, data-driven, color-coded exception reports are automatically generated. Dynamic 

data dictionaries—operationalized within Excel workbooks—allow data stewards to set and modify data standards 

without having to alter the underlying software that interprets and applies business rules. Moreover, this modularity—

the extraction of the data model and business rules from the underlying code—flexibly facilitates reuse of this SAS 

macro-based solution to support endless data quality objectives. 

INTRODUCTION 

Data quality cannot be assessed in a vacuum—it requires standards against which data can be judged. At the most 

basic level, standards should communicate the data content (i.e., right variables or fields), format (i.e., right type of 

fields), and completeness (i.e., whether data are mandatory, or with what frequency they can be missing). This 

information is typically maintained within a data dictionary, which describes table- and field-level attributes. Some 

specifications, such as the requirement that a field contain unique values, must be assessed through inter-observation 

analysis. Other specifications must be assessed through inter-variable analysis, such as the requirement that variable 

B can be missing only when variable A is also missing. Thus, although some data dictionaries are merely enumerations 

of all variables with minimal descriptive information, more comprehensive data dictionaries may contain complex 

business rules and fuzzy logic that specify the conditions under which certain data requirements must be met. 

Although descriptive data dictionaries are useful resources for developers, analysts, and other stakeholders, data 

dictionaries can be difficult to maintain and keep current. Moreover, descriptive data dictionaries—even when complete 

and accurate—do nothing to enforce the business rules they describe. Prescriptive data dictionaries, rather, can enforce 

their rules either through data integrity constraints that don’t allow invalid data to enter a data set, or through post hoc 

quality controls that identify, expunge, or delete invalid data after they have been ingested. This text demonstrates the 

latter method through a series of SAS macros that perform post hoc data quality control by interrogating a user-created 

data dictionary, extracting business rules, applying rules to user-specified data sets, and creating color-coded HTML 

exception reports. Prescriptive data dictionaries have two principal advantages over descriptive data dictionaries, in 

that as data are added or modified, the existing rules are automatically applied, and in that as business rules are 

modified within a data dictionary, those rules are automatically applied to existing data. 

To demonstrate a real-world application of this solution, this text examines a personnel roster that might be maintained 

by a Human Resources department. A data dictionary is defined within Excel and queried by SAS to determine whether 

and how the personnel data set violates business rules contained within the data dictionary. The flexibility of this solution 

is demonstrated in successive examples that modify both the contents of the data dictionary and the contents and 

format of the personnel roster—all without ever requiring modification to the underlying SAS code. After each 

modification, the identical series of SAS macros is invoked, after which updated exception reports are automatically 

generated that both validate data quality and identify invalid data. These color-coded tactical reports identify specific 

types and instances of invalid data and strategic reports demonstrate validity trends for each variable. 
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SETUP FOR EXAMPLES 

These examples are demonstrated from the end-user perspective, thus focusing on the simplicity and flexibility of 

implementing the SAS solution rather than on the intricate innerworkings through which it is achieved. In other words, 

as any Cracker Barrel waitress will extol, “Please enjoy the sausage…but don’t ask how it’s made!” The following steps 

should be followed to run all examples within this text: 

1. Download all code from Appendix A and save to a single SAS program file, Data_dictionary.sas. 

2. The %INCLUDE statement should be modified to point to the folder in which the program was downloaded. 

In the following examples, the folder D:\sas\datadict\ is specified. Also note that the trailing backslash (or 

slash) is required. 

3. The personnel roster, demonstrated in Table 1 and Figure 1, should be created in the same folder and saved 

(as an Excel workbook) as Personnel.xlsx. 

4. The personnel data dictionary, demonstrated in Table 2 and Figures 2, 3, and 4, should be created in the 

same folder and saved (as an Excel workbook) as Dictionary_personnel.xlsx. Note that all three spreadsheets 

(i.e., tabs) of the workbook must be created as they appear in the figures. 

THE PERSONNEL ROSTER 

In this example, Ron Burgundy, fearless leader of a small SAS development and analytic team, maintains a roster of 

his staff within an Excel workbook (Personnel.xlsx). The spreadsheet is named “personnel” (case-sensitive) and is 

demonstrated in Figure 1. 

 

Figure 1. Personnel Roster (Personnel.xlsx) 

When downloaded to D:\sas\datadict, the following code imports this workbook into SAS: 

%let location=D:\sas\datadict\; 

%include "&location.data_dictionary.sas"; 

 

proc import datafile="&location.personnel.xlsx" 

 out=personnel 

 dbms=XLSX 

 replace; 

 sheet='personnel'; 

run; 
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The identical data set can be created in SAS using the following DATA step: 

data personnel; 

   infile datalines delimiter=',';  

   length Emp_ID 8 First_Name $50 Last_Name $50 Hire_Date 8 Job_Title $50 

  Job_Class $50; 

   input Emp_ID First_Name $ Last_Name $ Hire_Date :mmddyy10. Job_Title $ 

  Job_Class $; 

   format hire_date mmddyy10.; 

   datalines;                       

1, Ron, Burgandy, 3/4/2009, Project Manager, project manager 

2, Sky, Corrigan, 1/4/2018, Data Analyst, data analyst (SAS) 

3, Chazz, Michaels, 8/1/2017, Data Analyst, data analyst (SAS) 

4, Franz, Liebkind, 1/4/2015, Software Developer, software developer (SAS) 

5, Harold, Crick, 4/12/2017, Software Developer, software developer (SAS) 

6, Ricky, Bobby, 12/4/2013, Software Developer, software developer (general) 

7, Jacobim, Mugatu, 11/4/2017, Senior Software Developer, senior software 

developer (SAS) 

; 

The resultant SAS data set (Personnel) is demonstrated in Table 1. 

Emp ID First Name Last Name Hire Date Job Title Job Class 

1 Ron Burgundy 3/4/2009 Project Manager project manager 

2 Sky Corrigan 1/4/2018 Data Analyst data analyst (SAS) 

3 Chazz Michaels 8/1/2017 Data Analyst data analyst (SAS) 

4 Franz Liebkind 1/4/2015 Software Developer software developer (SAS) 

5 Harold Crick 4/12/2017 Software Developer software developer (SAS) 

6 Ricky Bobby 12/4/2013 Software Developer software developer (general) 

7 Jacobim Mugatu 11/4/2017 
Senior Software 
Developer 

senior software developer 
(SAS) 

Table 1. Personnel Data Set 

THE DATA DICTIONARY 

Although Ron has meticulously maintained his team’s roster, at some point, another employee or Human Resources 

might take over this responsibility. Because Ron uses his personnel roster in automated SAS processes, it’s critical 

that the established data format be maintained and not mangled during a transfer of responsibility. One of the easiest 

ways to provide a roadmap for data quality is to create a data dictionary that specifies the requirements for each 

variable. Figure 2 represents a data dictionary that specifies attributes for the Personnel data set. At this point, the data 

dictionary is only descriptive because there’s no indication that it is being used to enforce the business rules that it 

describes. 

 

Figure 2. Data Dictionary (Dictionary_personnel.xlsx, “dictionary” spreadsheet) for Personnel Roster 
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Figure 3 demonstrates the second tab of the workbook (“lookup_jobtitle”), which includes the list of valid values for the 

Job_title variable. All values are listed in the Value column and the Description column can be optionally used to provide 

additional context for each value (not demonstrated). The spreadsheet title is case-sensitive and is derived from 

appending the value in the Variable Lookup column (cell A5) of the spreadsheet (“jobtitle”) to “lookup_”. 

 

Figure 3. Data Dictionary (Dictionary_personnel.xlsx, “lookup_jobtitle” spreadsheet) for Personnel Roster 

Figure 4 demonstrates the third tab of the workbook (“lookup_jobclass”), which includes the list of valid values for the 

Job_class variable. All values are included in the Value column and the Description column can be optionally used to 

provide additional context for each value. The spreadsheet title is case-sensitive and is derived from appending the 

value in the Variable Lookup column (cell A6) of the spreadsheet (“jobclass”) to “lookup_”. 

 

Figure 4. Data Dictionary (Dictionary_personnel.xlsx, “lookup_jobtitle” spreadsheet) for Personnel Roster 

Table 2 shows the Dictionary spreadsheet of the Dictionary_personnel workbook and can be used to cut and paste 

these data into the Excel workbook (Dictionary_personnel.xlsx) that must be created. 

Variable 

Name (in) 

Variable 

Lookup 

Disallowed 

Values 

Variable 

Active 

Variable 

Description 

Variable 

Name (SAS) 

Variable Label 

(SAS) 

Variable 

Format 

Variable 

Length 

Required Error Label (SAS) Required 

When 

(Code) 

Duplicates 

Allowed 

Emp_ID 

 

0 yes Employee ID EmpID Employee ID numeric 8 yes EMPLOYEE ID is 

required for all 

employees 

 

no 
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First_Name 

 

N/A, Test yes First Name FirstName First Name character 50 yes FIRST NAME is 

required for all 

employees 

 

yes 

Last_Name 

 

N/A, Test yes Last Name LastName Last Name character 50 yes LAST NAME is 

required for all 

employees 

 

yes 

Job_Title jobtitle 

 

yes Job Title (used 

to determine 

pay bands) 

JobTitle Job Title character 50 yes JOB TITLE is 

required for all 

employees 

 

yes 

Job_Class jobclass 

 

yes Job 

Classification 

(for professional 

requirements) 

JobClass Job 

Classification 

character 50 yes JOB 

CLASSIFICATION is 

required for all 

employees 

  yes 

Table 2. Data Dictionary (Dictionary_personnel.xlsx, “dictionary” spreadsheet) for Personnel Roster 

Figure 2 and Table 2 both demonstrate the format required by data dictionaries to ensure that they are parsed correctly 

by the underlying SAS macros. Column names cannot be modified (because they are ingested into SAS and renamed 

as SAS variables) but all other rows should be modified to reflect the variables within the associated data set. Although 

each of the following columns must appear in the Dictionary spreadsheet, only those columns indicated as “required” 

must have values for each row (i.e., variable): 

1. Variable Name (in) – (REQUIRED) This column identifies the variable name of the SAS data set being 

examined—Personnel, in this example. Note that although the Personnel workbook was ingested, the macros 

run against the resultant SAS data set, generated from the previous IMPORT procedure. Because this column 

is converted into a SAS variable name, it must adhere to SAS variable-naming conventions. 

2. Variable Lookup – (OPTIONAL) This column identifies categorial variables (of type character or numeric) for 

which the set of valid values is known. For example, cell B5 (“jobtitle”) indicates that the Job_Title variable has 

a known set of values that will be listed on a separate spreadsheet (i.e., tab), “lookup_jobtitle”. Thus, any 

variable having a value in the Variable Lookup column must have a corresponding case-sensitive spreadsheet 

that lists the possible values. If the Variable Lookup cell is empty, this indicates that the variable is not 

categorical or that the set of valid values is unknown or undescribed. For example, the variables First_Name 

and Last_Name have no associated lookup spreadsheets because no comprehensive list of names exists. 

3. Disallowed Values – (OPTIONAL) This comma-delimited list includes values that are prohibited. For 

example, the employee ID (Emp_ID) cannot be “0” and the First_Name cannot be either “N/A” or “Test”. 

Quotation marks are not required (for either character or numeric data); however, this rudimentary feature will 

fail if quotations, commas, or some other special characters are included.  

4. Variable Active – (REQUIRED) The value should be either “yes” or “no”, indicating whether the variable 

should be included in the quality control review. This feature is beneficial, for example, when incrementally 

constructing a data dictionary, because only completed rows can be selectively added. This is also beneficial 

when applying a more comprehensive data dictionary to a data set that lacks some of the variables. 

5. Variable Description – (OPTIONAL) This value can be used to specify information about the variable. For 

example, in cells E5 and E6, Job_Title and Job_Class (two similarly sounding entities) are differentiated. 

6. Variable Name (SAS) – (REQUIRED) This column contains the names of the SAS variables that are created 

internally, whereas the Variable Name (in) column is used to specify the SAS variable names on the original 

data set being analyzed. This is useful because the ingested variable name can be changed (e.g., if an 

external data source is modified) without having to change the internal SAS variable name. In practice, the 

two columns (Variable Name (in) and Variable Name (SAS)) will typically have identical values for each row. 

Because this column is converted into a SAS variable name, it must adhere to SAS variable-naming 

conventions. 
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7. Variable Label (SAS) – (OPTIONAL) This column represents the SAS label applied to the Variable Name 

(SAS) column, and as such is restricted to SAS label-naming conventions. 

8. Variable Format – (REQUIRED) The value should be either “numeric” or “character”, representing the type 

of variable being analyzed. Only unformatted values are compared against the data dictionary, so in this 

version, SAS dates and other complex variable formats are unrecognized and cannot be analyzed. 

9. Variable Length – (REQUIRED) The value should correspond to the SAS LENGTH statement, as applied to 

the associated variable. 

10. Required – (REQUIRED) The value should be either “yes” or “no”, representing whether the variable in the 

data set must have a value. In this example, all variables must be complete. Because of the complexity of 

(and fuzzy logic business rules related to) assessing data completeness, a separate error label (Error Label 

(SAS) column) can be used to describe the rules associated with assessing completeness. Moreover, the 

Required When (Code) column is used to specify under what conditions a variable must be complete. 

11. Error Label (SAS) – (OPTIONAL) The value describes the error code and is displayed in the HTML exception 

reporting. For example, because Employee ID is a required variable, if it is missing, hovering over a blank cell 

(for the Emp_ID variable) in the HTML report will display the text “EMPLOYEE ID is required for all employees”. 

This column is only required when the Required column indicates “yes”. 

12. Required When (Code) – (OPTIONAL) The value includes a conditional logic statement that optionally 

specifies the conditions under which a variable is required. For example, if JobClass were only required for 

Employee IDs greater than 5, then “EmpID > 5” [without quotations] could be entered in cell L6 to limit the 

scope of the requirement. Thus, the JobClass variable would be allowed to be missing only for IDs one through 

five. 

13. Duplicates Allowed – (REQUIRED) The value should be either “yes” or “no”, representing whether the 

variable can have duplicates within the data set. This can be useful when a primary key is defined; however, 

as each row of the data dictionary workbook is treated separately, no functionality exists to define composite 

keys in which the combination of two or more variables must be unique across observations. 

No internal validation for the data dictionary exists, so it is essential that entries be made per the preceding guidance. 

A more robust solution would ensure that aberrant values were not entered or might validate each row against several 

criteria, excluding rows that did not meet all criteria. 

RUNNING THE EXAMPLE 

After following the steps in the “Setup for Examples” section, the following code imports the personnel roster (from 

Excel), imports the data dictionary (from Excel), creates an HTML version of the data dictionary, applies the data 

dictionary business rules to the personnel roster, and finally creates an exception report: 

%let location=/folders/myfolders/datadriven/; 

%include "&location.data_dictionary.sas"; 

 

* import the personnel roster into SAS; 

proc import datafile="&location.personnel.xlsx" 

 out=personnel 

 dbms=XLSX 

 replace; 

 sheet='personnel'; 

run; 

 

* import and process the data dictionary; 

%import_data_dic(dictspread=&location.dictionary_personnel.xlsx); 

 

* create HTML version of data dictionary; 
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%make_html_dic(htmlfile=&location.personnel_data_dictionary.html, 

 title=Personnel Data Dictionary); 

  

* apply business rules from data dictionary to data set; 

%apply_business_rules(dsn=personnel); 

 

%data_dic_report(htmlrptpath=&location, 

 htmlrpt=personnel_data_quality.html, 

 title=Personnel Exception Report, 

 display=all); 

When the previous %INCLUDE statement is run, the following FORMAT procedures execute from within the 

Data_dictionary.sas program file: 

proc format; 

 value expected 

 1='Required' 

 2='Optional' 

 3='Disallowed'; 

run; 

 

proc format; 

 value observed 

 1='Valid' 

 2='Missing' 

 3='Invalid' 

 4='Duplicate'; 

run; 

The formats are used to convey what is both expected of and observed from the data, and every cell being analyzed 

within the data set receives both an Expected and Observed Value. For example, “exp_EmpID=1” indicates that the 

Employee ID variable is expected for a specific observation whereas “exp_EmpID=2” indicates that the variable can be 

missing. However, whether the variable is missing (or valid, invalid, or duplicate) is contained within the exp_EmpID 

variable. The Expected and Observed variables are created automatically within the IMPORT_DATA_DIC macro. 

The IMPORT_DATA_DIC macro ingests the data dictionary and dynamically writes business rules (encapsulated in 

the global macro variable &RULESLIST) that are injected into SAS code in the following step. In this example, 

&RULESLIST has the following value after this macro is invoked: 

exp_EmpID=1;if missing(EmpID) then obs_EmpID=2;else if EmpID in(0) then 

obs_EmpID=3; else obs_EmpID=1;if  

 exp_EmpID=1 then obsreq_EmpID= obs_EmpID; else 

obsreq_EmpID=.;exp_FirstName=1;if missing(FirstName) then obs_FirstName=2;else 

if  

 strip(lowcase(FirstName)) in("n/a","test") then obs_FirstName=3; else 

obs_FirstName=1;if exp_FirstName=1 then obsreq_FirstName=  

 obs_FirstName; else obsreq_FirstName=.;exp_LastName=1;if missing(LastName) 

then obs_LastName=2;else if strip(lowcase(LastName))  

 in("n/a","test") then obs_LastName=3; else obs_LastName=1;if exp_LastName=1 

then obsreq_LastName= obs_LastName; else  

 obsreq_LastName=.;exp_JobTitle=1;if missing(JobTitle) then obs_JobTitle=2;else 

if strip(JobTitle) in ("Project Manager","Data  

 Analyst","Software Developer","Senior Software Developer") then 

obs_JobTitle=1; else obs_JobTitle=3;if exp_JobTitle=1 then  

 obsreq_JobTitle= obs_JobTitle; else obsreq_JobTitle=.;exp_JobClass=1;if 

missing(JobClass) then obs_JobClass=2;else if  
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 strip(JobClass) in ("project manager","data analyst (SAS)","software developer 

(SAS)","software developer (general)","senior  

 software developer (SAS)") then obs_JobClass=1; else obs_JobClass=3;if 

exp_JobClass=1 then obsreq_JobClass= obs_JobClass; else  

 obsreq_JobClass=.; 

Inserting appropriate line breaks in the first few lines yields a more reader-friendly version of the dynamic code, 

indicating the logic that is followed to assign the Expected and Observed values for the first variabls: 

exp_EmpID=1; 

if missing(EmpID) then obs_EmpID=2; 

else if EmpID in(0) then obs_EmpID=3;  

else obs_EmpID=1; 

if exp_EmpID=1 then obsreq_EmpID= obs_EmpID;  

else obsreq_EmpID=.; 

The MAKE_HTML_DIC macro creates a simple HTML version of the data dictionary. Distributing or posting the HTML 

version ensures that the Excel workbook—the control table producing the dynamism—is kept safe and not accessible 

to those who only need to view the data dictionary. This more straightforward version of the data dictionary is also 

useful to stakeholders responsible for remediating errors identified in an exception report. For example, the report 

makes it easy to identify what the acceptable values of the JobTitle variable are, should an invalid (or missing) value 

be detected. The previous MAKE_HTML_DIC macro produces the report (personnel_data_dictionary.html) 

demonstrated in Figure 5. 

 

Figure 5. Data Dictionary HTML Report 
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The APPLY_BUSINESS_RULES macro applies the business rules macro variable (&RULESLIST) created in the 

IMPORT_DATA_DIC macro to the data set being inspected. If the values of a variable must be unique, the data set is 

sorted by that variable, so this step can be time-consuming depending on the number of unique variables analyzed and 

the size of the data set. 

The DATA_DIC_REPORT macro creates the color-coded exception report that identifies any data quality issues. In 

addition to color-coding, the report also includes HTML popup windows that appear when a user hovers over a color-

coded cell. The previous code produces the HTML exception report (Personnel_data_quality.html) demonstrated in 

Figure 6. 

Personnel Exception Report 

Updated: 03/24/18 

No errors detected 

Figure 6. Exception Report Showing No Errors 

The report indicates that no errors were detected, as defined within the data dictionary and as observed within the 

personnel roster. In the next section, the personnel roster is modified (erroneously) and errors are discovered. 

EXCEPTION REPORTING 

To demonstrate how exceptions are detected and reported, five modifications are made in the Personnel spreadsheet, 

which is renamed Personnel_jacked. These changes include: 

• Cell A3 – The Employee ID “1” is repeated twice. 

• Cell C4 – The Last Name “Michaels” is deleted. 

• Cell E6 – The Job Title “Software Developer is deleted. 

• Cell C7 – The Last Name “Bobby” was replaced with the invalid value “N/A”. 

• Cell F8 – The Job Class “senior software developer (SAS)” is changed to “senior software developer”. 

These changes are reflected in the updated spreadsheet, demonstrated in Figure 6. 

 

Figure 6. Personnel Spreadsheet (Personnel_jacked.xlsx) with Injected Errors 
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The identical code can be run to demonstrate the revised exception report, albeit replacing the spreadsheet 

Personnel.xlsx with Personnel_jacked.xlsx in the IMPORT procedure: 

proc import datafile="&location.personnel_jacked.xlsx" 

 out=personnel 

 dbms=XLSX 

 replace; 

 sheet='personnel'; 

run; 

 

%import_data_dic(dictspread=&location.dictionary_personnel.xlsx); 

 

%make_html_dic(htmlfile=&location.personnel_data_dictionary.html, 

 title=Personnel Data Dictionary); 

  

%apply_business_rules(dsn=personnel); 

 

%data_dic_report(htmlrptpath=&location, 

 htmlrpt=personnel_data_quality.html, 

 title=Personnel Exception Report, 

 display=all); 

Refreshing the HTML exception report, demonstrated in Figure 7, now identifies each of the errors that was just 

introduced, without the necessity to modify any of the underlying code. 

# Employee ID First Name Last Name Job Title Job Classification 

1 1 Ron Burgundy Project Manager project manager 

2 1 Sky Corrigan Data Analyst data analyst (SAS) 

3 3 Chazz   Data Analyst data analyst (SAS) 

4 4 Franz Liebkind Software Developer software developer (SAS) 

5 5 Harold Crick   software developer (SAS) 

6 6 Ricky N/A Software Developer software developer (general) 

7 7 Jacobim Mugatu Senior Software Developer senior software developer 

Figure 7. Personnel Exception Report (Personnel_jacked.xlsx) with Injected Errors 

The report correctly identifies each of the injected errors with the following color-coding: 

• YELLOW cells contain duplicate values that should be unique. 

• ORANGE cells contain invalid values (either those explicitly prohibited or those not included in an associated 

lookup spreadsheet). 

• RED cells are required but missing. 

Hovering over any color-coded cell (in the HTML report only) produces a popup that displays an associated error 

message. For example, in Figure 7, the following popup messages are displayed: 

• Line 1 / Employee ID – EmpID cannot be duplicate 

• Line 2 / Employee ID – EmpID cannot be duplicate 
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• Line 3 / Last Name – LASTNAME always required 

• Line 5 / Job Title – JOBTITLE always required 

• Line 6 / Last Name – LASTNAME value disallowed 

• Line 7 / Job Classification – JOBCLASS not in lookup table 

As the Personnel spreadsheet continues to be modified or updated with new data, the underlying code will continue to 

produce dynamic macro code that assesses the data quality through updated exception reports. 

CONCLUSION 

Data dictionaries are often construed as static documents—artifacts that must be arduously updated independent of 

data models or data quality controls. Although these descriptive data dictionaries do exist in some environments and 

provide some value to stakeholders, prescriptive data dictionaries automate data quality functions by extracting 

business rules and applying these dynamically to data sets. As prescriptive data dictionaries are modified incrementally 

over time, and as data sets morph and grow, these data dictionaries can comfortably flex with to ensure that data sets 

are always being assessed against current quality controls. The dynamic, data-driven solution within this text 

demonstrates a modular design in which endless data dictionaries can be constructed, and through which color-coded 

exception reports are generated to alert stakeholders to data quality issues. 
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APPENDIX A. DATA DICTIONARY MACROS (DATA_DICTIONARY.SAS) 
 

* formats required to calculated expected and observed metrics for data 

governance; 

proc format; 

 value expected 

 1='Required' 

 2='Optional' 

 3='Disallowed'; 

run; 

 

proc format; 

 value observed 

 1='Valid' 

 2='Missing' 

 3='Invalid' 

 4='Duplicate'; 

run; 

 

*-; 

*---; 

*----- IMPORT DATA DICTIONARY BUSINESS RULES; 

*---; 

*-; 

 

%macro import_data_dic(dictspread = /* data dictionary spreadsheet  

 path and file name */); 

%global varlist varcnt oldvarlist lookuplist lookupformatlist headerlength 

 headerformat headerlabel ruleslist renamelist noduplist; 

%let varlist=; 

%let oldvarlist=; 

%let lookuplist=; 

%let lookupformatlist=; 

%let headerlength=; 

%let headerformat=; 

%let headerlabel=; 

%let ruleslist=; 

%let renamelist=; 

%let noduplist=; 

%local i var lookupformat; 

proc import datafile="&dictspread"  

 out=dict1 

 dbms=xlsx 

 replace; 

 getnames=yes; 

 sheet="dictionary"; 

run; 

* create variable lists for LENGTH and FORMAT statements; 

data dict2 (drop=varlist oldvarlist lookuplist lookupformatlist varcnt); 

 length varIN $30 lookup $50 blacklist $1000 status $15 desc $200 varSAS $30 

  labelSAS $50 form $10 len 8 errSAS $200 req $3 reqCode $2000 dups $3 

  varlist $10000 oldvarlist $10000 lookuplist $10000  

  lookupformatlist $10000 varcnt 8 noduplist $10000; 

 format varIN $30. lookup $50. blacklist $1000. status $15. desc $200.  

  varSAS $30. labelSAS $50. form $10. len 8. errSAS $200. req $3.  
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  reqCode $500. dups $3. noduplist $10000.; 

 set dict1 (rename=(variable_name__in_=varIN variable_lookup=lookup 

  disallowed_values=blacklist variable_active=status 

   variable_description=desc variable_name__sas_=varSAS  

   variable_label__sas_=labelSAS variable_format=form 

   variable_length=len error_label__sas_=errSAS  

   required=req required_when__code_=reqCode  

   duplicates_allowed=dups)) end=eof; 

 if _n_=1 then do; 

  varlist=''; 

  oldvarlist=''; 

  lookuplist=''; 

  lookupformatlist=''; 

  noduplist=''; 

  varcnt=0; 

  end; 

 if lengthn(strip(lookup))=0 then lookup='N/A'; 

 if strip(lowcase(status))='yes' then do; * only process active variables; 

  varcnt=varcnt+1; 

  varlist=catx(' ',varlist,strip(varSAS));  

   * space-delimited (used in KEEP statements); 

  oldvarlist=catx(' ',oldvarlist,strip(varIN)); 

  lookuplist=catx('*',lookuplist,strip(lookup)); 

  lookupformatlist=catx('*',lookupformatlist,strip(lowcase(form))); 

  if strip(lowcase(dups))='no' then noduplist= 

   catx(' ',noduplist,strip(varSAS)); 

  end; 

 if eof then do; 

  call symput('varlist',strip(varlist)); 

  call symput('oldvarlist',strip(oldvarlist)); 

  call symput('lookuplist',strip(lookuplist)); 

  call symput('lookupformatlist',strip(lookupformatlist));   

  call symput('varcnt',strip(put(varcnt,8.))); 

  call symput('noduplist',strip(noduplist)); 

  end; 

 retain varlist oldvarlist lookuplist lookupformatlist varcnt noduplist; 

run; 

 

* read all lookup tables into macro variable lists; 

%do i=1 %to &varcnt; 

 %if "%scan(&lookuplist,&i,*)"^="N/A" %then %do; 

  proc import datafile="&dictspread"  

   out=t1  

   dbms=xlsx 

   replace; 

   sheet="lookup_%upcase(%scan(&lookuplist,&i,*))"; 

  run; 

  %let lookupformat=%scan(&lookupformatlist,&i,*); 

  %global lookup_%scan(&varlist,&i,,S) lookup2_%scan(&varlist,&i,,S); 

  %let lookup_%scan(&varlist,&i,,S)=; 

  %let lookup2_%scan(&varlist,&i,,S)=; 

  data _null_; 

   set t1 end=eof; 

   length list $10000 list2 $10000; 

   if _n_=1 then do; 



14 

    list=''; 

    list2=''; 

    end; 

   %if "&lookupformat"="character" %then %do; 

    list=catx(',',list,'"'||strip(value))||'"'; 

    %end; 

   %else %do; 

    list=catx(',',list,strip(value)); 

    %end;    

   list2=catx('^',list2,strip(value));  

    * for data dictionary HTML report; 

   if eof then do; 

    call symputx("lookup_%scan(&varlist,&i,,S)",strip(list)); 

    call symputx("lookup2_%scan(&varlist,&i,,S)",strip(list2)); 

    end; 

   retain list list2; 

  run; 

  %end; 

 %end; 

 

* dynamically write code to detect invalid data; 

data _null_ (drop=headerlength headerformat headerlabel ruleslist i  

  blacklist_quoted); 

 set dict2 end=eof; 

 length headerlength $10000 headerformat $10000 headerlabel $10000  

  ruleslist $30000 renamelist $10000 i 3 blacklist_quoted $10000; 

 if _n_=1 then do; 

  headerlength='length '; 

  headerformat='format '; 

  headerlabel='label'; 

  ruleslist=''; 

  renamelist=''; 

  blacklist_quoted=''; 

  end; 

 if ^missing(blacklist) then do; 

  i=1; 

  do while(length(scan(blacklist,i,','))>1); 

   blacklist_quoted=catx(',',blacklist_quoted, 

    quote(strip(lowcase(scan(blacklist,i,','))))); 

   i=i+1; 

   end; 

  end; 

 if strip(lowcase(status))='yes' then do; 

  * generate dynamic LENGTH, FORMAT, and LABEL statements; 

  headerlength=strip(headerlength) || ' ' || strip(varSAS) || ' ' ||  

   ifc(lowcase(form)='character',' $',' ') 

   || strip(put(len,8.)); 

  headerlength=strip(headerlength) || ' exp_' || strip(varSAS) || ' 3'; 

  headerlength=strip(headerlength) || ' obs_' || strip(varSAS) || ' 3'; 

  headerlength=strip(headerlength) || ' obsreq_' || strip(varSAS) || ' 3'; 

  * if not character, then date, if not date, then defaults to numeric; 

  headerformat=strip(headerformat) || ' ' || strip(varSAS) ||  

   ifc(lowcase(form)='character',' $' || strip(put(len,8.)), 

   ifc(lowcase(form)='date',' mmddyy10',' ' || strip(put(len,8.))))  

   || '.'; 
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  headerformat=strip(headerformat) || ' exp_' || strip(varSAS)  

   || ' expected.'; 

  headerformat=strip(headerformat) || ' obs_' || strip(varSAS)  

   || ' observed.'; 

  headerformat=strip(headerformat) || ' obsreq_' || strip(varSAS)  

   || ' observed.'; 

  headerlabel=strip(headerlabel) || ' ' || strip(varSAS) || '="'  

   || strip(labelSAS) || '"'; 

  headerlabel=strip(headerlabel) || ' exp_' || strip(varSAS) || '="'  

   || strip(upcase(varSAS)) || 

   ifc(strip(lowcase(req))='no',' not required"', 

   ifc(missing(reqCode),' always required"',' ' || strip(errSAS)  

   || '"')); 

  headerlabel=strip(headerlabel) || ' obs_' || strip(varSAS) || '="'  

   || upcase(strip(varSAS)) ||  

   ifc(^missing(lookup) and strip(lowcase(lookup))^='n/a', 

    ' not in lookup table"', 

   ifc(strip(lowcase(lookup))='n/a' and ^missing(blacklist), 

    ' value disallowed"',' does not restrict values"')); 

  headerlabel=strip(headerlabel) || ' obsreq_' || strip(varSAS) || '="'  

   || upcase(strip(varSAS)) || ' Status When Required"';  

  renamelist=strip(renamelist) || ' ' || strip(varIN) || '='  

   || strip(varSAS); 

  * EXPECTED busines rules; 

  if strip(lowcase(req))='no' then ruleslist=strip(ruleslist) || 'exp_'  

   || strip(varSAS) || '=2;'; 

  else if strip(lowcase(req))='yes' then do; 

   if missing(reqCode) then ruleslist=strip(ruleslist) || 'exp_'  

    || strip(varSAS) || '=1;'; 

   else ruleslist=strip(ruleslist) || 'if ' || strip(reqCode)  

    || ' then exp_' || strip(varSAS) || '=1; else exp_'  

    || strip(varSAS) || '=2;'; 

   end; 

  * OBSERVED business rules; 

  ruleslist=strip(ruleslist) || 'if missing(' || strip(varSAS) || ')  

   then obs_' || strip(varSAS) || '=2;'; 

  if strip(upcase(lookup))='N/A' or missing(lookup) then do; 

   if strip(lowcase(form))='character' then do;  

    if ^missing(blacklist) then ruleslist=strip(ruleslist) ||  

     'else if strip(lowcase(' || strip(varSAS) || ')) in(' ||  

     strip(lowcase(blacklist_quoted)) || ') then obs_' || 

     strip(varSAS) || '=3; else obs_' || strip(varSAS)  

     || '=1;'; 

    else ruleslist=strip(ruleslist) || 'else obs_' || strip(varSAS)  

     || '=1;'; 

    end; 

   else do; 

    if ^missing(blacklist) then ruleslist=strip(ruleslist)  

     || 'else if ' || strip(varSAS) || ' in(' ||  

     strip(blacklist) || ') then obs_' || strip(varSAS)  

     || '=3; else obs_' || strip(varSAS) || '=1;'; 

    else ruleslist=strip(ruleslist) || 'else obs_' || strip(varSAS)  

     || '=1;'; 

    end; 

   end; 
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  else do; 

   if strip(lowcase(form))='character' then do;  

    ruleslist=strip(ruleslist) || 'else if strip(' || strip(varSAS)  

     || ') in (' || resolve('&lookup_' || strip(varSAS)) || ')  

     then obs_' || strip(varSAS) || '=1; else obs_'  

     || strip(varSAS) || '=3;'; 

    end; 

   else do; 

    ruleslist=strip(ruleslist) || 'else if ' || strip(varSAS)  

     || ' in (' || resolve('&lookup_' || strip(varSAS)) || ') 

     then obs_' || strip(varSAS) || '=1; else obs_'  

     || strip(varSAS) || '=3;'; 

    end; 

   end; 

  ruleslist=strip(ruleslist) || 'if exp_' || strip(varSAS) || '=1  

   then obsreq_' || strip(varSAS) || '= obs_' || strip(varSAS)  

   || '; else obsreq_' || strip(varSAS) || '=.;';  

   * set to missing so it will not be counted in summary stats later; 

  end; 

 if eof then do; 

  call symput('headerlength',strip(headerlength)); 

  call symput('headerformat',strip(headerformat)); 

  call symput('headerlabel',strip(headerlabel)); 

  call symput('ruleslist',strip(ruleslist)); 

  call symput('renamelist',strip(renamelist)); 

  end; 

 retain headerlength headerformat headerlabel ruleslist renamelist; 

run; 

%let headerlength=&headerlength%str(;); 

%let headerformat=&headerformat%str(;); 

%let headerlabel=&headerlabel%str(;); 

%mend; 

 

*-; 

*---; 

*----- GENERATE HTML VERSION OF DATA DICTIONARY; 

*---; 

*-; 

 

%macro make_html_dic(htmlfile = /* path and file name of HTML  

  data dictionary created */, 

 title = /* data dictionary title */); 

%local today; 

%let today=%sysfunc(date(),mmddyy8.); 

data _null_; 

 file "&htmlfile"; 

 set dict2 end=eof; 

 where strip(lowcase(status))='yes'; 

 length tempvar $1000 tempvarsmall $100 i 3 lenchar $8; 

 if _n_=1 then do; 

  put '<html><header>'; 

  put '</header>'; 

  put '<body>'; 

  put '<font face=Arial>'; 

  put "<h3>&title<br>"; 



17 

  put "<h3>Updated: &today<p>"; 

  end; 

 put '<h3><font color=blue>' labelSAS '</font><br></h3>'; 

 put '<b>Description:</b>&nbsp' desc '<br>'; 

 lenchar='('||strip(put(len,8.))||')'; 

 if lowcase(form)='character' then put '<b>Format:</b> character&nbsp' 

  lenchar '<br>'; 

 else if lowcase(form)='numeric' then put '<b>Format:</b> numeric&nbsp' 

  lenchar '<br>'; 

 else if lowcase(form)='date' then put '<b>Format:</b> date<br>'; 

 if lowcase(req)='yes' then put '<b>Required:</b> YES - ' errSAS '<br>'; 

 else if lowcase(req)='no' then put '<b>Required:</b> NO<br>'; 

 if strip(lowcase(lookup))^='n/a' and ^missing(lookup)then do; 

  tempvar=resolve("&lookup2_"||varSAS); 

  put '<b>Variable is restricted to the following values:</b><br>'; 

  i=1; 

  do while(lengthn(scan(tempvar,i,'^'))>0); 

   tempvarsmall=scan(tempvar,i,'^'); 

   put '<li>' tempvarsmall; 

   i=i+1; 

   end; 

  end; 

 if ^missing(blacklist) then do; 

  put '<b>Variable cannot contain the following values:</b><br>'; 

  i=1; 

  do while(lengthn(scan(blacklist,i,','))>0); 

   tempvarsmall=scan(blacklist,i,','); 

   put '<li>' tempvarsmall; 

   i=i+1; 

   end; 

  end; 

 put '<p>'; 

 if eof then do; 

  put '</font>'; 

  put '</body>'; 

  put '</html>'; 

  end; 

run; 

%mend;  

 

*-; 

*---; 

*----- APPLY BUSINESS RULES TO SAS DATA SET TO ENFORCE QUALITY CONTROL; 

*---; 

*-; 

 

%macro apply_business_rules(dsn= /* data set name in LIB.DSN or DSN format */); 

%local j var; 

data rules_applied; 

 length totReq 3 totReqMiss 3 totReqInv 3; 

 format totReq 8. totReqMiss 8. totReqInv 8.; 

 label totReq='Attributes Required' totReqMiss='Required Attributes Missing'  

  totReqInv='Required Attributes Invalid'; 

 &headerlength; 

 &headerformat; 
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 &headerlabel; 

 set &dsn (rename=(&renamelist) keep=&oldvarlist); 

 

 * apply all business rules created previously; 

 &ruleslist; 

 

 * calculate percent missing or invalid; 

 totReq=0; 

 totReqMiss=0; 

 totReqInv=0; 

 %let j=1; 

  %do %while(%length(%scan(&varlist,&j,,S))>1); 

   %let var=%scan(&varlist,&j,,S); 

   if exp_&var=1 then totReq=totReq+1; 

   if exp_&var=1 and obs_&var=2 then totReqMiss=totReqMiss+1; 

   else if exp_&var=1 and obs_&var=3 then totReqInv=totReqInv+1; 

   %let j=%eval(&j+1); 

   %end; 

 run; 

 

 * identify duplicate values (that should be unique); 

 %let j=1; 

 %do %while(%length(%scan(&noduplist,&j,,S))>1); 

  %let var=%scan(&noduplist,&j,,S); 

  proc sort data=rules_applied; 

   by &var; 

  run; 

  data rules_applied; 

   set rules_applied; 

   by &var; 

   if ^missing(&var) and (^first.&var or ^last.&var) then obs_&var=4; 

   if ^missing(&var) and exp_&var=1 and (^first.&var or ^last.&var)  

    then obsreq_&var=4; 

  run; 

  %let j=%eval(&j+1); 

  %end; 

%mend; 

 

*-; 

*---; 

*----- CREATE DATA QUALITY EXCEPTION REPORT; 

*---; 

*-; 

 

%macro data_dic_report(htmlrptpath= /* path of HTML exception rpt created */, 

 htmlrpt= /* file name and extension of HTML exception report created */, 

 title= /* title of exception report */, 

 display=ERRORS /* display=ALL to show correct and invalid records */); 

%local i j errcnt; 

%local today; 

%let today=%sysfunc(date(),mmddyy8.); 

* create text for HTML flyover popups; 

data dsn_for_report; 

 set rules_applied; 

 length var_err1 - var_err&varcnt $200; *  
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  boolean values for each variable where 1 represents at least one err; 

 length var_label1 - var_label&varcnt $200;  

  * descriptive label of at least one finding; 

 %do i=1 %to &varcnt; 

  * correct if it 1) has a valid value or 2) is not missing  

   and is allowed to be missing; 

  if obs_%scan(&varlist,&i,,S)=1 or (exp_%scan(&varlist,&i,,S)=2  

   and obs_%scan(&varlist,&i,,S)=2) then var_err&i=0; 

  else if exp_%scan(&varlist,&i,,S)=1 and obs_%scan(&varlist,&i,,S)=2  

    then do; * denoted MISSING if it is expected to be there; 

   var_err&i=2; 

   call label(exp_%scan(&varlist,&i,,S), var_label&i); 

   end; 

  else if obs_%scan(&varlist,&i,,S)=3 then do;  

    * denoted INVALID whether it is expected to be there or not; 

   var_err&i=3; 

   call label(obs_%scan(&varlist,&i,,S), var_label&i); 

   end; 

  else if obs_%scan(&varlist,&i,,S)=4 then do;  

   * denoted DUPLICATE whether it is expected to be there or not; 

   var_err&i=4; 

   var_label&i="%scan(&varlist,&i,,S) cannot be duplicate"; 

   end; 

  %end; 

run; 

* create the reports; 

proc sql noprint; 

 select count(*) into: errcnt 

 from rules_applied 

 where totReqMiss>0 or totReqInv>0; 

 quit; 

%if &errcnt=0 %then %do; 

 data _null_; 

  file "&htmlrptpath.&htmlrpt"; 

  put '<html><header>'; 

  put '</header>'; 

  put '<body>'; 

  put '<font face=Arial>'; 

  put "<h3>&title<br>"; 

  put "<h3>Updated: &today<p>"; 

  put "<h3>No errors detected"; 

  put '</font>'; 

  put '</body>'; 

  put '</html>'; 

 run; 

 %end; 

%else %do; 

 ods html path="&htmlrptpath" file="&htmlrpt"; 

 title "&title"; 

 proc report data=dsn_for_report nocenter nowindows nocompletecols 

   style(report)=[foreground=black backgroundcolor=white  

   background=black] style(header)=[font_size=2 background=black  

   backgroundcolor=black foreground=white]  

   style(column)=[backgroundcolor=very light grey]; 

  %if %upcase(&display)^=ALL %then %do; 
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   where totReqMiss>0 or totReqInv>0; 

   %end; 

  column obs &varlist var_err1 - var_err&varcnt var_label1 – 

    var_label&varcnt dummy; 

  define obs / computed '#'; 

  %do j=1 %to &varcnt; 

   define %scan(&varlist,&j) / display; 

   %end; 

  %do j=1 %to &varcnt; 

   define var_err&j / display noprint;  

   %end; 

  %do j=1 %to &varcnt; 

   define var_label&j / display noprint; 

   %end; 

  define dummy / computed noprint; 

  compute obs; 

   obs_pvt+1; 

   obs=obs_pvt; 

   call define("_c1_",'style','style=[backgroundcolor=black 

foreground=white]'); 

   endcomp; 

  compute dummy; 

   %do j=1 %to &varcnt; * create the color-coding; 

    if var_err&j=2 then call define ("_c%eval(&j+1)_", 

     'style','style=[backgroundcolor=very light red]'); 

    else if var_err&j=3 then call define ("_c%eval(&j+1)_", 

     'style','style=[backgroundcolor=very light orange]'); 

    else if var_err&j=4 then call define ("_c%eval(&j+1)_", 

     'style','style=[backgroundcolor=very light yellow]'); 

    %end; 

   %do j=1 %to &varcnt; * create the error popup labels; 

    if var_err&j^=0 then call define  

     ("_c%eval(&j+1)_",'style/merge','style=[flyover="'  

     || _c%eval(&varcnt+&varcnt+&j+1)_ || '"]'); 

    %end; 

   endcomp; 

 run; 

 ods html close; 

 %end; 

%mend; 


