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ABSTRACT 
 

Software developers employ incremental progress to cause 

radical development break throughs. The same is true in 

medicine, manufacturing and finance. For example, a new 

anti-diabetic medicine might not have superior outcomes of 

improved glycemic control, but it might be less expensive. 

Or a new device for use in hand surgery might not have 

superior digital mobility, but might be easier for the surgeon 

to implant. Or perhaps micro-loans to novice entrepreneurs 

might not raise the economic output for the county, but might 

cultivate cooperation among local businesses. These are 

examples where the outcome of a new method might not be 

objectively worse, that is non-inferior, but would have some 

reason to replace the current method and instigate 

incremental progress. SAS users are often asked to size and 

design studies to test this kind of non-inferiority. Such a 

design requires consideration of the frame-work of the 

hypothesis set-up, the directionality, the determination of the 

non-inferiority margin and the proper analysis method. In 

this review, the rationale for these considerations will be 

presented, common misunderstandings clarified and 

examples using SAS/STAT® given. 

 

1.  Introduction  
 

Prospective experiments in a broad array of industries 

provide priceless information to the enterprise regarding 

causative effect. However, they are frequently expensive. 

Proper power estimation ensures that the experimental 

outcomes will be valuable. 

 

Attribution of causative effects in experimental design is 

definitively demonstrated with the use of randomly 

assigning experimental units either to the experimental 

intervention group and a ‘negative control group,’ (for 

example, a placebo-controlled clinical trial) or by series of 

escalating intensity of the intervention (for example, a dose-

response study or a puncture stress test). Hypothesis from 

these types of designs are called superiority. 

 

In contrast, a ‘positive control’ study refers to those studies 

where a control treatment employed is active. The active 

comparator has a previously known causative effect on 

outcome and can serve as a reference.  

 

Positive control studies have been chosen for use in one 

situation when a negative-control design would be unethical. 

For example, in anti-infection studies for the treatment of 

pneumonia, biological cure rates can be 80-90% and it would 

be inconceivable to assign some patients to a placebo to 

assess the effectiveness of a new interventional product. 

Equally unimaginable would be the assignment to placebo 

of patients suffering from any one of the many life-

threatening cancers (Mukherjee, 2010) (see reference for 

free copy of his ebook).  

 

But active controls can have a less dramatic but equally 

useful purpose as well. Active controls are also used to 

determine how experimental treatments compare and aim to 

demonstrate that interventions of interest have either 

superior effects or non-inferior effects to the control or 

reference. 

 

But for as important and useful as this design is, there is as 

much confusion in the literature surrounding the execution 

and reporting of noninferiority studies. A recent study 

published in JAMA identified 162 reports of noninferiority 

trials published in 2003 and 2004 and found 78% either 

deficient methods or had misleading conclusions. 

 

Offered here is an attempt to improve some of the clarity by 

examining design considerations in studies assessing non-

inferiority using continuous outcomes. 

 

This paper is about the continuous case. However, it is 

surprisingly simple to apply its contents to the binomial case. 

Also, this paper is intended for intermediate SAS users with 

completion of an introductory, collegiate-level statistical 

course. 

 

2. Testing Statistical Hypotheses 
 

First, a review of experimental outcomes, hypothesis testing 

framework and elements are reviewed because of their 

central role in non-inferiority testing. Readers regularly 

working with these outcomes, frameworks and elements 

may prefer to skip these three sections and go to Section 5. 

But a review, if for no other reason than the notation, is 

worthwhile.  
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2.1 Experimental Outcomes 

 

The conclusion drawn at the end of the experiment can have 

two possible outcomes. However, at the beginning of the 

experiment, the two outcomes are written down and called 

‘conjectures.’ Experiments are designed to test a conjecture 

the investigator believes to be true.  

 

The opposing conjecture that the investigator believes is 

false, when stated mathematically, is the default hypothesis 

and is called the ‘Null Hypothesis’ (See Table A). 

 

Table 2.1. Prospective Experimental Outcomes by 

Phase  

Experimental Phase Outcome 

Before Conjecture 

During Hypothesis 

After Conclusion 

 

2.2 Hypotheses in the Testing Procedure 

 

In statistical hypothesis testing, the alternative hypothesis 

specifies the researcher’s belief that some effect exists in a 

well-defined population written in mathematical terms. The 

alternative hypothesis, written as Halt or Ha, where the 

subscript ‘alt’ or ‘a’ are abbreviations for ‘alternative.’ 

 

The null hypothesis, Hnull, sometimes written as H0, is the 

assertion that the effect does not truly exist. Written in 

mathematical terms as Hnull or H0, where the subscript zero 

‘0’ is a symbol for ‘no effect.’ Evidence is then gathered to 

reject Hnull in favor of Halt. A statistical test is used to assess 

Hnull. If Hnull is rejected, but there truly is no effect, this is 

called a Type I error.  

 

Review of the hypothesis testing process might be 

worthwhile. 

 

2.3 Elements of Hypothesis Testing 

 

Seven basic elements of hypothesis testing can be adapted 

from previous authors (McClave & Dietrich, 1985) page 

283. 

 

1.  Null hypothesis (Hnull, Ho) A scientific theory 

mathematically phrased in terms of the values of one or more 

population parameters. This theory is the exact opposite of 

what the researcher wishes to prove. usually one that we 

wish to disprove. It is presumed to be the truth and the 

default conclusion of the study. 

2.  Alternative (research) hypothesis (Halt, Ha, H1). A 

theory that opposes the null hypothesis and that we wish to 

establish as true. 

3.  Test statistic: A sample statistic used to decide 

whether to reject the null hypothesis. 

4.  Rejection region: The numerical values of the 

test statistic for which the null hypothesis will be rejected. 

The rejection region is chosen so that the probability is alpha 

that it will contain the test statistic if the null hypothesis is 

true (thereby leading to an incorrect conclusion), where 

alpha is usually chosen to be small (say, .01, .05, or .10). 

5.  Experimentation and Data Collection: The 

sampling experiment is performed. 

6.  Calculation of the test statistic: The numerical 

value of the test statistic is determined. 

Conclusion:  

7a.  Reject If the numerical value of the test statistic 

falls in the rejection region, we conclude that the alternative 

hypothesis is true (i.e. reject the null hypothesis), and we 

know that the test procedure will lead to this conclusion 

incorrectly only 100*alpha percent of the time it is used. 

7b.  Do Not Reject If the test statistic does not fall in the 

rejection region, we reserve judgment about which 

hypothesis is true. We ‘Do Not Reject’ the null hypothesis. 

We do not ‘Accept’ the null hypothesis, because we do not 

know the probability beta that our test procedure will lead us 

to accept the Null hypothesis (Hnull, Ho) incorrectly. 

 

3. Formulation of Hypothesis  
 

3.1 Presumption of the Null 

 

Experiments are conducted a little like the criminal justice 

system in the United States. One of the most sacred 

principles of the American justice system is that the 

defendant is presumed innocent until the prosecution proves 

guilt, beyond a reasonable doubt.  

 

The alternative hypothesis, that the prosecution believes is 

true, is that the defendant is guilt. But in a court of law, the 

defendant enjoys the presumption of innocence, which is 

similar to the null hypothesis. When the jury returns a verdict 

of ‘Not Guilt’, it doesn’t mean that the defendant is truly 

innocent, only that the jury decided there was insufficient 

evidence to prove guilt, beyond a reasonable doubt. 

 

This presumption creates a situation where the jury’s 

conclusion can result in one of two errors. Firstly, they can 

wrongfully convict an innocent (conclude the alternative, 

when the null is true). This is called a Type I error and is a 

false positive. Secondly, they can fail to convict a truly guilty 

criminal (fail to reject the null, when the alternative is true). 

This is called a Type II error and is a false negative. 

 

3.2 Errors in Experimental Hypothesis Testing 

 

Unlike the criminal justice system, errors in experimental 

outcome can be quantified. In order to quantify these errors, 

some notation is required.  
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Firstly, consider the two errors in hypothesis testing, Type I 

(false positive) and Type II (false negative).  

 

Secondly, consider the general family of statistics,  

D, that are normally-distributed. Under the null hypothesis, 

D ~ n(μ0, Σ0
2).  

 

When the primary measurement is the difference from 

baseline to the endpoint of the experiment a change of zero 

represents no difference. Often in superiority testing, the null 

hypothesis specifies ‘an effect of zero,’ so often μ0 = 0. 

 

Under the alternative hypothesis, D ~ n(μ1, Σ1
2). Historically 

in the best designed experiments and in well-designed 

experiments, it is important to choose a value under the 

alternative hypothesis, μ1, that is a value which is minimally 

relevant difference from the null value. 

 

In general, the variance of the statistic Σ2, is the variance of 

the statistic, D. It is a function of the more well-known 

variance of the ‘N” individual observations, σ2. 

 

If D ~ n(μ, Σ2) then, Z =[X-μ]*Σ-1 is ~ n(0,1), which is the 

standard normal distribution. 

 

3.3 Specifications of Decision Errors 

 

The mathematical probability of committing a Type I error 

can be written as alpha, α. Likewise the probability of 

committing a Type II error can be written as beta, β.  

 

𝛼 = 𝑃(𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

𝛽 = 𝑃(𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟)

= 𝑃(𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) 

(Equations 3.1 and 3.2) 

 

The value of the alpha, α, is called the significance level. The 

power of an experiment at a specified alpha level is the 

probability of rejecting the null hypothesis when the null 

hypothesis is false and is written as: 

 

𝑃𝑜𝑤𝑒𝑟 = (1 − 𝛽) ∗ 100

= 𝑃( 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) ∗ 100 

(Equation 3.3) 

 

If there truly is an effect in the population, but Hnull is not 

rejected in the statistical test, then a Type II error has been 

made. The probability of avoiding a Type II error—that is, 

correctly rejecting Hnull and achieving statistical significance 

when there truly is an effect—is called the power.  

 

An important goal in study planning is to ensure an 

acceptably high level of power. Sample size plays a 

prominent role in power computations because the focus is 

often on determining a sufficient sample size to achieve 

power at a certain magnitude, or assessing the power for a 

range of different sample sizes. 

 

3.4 Quantification of the Type I Error 

 

Now given that the distribution under the null and alternative 

hypothesis from Section 3.2, the errors can be written 

algebraically, though not presented here. The distribution of 

the statistic, D, assuming the null hypothesis is true, the 

critical region dependent on alpha, and critical value can be 

represented graphically (Figure 3.1):  

 

 
Figure 3.1. The distribution of a statistic, D, with 

variance, Σ2, under the null hypothesis and 

the probability of Type I error (alpha). Here 

alpha is illustrated to have a one-sided level 

of 0.05, so the critical region is bordered and 

determined by the critical value, 𝑫𝜶 = 𝝁𝟎 +
 𝒁𝜶𝚺𝟎. 

 

The curve in Figure 3.1 can be created in SAS/Base using 

the pdf function in the data step (Snippet 3.1) and the sgplot 

procedure: 

 
/* Normal Density Function    */ 

%let alpha = 0.05; %let sides = 1; 

%let mu = 0; %let sigma = 1; 

   do x=&mu - 3*&sigma to &mu + 3*&sigma by 0.01; 

      density = pdf('normal',x,&mu,&sigma);  

      output;  

(Snippet 3.1) 

 

4. Superiority Testing  

 
4.1 Directionality in Superiority Testing  

 
When designing a superiority study, endpoints are carefully 

chosen that have external validity and make a difference and 

impact to the researcher. Many endpoints are a change or a 

difference in the chosen measurement within an individual 

from the beginning of the study to end of the study.  
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𝐶ℎ𝑎𝑛𝑔𝑒 =  𝑋𝑒𝑛𝑑 −  𝑋𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 

(Equation 4.1) 

 

If the upper-case delta symbol represents the difference 

between the two comparator groups, investigational and 

control, the difference of interest is: 

 

∆ =  𝜃𝑖𝑛𝑣 −  𝜃𝑐𝑛𝑡  

(Equation 4.1) 

 

The use of the upper-case delta symbol represents the 

difference between groups based on the population. This 

emphasizes that the discipline of statistics is concerned with 

relative comparisons or in answering the question, 

‘Compared to what?’ The parameters of each group are 

given a value of theta, which has the advantage of being 

general. It can represent either the population mean, when D 

from Equation 4.1 is continuous, or the population 

proportion, when D is binomial.  

 

When smaller values of the change endpoints indicate 

improvement, the hypothesis to be tested is: 

 

Null Hypothesis: Ho: ∆ ≥ 0 

Alternative Hypothesis: Ha: ∆ < 0 

(Hypotheses Pair 4.1) 

 

If smaller values are superior (better) then the alternative 

hypothesis parameters are less than the null value (which is 

zero in this case).  

 

For example, in a solid tumor cancer study, a researcher 

could be interested in the change of the size of the tumor. In 

that case, values of change that are smaller at the end of the 

study could indicate improvement. The distribution of the 

alternative hypothesis would be to the left of the null 

hypothesis. Notice the direction of the less than sign in the 

alternative hypothesis.  

 

Conversely, when larger values of the change endpoints 

denote improvement the hypothesis to be tested is are in the 

opposite direction and are written as: 

 

Null Hypothesis: Ho: ∆ ≤ 0 

Alternative Hypothesis: Ha: ∆ > 0 

(Hypotheses Pair 4.2) 

 

For example, in a cardiovascular study of cardiomegaly, a 

researcher could be interested in the change in the volume of 

cardiac output from the beginning to the end of the study. In 

that case, values of change that are larger indicate 

improvement in the distressed population. In this case, the 

distribution of the alternative hypothesis would be to the 

right of the null hypothesis. Notice the direction of the 

greater than sign in the alternative hypothesis.  

 

These hypotheses can be generalized by adding a zero-null 

value for the endpoint without changing the equality. In 

mathematical terms, the zero can be added without loss of 

generality. Adding zero-null values will be useful later. For 

smaller values that indicate improvement: 

 

Null Hypothesis: Ho: ∆ − (0) ≥ 0 

Alternative Hypothesis: Ha: ∆ − (0) < 0 

(Hypotheses Pair 4.3) 

 

And for larger values that indicate improvement: 

 

Null Hypothesis: Ho: ∆ − (0) ≤ 0 

Alternative Hypothesis: Ha: ∆ − (0) > 0 

(Hypotheses Pair 4.4) 

 

Notice how all of the terms are on the left side of the 

equation. When that happens, a value of zero is on the right 

side. Then the statistic of interest in the hypothesis test, 

which will be shown later, will be distributed according to a 

standard distribution. 

 

5. Introducing Non-Inferiority Testing 
 

Presumption of the null, directionality and tolerable-

inferiority are three features that help to understand the 

contrasts between superiority and non-inferiority testing. 

 

Part of the nature of hypothesis testing requires the 

presumption of the null. This precludes the use of the 

superiority framework in the non-inferiority design. Use of 

the superiority hypothesis test is inappropriate because the 

goal is to demonstrate similarity rather than difference 

(Blackwelder, 1982). 

 

Non-inferiority testing shares with superiority testing the 

issue of directionality. In both testing procedures they are 

dependent on the preferred direction of the endpoint to be 

measured in the experiment. However, as will be shown, it 

is much more difficult to track issues related directionality 

when the alternative hypothesis to be tested is non-

inferiority. 

 

Often in a study it is not the purpose or the intent to show an 

experimental or investigational process or product is 

superior to the control. Sometimes the only intent is to show 

the investigational process is not intolerably worse. So, a 

value that is not intolerably worse must be pre-specified. 

This highlights the care that must be taken when using the 

term, ‘Non-inferiority.’ The investigational process might be 

inferior. However, that is not what is being tested. What is 
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being tested is that the investigational process is not more 

inferior than what can be tolerated.  

 

5.1 Basic Difference is when the Null Value (δ) is Non-

Zero 

 
When designing non-inferiority study, it is most efficient to 

set-up the framework and orientation consistently and work 

methodically. Consider always writing down the directional 

of preference for the endpoint and the hypothesis 

formulation. It is not required. However, it has been seen that 

those who do not have gotten themselves helplessly 

confused.  

 

In the case when consistent orientation of the  

∆ =  𝜃𝑖𝑛𝑣 − 𝜃𝑐𝑛𝑡 , is used, the basic difference between the 

classification of tests for superiority and non-inferiority is 

that the null value, δ is non-zero. 

 

This δ is a parameter in the hypothesis testing equations and 

is often called, the ‘non-inferiority margin’ which can be 

abbreviated NIM. Because the null value NIM is a parameter 

in the hypothesis, it should be pre-specified before the 

experiment is begun. The null value NIM acts as the 

minimally tolerable difference. It is the smallest amount for 

which the experimental group can differ from the control and 

remain, in the opinion of the researcher, not intolerably 

worse. Often in the research literature a value of 20% shift 

of the distributional difference between the experimental and 

reference is common. But the best practice is pre-specified 

determination of the NIM, can be complex and an example 

will be given later. 

 

Incorporation of the null-value, NIM into the hypothesis 

statements can be done be replacing the 0 with the non-zero 

δ parameter. Although only the magnitude of the δ is 

important for the hypothesis test its directionality needs to 

fit with the hypothesis framework of the specific study 

(Rothmann, Wiens, & Chan, 2012). 

 

5.2 Directionality  

 

How the δ appropriately fits with the hypothesis framework 

requires taking into consideration the preferred direction of 

your endpoint and the orientation of your difference 

parameter, Δ. For this paper and this section in particular, the 

experimental minus the control, ∆ =  𝜃𝑖𝑛𝑣 − 𝜃𝑐𝑛𝑡  will be 

used and all parameters will be on the left side of the 

hypothesis equation. 

 

The preferred direction of the endpoint determines three 

things. These things might be obvious, but the careful 

analyst will take notice of each. Firstly, it determines on 

which side of the null hypothesis distribution the alternative 

distribution appears. When smaller values are preferred, the 

alternative distribution is to the left of the null. When larger 

values are preferred, the alternative distribution is positioned 

to the right. This is exactly as they are specified for 

superiority testing as shown in the previously. 

 

Secondly, the preferred direction of the endpoint determines 

the direction of the relational operator or comparator sign for 

the alternative hypothesis. Alternative hypothesis for smaller 

preferred values uses a less than sign, while larger preferred 

values uses a greater than sign. This, too, is exactly as they 

are specified for superiority testing as shown in the 

previously. 

 

Finally, preferred direction of the endpoint determines the 

direction of the negligible difference, 𝛿. Preferred smaller 

value endpoints imply that the negligible difference would 

be in a positive direction, i.e. 𝛿 > 0. This is logical because 

negative values would add to the overall magnitude of the 

difference, Δ, and not be negligible at all. Conversely, larger 

value endpoints imply that the negative values, 𝛿 < 0 could 

be negligible. 

 

How NIM is used in the hypothesis formulation is provided 

in the next sections. Endpoints where smaller values indicate 

the researcher’s preference are demonstrated first and larger 

will follow. 

 

5.3 When Improvement is Smaller 

 

When smaller values of the outcome variable indicate 

improvement, the null hypothesis is that the investigative 

treatment group is worse by the null value, δ or more.  

 

Null Hypothesis: Ho: ∆ − 𝛿 ≥ 0 

Alternative Hypothesis: Ha: ∆ − 𝛿 < 0 

(Hypotheses Pair 5.1) 

 

When smaller values are preferred then larger values are 

inferior. The non-inferiority test is one-sided because there 

is interest in only one direction. The lower-case delta 

represents the null value. Recall that when this value is zero, 

the hypothesis test is for superiority. 

 

The alternative hypothesis is that the investigative group is 

either better or at least no more than δ worse, when delta has 

a positive value, 𝛿 > 0. The interest is that the treatment 

difference is no smaller than δ, when improvement is shown 

by small values of the outcome. 

 

The test statistic for this hypothesis is: 

 



Page 6  MWSUG 2019, IN-113 

Power Estimation in Non-Inferiority Designs 

𝑇𝐿 =  
∆̂ − 𝛿

√𝑠𝑝
2 (

1
𝑛𝑒

+
1
𝑛𝑠

)

 

(Equation 5.1) 

 

The numerator of the test statistic is the left-side expression 

of the hypothesis formulation after replacement of the 

parameter with the estimate.  

 

The 𝑠𝑝 in the denominator is the pooled estimate of the 

common standard deviations across the two groups and is 

given as,  

 

𝑠𝑝 =  [
(𝑛𝑒 − 1)𝑠𝑒

2 + (𝑛𝑠 − 1)𝑠𝑠
2

(𝑛𝑒 +  𝑛𝑠) − 2
]

1
2⁄

 

(Equation 5.2) 

 

Non-inferiority is claimed if 𝑇𝐿 is smaller (not larger) than 

the T-critical value because the alternative hypothesis has a 

less than sign. The T-critical value from the t distribution has 

the (𝑛𝑒 +  𝑛𝑠) − 2 degrees of freedom. 

 

When smaller values of the endpoint are preferred, the 

alternative distribution is positioned on the left of the null, 

the alternative hypothesis uses a less than sign and the 

negligible difference would be positive and these tests are 

called lower-tailed.  

 

5.4 When Improvement is Larger 

 

When larger values of the outcome are desirable, the signs 

are reversed and the null hypothesis is that the investigative 

treatment group is worse by the null value, δ or more.  

 

Null Hypothesis: Ho: ∆ − 𝛿 ≤ 0 

Alternative Hypothesis: Ha: ∆ − 𝛿 > 0 

(Hypotheses Pair 5.2) 

 

When larger values are preferred then smaller values are 

inferior. The hypothesis formulation is still one-sided and 

the left side is the same but be careful here there are two 

subtle changes. Firstly, the delta has a negative value, 𝛿 <

0. Also, notice the relational operators have changed relative 

to the case when improvement is smaller.  

 

The alternative hypothesis is that it is either better or at least 

no more than δ worse. The non-inferiority test is one-sided 

because there is interest in only one direction. The interest is 

that the treatment difference is no smaller than δ, when large 

values of the outcome are desirable. 

 

The expression of the alternative hypothesis as  ∆ − 𝛿 > 0, 

specifically by moving the δ to the left side leads to the t-test 

statistic to assess non-inferiority. In other words, whether the 

difference in means is above the lower limit of δ when delta 

has a negative value, 𝛿 < 0.  

 

The test statistic is the same but the value of delta is negative, 

𝛿 < 0. 

 

𝑇𝐿 =  
∆̂ − 𝛿

√𝑠𝑝
2 (

1
𝑛𝑒

+
1
𝑛𝑠

)

 

(Still Equation 5.1) 

 

Non-inferiority is claimed if 𝑇𝐿 is larger (not smaller) than 

the T-critical value because the alternative hypothesis has a 

greater than sign. The T-critical value from the t distribution 

has the (𝑛𝑒 + 𝑛𝑠) − 2 degrees of freedom at (1 − 𝛼).  

 

When larger values of the endpoint are preferred, the 

alternative distribution is positioned on the right of the null, 

the alternative hypothesis uses a greater than sign and the 

negligible difference would be negative and these tests are 

called upper-tailed.  

 

Regrettably, some well-meaning authors of non-inferiority 

methods specify the direction of the null value of the NIM 

by using plus and minus operators (Mascha & Sessler, 

2011). This is a lamentable practice only because it serves to 

confuse the SAS users. When they write (−𝛿), they do not 

refer to the hypothesis or the calculation of the statistic but 

only intend to emphasize that the direction of interest for the 

endpoint, which would be smaller. Likewise, they write 

(+𝛿) when they intend to emphasize that the direction of 

interest for the endpoint is larger. 

 

5.5 A More Informative Way 

 

More simply, when smaller values are desirable, non-

inferiority can be claimed when the upper limit of the 

estimated confidence interval (CI) is below 𝛿.  

 

𝑈𝑝𝑝𝑒𝑟 𝐶𝐼 𝐿𝑖𝑚𝑖𝑡 =  (∆̂ −  𝛿) + 𝑡(1−𝛼,𝑛𝑒+ 𝑛𝑠−2 𝑑𝑓)(𝑆𝐸̂∆̂) 

(Equation 5.2) 

 

The calculation of the confidence interval using (Equation 

5.2) is shown in the SAS Data Step Snippet 5.1. 
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Snippet 5.1Calculation of the Confidence Interval 
%let alpha = 0.05; %let sides = 1; 

data b03; 

     set sumout05; 

     format critlev tcrit 8.3 

            llci ulci 8.4 

            tstat 8.4 pval 8.3; 

     NullDiff = &meandiff; 

     alpha = &alpha; 

     sides = &sides; 

     critlev = 1 - (alpha/sides); 

     tcrit = tinv(critlev,df); 

     llci  = ((invmean - cntmean) - NullDiff) –  

              (tcrit * poolstderr); 

     ulci  = ((invmean - cntmean) - NullDiff) +  

              (tcrit * poolstderr); 

     tstat = ((invmean - cntmean) –  

               NullDiff)/poolstderr; 

     pval = (1 - cdf('t',abs(tstat),df,0)) * sides; 

     run; 

 

The null value of the minimally tolerable difference which 

in this case will have a positive value 𝛿 > 0, is known to 

shift the null distribution left and toward the alternative (See  

Figure 5.1).  

 

 
Figure 5.1 Comparison of Confidence Intervals for 

Superiority and Non-Inferiority Studies 

when Smaller Values are Preferred 

 

A significant non-inferiority test (Hypotheses Pair 5.1) will 

coincide with the upper end of the estimated CI being below 

the specified 𝛿 (Walker & Nowacki, 2011). 

 

When larger values are preferred, non-inferiority is claimed 

if the lower limit of the estimated confidence interval is 

above 𝛿, when larger values are desirable. 

 

 

Figure 5.2 Comparison of Confidence Intervals for 

Superiority and Non-Inferiority Studies 

when Larger Values are Preferred 

 

A significant non-inferiority test (Hypotheses Pair 5.2) will 

coincide with the lower end of the estimated CI being above 

the specified 𝛿.  

 

Table 5.1. Directionality for Testing Statistical 

Hypotheses of Non-inferiority  
  Preferred Direction of 

the Endpoint 

  Smaller Larger 

Superiority Direction of the Alt 

Hypothesis 

Less than, 

< 

Greater 

than, > 

 Side of Alt 
Hypothesis 

Distribution 

Left of 

Null 

Right of 

the Null 

 Alt Confidence 
Intervals 

Upper is 
below zero 

Lower is 
above zero 

Non-

Inferiority 

Direction of the Alt 

Hypothesis 

Less than, 

< 

Greater 

than, > 
 Side on which the 

Alt Hypothesis 

Distribution 

Left of 
Null 

Right of 
the Null 

 Direction of 

negligible difference 
𝛿 > 0 𝛿 < 0 

 Directional shift of 
the null toward the 

alternative (∆ − 𝛿) 
Left Right 

 One-sided Test Type Lower-tailed Upper-tailed 

 Alt Confidence 
Intervals 

Upper is 

below 𝛿 

Lower is 

Above 𝛿 

 

6. Estimating Power for Non-Inferiority 

Hypotheses 
 

6.1 Quantification of the Type II Error 

 

As previously shown, the probability of a Type II error 

depends on the value of alpha because alpha determines the 

critical value and was illustrated in Figure 3.1.  

 

If the hypotheses are formulated as recommended, the μnull 

value is ∆ − 𝛿 and would be centered at zero, but it doesn’t 

matter. Figure 6.1 shows that the beta region shares a 

boundary with the alpha region. 

 

 

 
 

Figure 6.1. Distributions of a statistic, D, with variance, 

Σ2, under the null hypothesis and under the 

alternative hypothesis and the Type I and 

Type II errors for a critical value of Dα when 

smaller values are preferred.  
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As the sample size increases, the spread of the curves in 

Figure 6.1 decrease and therefore beta decreases (power 

increases). The problem in planning a non-inferiority 

experiment is to determine the sample size, N, required such 

that testing Hnull with significance level, alpha, that the 

probability of a Type II error, beta, is a desired, sufficiently-

small level. To solve for N, six parameters are needed: α, β, 

μnull, μalt, Σnull
2, and Σalt

2.  

 

The careful student of sizing studies with continuous 

endpoints, will recall that the assumption of equal variance, 

called homoscedasticity, is often reasonable and usually 

assumed. However, for this discussion two different 

variance parameters are specified, one under the null and one 

under the alternative hypotheses. This allows for 

generalization of the problem to binomial endpoints. 

 

6.2 The Critical Regions are related by Sample Size 

 

The sample size is N, that simultaneously satisfies Pr(Z>Zα) 

= α when Hnull is true and Pr(Z>Zβ) = 1-β when Halt is true, 

where Z = (X-μ0,)*Σ-1, is distributed by the standard normal 

distribution, and is the statistic one would use in testing.  
 

Geometrically, the area of the two inequalities are illustrated 

in Figure 6.1, alpha is the critical region in light blue and 

beta in dark blue. Smaller values are preferred so the 

alternative distribution is to the left of the null. The alpha 

area is bordered and determined by the critical values of D 

at the alpha level of significance. This critical level for null 

distribution is given by, 𝐷𝛼 = 𝜇0 + 𝑍𝛼Σ0. The second dark 

blue region is bordered and determined by the same critical 

level but written in terms of the alternative distribution is, 

𝐷𝛼 = 𝜇𝑎𝑙𝑡 −  𝑍𝛽Σ1, when 𝜇𝑎𝑙𝑡 <  𝐷𝛼   and 𝐷𝛼 = 𝜇𝑎𝑙𝑡 +

 𝑍𝛽Σ1 otherwise. 

 

Both of these equations can be re-written to specify the 

distance as the difference between means as the sum of two 

parts (See Equation 6.1 below). Recall that distance is 

defined as the absolute values of the difference. The reason 

order doesn’t matter is that the absolute value function 

renders subtraction communicative.  
 

|𝜇𝑎𝑙𝑡 − 𝜇𝑛𝑢𝑙𝑙| =  |𝜇𝑎𝑙𝑡 − 𝐷𝛼| + |𝐷𝛼 − 𝜇𝑛𝑢𝑙𝑙|    
 (Equation 6.1)  

 

Values for the two sums on the right-hand side of (Equation 

6.1) can be algebraically re-arranged and added together. 

Notice the critical value, 𝐷𝛼, drops out when alpha part is 

added to the beta part: 
 

    {|𝜇𝑎𝑙𝑡 − 𝐷𝛼| = 𝑍𝛽Σ1} 

+ {|𝐷𝛼 − 𝜇𝑛𝑢𝑙𝑙| =  𝑍𝛼Σ0}  
|𝜇𝑎𝑙𝑡 − 𝜇𝑛𝑢𝑙𝑙| =  𝑍𝛽Σ1 + 𝑍𝛼Σ0 

 (Equations 6.2, 6.3, and 6.4)  

 

The result of the sum is (Equation 6.4). When working with 

an endpoint for which larger values are preferred, the algebra 

is the same even though the alternative distribution is to the 

right of the null (See Figure 6.2). 

 

 
Figure 6.2. Distributions of a statistic, D, with variance, 

Σ2, under the null hypothesis and under the 

alternative hypothesis and the Type I and 

Type II errors for a critical value of Dα when 

larger values are preferred. 

 

With this result, all three tasks that we want to achieve are 

possible as will be seen in the next section. 

 
7. Utility 

 

The result in (Equation 6.4), |𝜇𝑎𝑙𝑡 − 𝜇𝑛𝑢𝑙𝑙| =  𝑍𝛽Σ1 +

   𝑍𝛼Σ0, can be used to address three basic experimental 

design questions. Firstly, what sample size is required to 

ensure a specific power [(1-β)*100] of detecting a specific 

difference, 𝜇𝑎𝑙𝑡?  Secondly, what is the power (in terms of 

𝑍𝛽) of the experiment in detecting a specific difference, 

𝜇𝑎𝑙𝑡when a specific sample size, N, is used? Finally, what 

difference, 𝜇𝑎𝑙𝑡, can be detected with a given N.  

 

7.1 Sample Size  

 

Since it is known that as the sample size, N, increases, the 

spread of the curves decreases, as previously mentioned, an 

expression of the spread, Σ2, is needed and it is often Σ2 =

 𝜎2/𝑁, where 𝜎2 is the variance of the individual 

measurements and N is the total sample size. So, by 

substitution into Equation 2, the distance between means can 

be written in terms of N: 
 

|𝜇𝑎𝑙𝑡 − 𝜇𝑛𝑢𝑙𝑙| =  𝑍𝛼𝜎0/√𝑁 + 𝑍𝛽𝜎1/√𝑁.  
 (Equation 7.1)  

 

Solving for N, 

𝑁 =  [
( 𝑍𝛼𝜎0 + 𝑍𝛽𝜎1)

(𝜇1 − 𝜇0)
]

2

 

 (Equation 7.2)  

 
The order in the denominator will not matter (see Section 

6.2).  
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7.2 Power 

Solving Equation 6.4 for 𝑍𝛽 allows for the estimation of 

power.  

𝑍𝛽 =  
√𝑁|𝜇1 − 𝜇0| −  𝑍𝛼𝜎0

𝜎1
 

 (Equation 7.3) 

 

Power below 75-80% is generally considered underpowered. 

  

7.3 Minimal Detectable Alternatives 

Finally, 𝜇1, a minimally detectable alternative can be found, 

as shown in Equation 6: 
 

𝜇1 =  𝑍𝛼𝜎0/√𝑁 + 𝑍𝛽𝜎1/√𝑁  + 𝜇0 

(Equation 7.4) 

 

Studies can be overpowered. In this case they have power to 

detect trivial differences that are below the minimal 

detectable alternative (See Figure 7.1). 

 
Figure 7.1. Regions of reasonably Distributions of a 

statistic, D, with variance, Σ2, under the null 

hypothesis and under the alternative 

hypothesis and the Type I and Type II errors 

for a critical value of Dα when larger values 

are preferred. 

 

7.4 Unequal Sample Size 

 

An experiment with two groups can have and statistical 

procedures allow, by design or by practice, unequal group 

sizes for the interventional (𝑛𝑖𝑛𝑣 =  𝑄𝑖𝑛𝑣𝑁) and control 

groups (𝑛𝑐𝑛𝑡 =  𝑄𝑐𝑛𝑡𝑁), which are based on the group 

fractions 𝑄𝑖𝑛𝑣 +  𝑄𝑐𝑛𝑡 = 1 and 𝑛𝑖𝑛𝑣 + 𝑛𝑐𝑛𝑡 = 𝑁. For equal-

sized groups, 𝑄𝑖𝑛𝑣 =  𝑄𝑐𝑛𝑡 = 0.5  and (𝑄𝑖𝑛𝑣
−1 +

 𝑄𝑐𝑛𝑡
−1) = 4.  

 

7.5 Risk of Drop-outs 

 

When there is a risk that only some fraction, R, of the sample 

size will complete the experiment or ‘drop-out,’ one 

adequate adjustment that has been suggested is: 
 

𝑁𝑑 = 𝑁/(1 − 𝑅)2 

(Equation 7.5)  
 

Where N is the sample size calculated assuming no dropouts.  

 

7.6 Applications 

 

This approach affords a wide variety of application. It can be 

used with the one-sample mean, with paired observations, 

two independent groups with paired observations, single-

group proportions, two independent proportions, two 

independent groups for correlational analysis and even 

survival analysis of two groups with censoring.  

 

7.7 Small Sample Size Consideration 

 

When using the t-distribution to approximate the normal 

distribution with small sample sizes, this approach is known 

to overestimate power slightly. An adjustment factors have 

been suggested (Cochran & Cox, 1964).  

 

7.8. Sample Size Example 

 

Consider an experiment where two samples are to be 

compared with equally sized groups. The measurement, Y, 

is assumed to be normally-distributed and variance of the 

measurement is assumed to be equal between the groups and 

known not to exceed 1.0. The difference to be detected is 

0.20 with 90% power and a one-sided alpha level of 0.05.  

 

Because the difference to be detected is 0.20 and that is 

positive, the relational operator for the alternative hypothesis 

is greater than and the preferred direction is larger. The 

hypotheses to be tested are in Hypotheses Pair 7.1. 
 

Null Hypothesis: Ho: ∆ − 𝛿 ≤ 0.0 

Alternative Hypothesis: Ha: ∆ − 𝛿 > 0.2 

(Hypotheses Pair 7.1) 
 

The SAS code to find the Sample Size is provided in Snippet 

7.1. 
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Snippet 7.1Sample Size Calculation 
/*   Sample Size for the Test of   */; 

/*   Two Independent Means         */; 

data ss01; 

     alpha = 0.05; 

 sides = 1; 

 beta  = 0.1; 

 delta = 0.2; 

 sigma = 1; 

 q_e   = 0.5; 

 q_c   = 0.5; 

 z_alpha = probit(1-(alpha/sides)); 

 z_beta  = probit(1-beta); 

 alloc   = (1/q_e) + (1/q_c); 

 sqrt_n  = sigma*(z_alpha + 

z_beta)/delta;  

 ntotal  = ceil(sqrt_n*sqrt_n) * alloc; 

 put z_alpha z_beta ntotal; 

 run; 

 

The partial log for this data step is: 
1.644853627 1.2815515655 860 

NOTE: The data set WORK.SS01 has 1 observations and 12 

variables. 

NOTE: DATA statement used (Total process time): 

      real time           0.10 seconds 

      cpu time            0.04 seconds 

 

A sample size of 430 per group would provide 90% with a 

one-sided, alpha level of 0.05 power to detect a difference of 

0.20, assuming a drop-out rate of R=0 and that such a 

difference truly exists.  

 

7.9 Power Procedure in SAS/STAT 

 

For the upper one-sided case of continuous variables, the 

SAS/STAT documentation states that the exact power 

formulae are from O’Brien, R. G., and Muller, K. E. (1993). 

Equation 7.6 provides the one-sample case and Equation 7.7 

provides the two-sample case. They are given below.  

 

Upper One-Sided, One-Sample: 

𝑃𝑜𝑤𝑒𝑟 = 𝑃 {𝑡(𝑁 − 1, 𝛿) ≥  𝑡(1−𝛼)(𝑁 − 1)}  

(Equation 7.6) 

𝑡 = 𝑁
1
2 (

𝑥̅ − 𝜇0

𝑠
) 

 

It is stated in the documentation that solutions for sample 

size (N), alpha, and delta are obtained by numerically 

inverting the power equations (See SAS/STAT User Guide, 

Chapter 90, page 7366). 

 

Upper One-Sided, Two-Sample: 

𝑃𝑜𝑤𝑒𝑟 = 𝑃 {𝑡(𝑁 − 2, 𝛿) ≥  𝑡(1−𝛼)(𝑁 − 2)}  

(Equation 7.7) 

 

𝑡 = 𝑁
1
2(𝜔1𝜔2)

1
2 (

𝑥̅2 − 𝑥̅1 − 𝜇0

𝑠𝑝
) 

 

(See SAS/STAT User Guide, Chapter 90, page 7384). 

8. Example from Surgical Medicine  

 
8.1 Clinical Background 

 
A client requested an evaluation of the statistical power for 

a study design comparing two surgical techniques to repair 

ruptured, zone 2, flexor tendons. In the human, the flexor 

tendon connects to the muscles responsible for moving the 

fingers and thumb. Zone 2 is a particularly challenging 

location for primary repair in the human due to the presence 

of some complex anatomy. 

 

The traditional technique of using sutures to repair tendons 

was first documented by the Greek physician Galen of 

Pergamum during the 2nd century AD following an 

attempted repair on a lacerated tendon of the foot (1). Now 

it has become the world-wide standard of care. However, 

suture repair requires one of the most intensive training 

curriculums of all surgical skills and the number of properly 

trained experts is limited, especially in the developing world. 

 

The experimental technique uses an implant and deployment 

device that takes advantage of intervening 1,800 years of 

advancements in biomaterials and perioperative protocols. 

Expertise with the device requires far fewer years of training 

than suture repair. If it could be shown that post-operative 

mobility of the repaired digit was no worse than the 

reference technique, access to care could be expanded.  

 

Enrollment for this study is planned for the African continent 

where tendon ruptures from accidents with knives, 

machetes, and sickles are common and access to intensively-

trained, hand surgeons can be limited. Rigorous regulatory 

review, however, will be conducted at the US-FDA.  

 

One of the two techniques will be randomly assigned to each 

of the 72 subjects in a one-to-one allocation ratio. The one-

sided, alpha (type I) error rate will be 0.025.  

 

8.2 Mobility Metric 

 

Mobility can be measured using Strickland’s Revised score 

(SRS). This score is comprised of four range of motion 

measurements of the proximal and distal interphalangeal 

joints, flexion and extension each, using a goniometer, 

proximal interphalangeal flexion (PIF), distal 

interphalangeal flexion (DIF), proximal interphalangeal 

extension deficit (PID) and distal interphalangeal extension 

deficit (DID). These measurements are used to calculate 

Strickland’s Revised score using the following equation: 

 

SRS = 100 * ( (PIF + DIF)   

          -  (PID + DID) ). 

(Equation 2) 
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SRS scores range from 0 to 175. Larger SRS scores are 

associated with improved clinical outcomes.  

 

The units for SRS are angular degrees. The distribution of 

these scores in the population are assumed to be distributed 

approximately normal (that is, Gaussian, bell-shaped curve). 

Final scores will be assessed 24-weeks, post-surgery.  

 

8.3 Determination of Non-Inferiority Margin 

 

First, a decrease in 21.8 degrees was determined minimally 

acceptable. We arrived at that value by examining the 

associated classification system used by hand surgeons. To 

get the category, they calculate a percentage of target 

effectiveness by dividing the SRS by its total (175) and 

multiply that quotient by 100. They then classify repairs as: 

excellent (75-100%), good (50-74%), fair (25-49%), or poor 

(<25%) (Su et al., 2005), (Elliot & Giesen, 2013). The width 

of each of those intervals is 25%. Therefore, one-half of the 

category width (12.5%) could be considered sub-clinical and 

is a minimally acceptable difference.  The value in degrees 

is back-calculated as the product of half the width of the 

category times the conversion factor from percent to degrees 

of seven-fourths. 

 

8.4 Observed Performance of the Reference Group 

 

Secondly, a systematic literature search was recommended 

and conducted. Primary research articles from medical 

journals identified in that search were examined for quality. 

Only five studies were adequate and they represented 

(n=525) repaired digits. The traditional method was 

associated with an average SRS mobility score of 99.7 and 

standard deviation of 31.3 degrees. Based on pre-clinical 

studies, the surgeon’s opinion was that the true average 

mobility of the subjects using the experimental technique is 

similar (99.7 +/- 31.3 degrees). 

 

8.5 Elements for Hypothesis Testing Framework 

 

The research objective is to compare two surgical techniques 

statistically. Hypothesis testing is the quantification of that 

objective. The default conclusion is the null hypothesis is 

that the mobility scores for the experimental technique are 

strictly inferior to those of traditional technique. The usual 

alternative hypothesis is to rule out inferiority and conclude 

that the mobility scores for the experimental technique are 

superior to those of traditional technique. But that is not 

necessary in this study. It is sufficient that the alternative 

hypothesis is to rule out inferiority that the mobility scores 

for the experimental technique are not substantially worse to 

those of traditional technique. Therefore, a non-inferiority 

hypothesis testing framework, and not the more common 

superiority hypothesis framework, is appropriate. The ‘not 

substantially worse’ is quantified in the ‘minimally 

acceptable decrease’ as the ‘non-inferiority margin’ of 21.8 

degrees.  

 

Now we have all of the elements necessary (Table A) to 

build the hypothesis testing statements. 

 

Table 8.1 Values of Hypothesis Testing Elements in the 

Hand Surgery Example 
Element Value 

Study Objective Non-inferiority 
Primary Endpoint (PE) SRS 

Direction of Improvement Larger values 

Nature of PE Continuous 
Control Group Mean 99.7 

Standard Deviation 31.3 

Investigational Mean 99.7 
Non-Inferiority Margin 21.8 

Alpha 0.025 

Sides 1 
Sample Size per group 36 

 

So, we can write the hypothesis statements, as follows: 

Null Hypothesis: Ho: μInv - μCnt ≤ -21.8 

Alternative Hypothesis: Ha: μInv - μCnt > -21.8 

(Hypotheses Pair 8.1) 

 

The alternative hypothesis in this set of statements is one-

sided, or one-tailed. Specifically, the null hypothesis will be 

rejected for larger values than the non-inferiority margin and 

the rejection region will be in the ‘upper tail’ of the sampling 

distribution. When the data have been collected, the analysis 

involves generating a one-sided confidence interval in the 

direction of the alternative hypothesis (See Section 2.6 

above). That is, the confidence interval has a fixed lower 

limit but the upper limit is positive infinity. 

 

9. Manual (Data Step) Method 
 

Snippet 9.1  Manual Sample Size Calculation 
97   data ss01; 

98        alpha = 0.025; 

99        sides = 1; 

100       ntotal = 72; 

101       delta = -21.8; 

102       sigma = 31.3; 

103       q_e   = 0.5; 

104       q_c   = 0.5; 

105       z_alpha = probit(1-(alpha/sides)); 

106       alloc   = (1/q_e) + (1/q_c); 

107       sqrtalloc = sqrt(alloc); 

108       absdelta = abs(delta); 

109       z_beta  = (absdelta*sqrt(ntotal) –  

                     z_alpha*sigma*sqrtalloc)/ 

                     (sigma*sqrtalloc); 

110       beta = 1-probnorm(z_beta); 

111       power = (1-beta)*100; 

112       put z_alpha z_beta beta power ntotal; 

113   run; 

 

1.9599639845 0.9949742576 15.987439231 0.8401256077 72 

NOTE: The data set WORK.SS01 has 1 observations and 14 

variables. 
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NOTE: DATA statement used (Total process time): 

      real time           0.02 seconds 

      cpu time            0.03 seconds 

 

10. The Power Procedure Method  
 

In SAS/STAT, the Power and TTest procedures do not have 

explicit options for the Non-Inferiority study design with 

continuous outcomes (Castelloe & Watts, 2015). Does that 

seem strange? For example, the Freq procedure has 

NONINF and MARGIN= options for binary outcomes. You 
can use implicitly use Power and TTest procedures for the 

Non-Inferiority study design but be careful because you have 

to reverse the sign on the non-inferiority margin because the 

two procedures use different hypothesis testing statement 

formulations. 

 

It is invocated using the NULLDIFF option, the direction of 

the NIM and the direction of the statistical test using the 

SIDES option. But you have to watch the sign and the 

position of the values in the groupmeans list.  

 

In SAS/STAT, you can use the following statements to 

determine the estimated power: 

 

Snippet 10.1   SAS procedure code to Estimate the 

Power of a Non-Inferiority Study with a 

Continuous Endpoint Using PROC 

POWER 
ods output output=out01; 

proc power; 

     twosamplemeans  

            test      = diff 

            meandiff  = 0 

            nulldiff  = -21.8 

            sides     = u 

            stddev    = 31.3 

            alpha     = 0.025 

            npergroup = 36 

            power     = . 

            ; 

         run; 
(Source: Table13_NonInfEff.sas).  

 

The output from the SAS/STAT statements in Snippet 10.1 

are provided in Figure 10.1. 

 

Figure 10.1. Output for Estimated Power for a Non-

Inferiority Study with a Continuous 

Endpoint 
 

The POWER Procedure 

Two-Sample t Test for Mean Difference 

 

Fixed Scenario Elements 

 

Distribution                   Normal 

Method                          Exact 

Number of Sides                     U 

Null Difference                 -21.8 

Alpha                           0.025 

Mean Difference                     0 

Standard Deviation               31.3 

Sample Size per Group              36 

 

            Computed Power 

                Power 

                0.830 

 

The effect of mis-specifying the standard deviation can be 

assessed by modifying the code from Snippet 10.1 to 

accommodate several values of the unknown standard 

deviation as follows: stddev = 8 to 55. These results are 

shown in Figure 10.2. 

 

 

Figure 10.2. Power for Various values of the Standard 

Deviation 

 
In addition, the effect of larger non-inferiority margins can 

also be assessed by using a number list for the NULLDIFF 

option. The power for various magnitudes of non-inferiority 

margins are provided in Figure 10.3.  

 

Figure 10.3. Computed Power for Various Magnitudes 

of Non-Inferiority Margin 

 
            Obs.    NIM   Power 

            =================== 

             1       0    0.025 

             2      -5    0.098 

             3     -10    0.267 

             4     -15    0.518 

             5     -20    0.762 

             6     -25    0.916 

             7     -30    0.980 

 

From Figure 10.3, it can be seen larger values of the non-

inferiority margin are associated with larger power. Also, 

notice that if the NIM = 0, the computed power is the Type 

I error for the superiority design.  

 

11. Example Simulation Program to 

Estimate Power  
 

It is also possible to estimate the power of a non-inferiority 

design using simulations. There are several advantages to 

using a simulation method, including the ability to size 
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increasingly complex designs. An outline for conducting 

such a simulation is provided in Figure 11.1. Creating an 

outline before beginning a SAS program is a recommended 

practice. 

 

This simulation generates and analyzes data for a continuous 

endpoint for a non-inferiority study design for both upper 

and lower tails. Equivalence is also simulated but the 

analysis steps below must be slightly modified to summarize 

the analysis. The simulation is achieved in nine steps (see 

Figure 11.1). 

 

Figure 11.1 Outline of Simulation Program to Estimate 

Power 

1. Parameter Inputs for Each Scenario 

2. Create Macro Variables for Each Row 

3. Simulate the Data using the Rand Function 

4. Summarize the Simulations with Descriptive Statistics 

5. Structure the Summaries as One Observation per Rep 

6. Calculate the pooled standard error for each Rep 

7. Calculate the confidence interval for the difference 

8. Score the Simulations 

9. Tally the Simulations 
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Figure 11.2 Outline of Simulation Program to Estimate Power 

Snippet 11.1 Parameter Inputs – Enter One row observation per scenario  
************************************************************************; 

*                                                                      *; 

*    Input nine (9) parameters:                                        *; 

*                                                                      *; 

*    scenario provides an identification number.                       *; 

*    invmean  Mean for the interventional arm.                         *; 

*    cntmean  Mean for the control arm.                                *; 

*    stddev   Standard Deviation of the measurement.                   *; 

*    nim      non-inferiority margin.                                  *; 

*    alpha    Type I error rate (usually either 0.025 or 0.050).       *; 

*    sides    Number of sides in the test.                             *; 

*    invsize  The sample size for the investigational arm.             *; 

*    cntsize  The sample size for the control arm.                     *; 

*                               (Source: Table 14_NonInfEff.SAS)       *; 

*                                                                      *; 

************************************************************************; 

 

data ss01; 

     format scenario 3.  

            invmean cntmean nim 8.1 

            alpha 8.3 sides 1. nim 8.4 invsize cntsize 8.; 

     input  scenario invmean cntmean nim alpha sides invsize cntsize; 

     cards; 

1   99.7   99.7   -21.9   0.025   1   36   36 

; 

run; 

 

Snippet 11.2 Create Macro Variables for some Parameters 
data psp01; 

     set ss01; 

     format sd 8.3; 

     if scenario = 1; 

     call symput('invmean',put(invmean,8.1)); 

     call symput('invsize',put(invsize,8.)); 

     call symput('cntmean',put(cntmean,8.1)); 

     call symput('cntsize',put(cntsize,8.)); 

     call symput('nim',put(nim,8.1)); 

     call symput('alpha',put(alpha,8.3)); 

     call symput('sides',put(sides,1.)); 

     call symput('meandiff',put((invmean-cntmean),8.1)); 

     scenario = 1; 

     do sd = 30 to 32 by 0.1; 

        scenario = scenario + 1; 

        output; 

        end; 

        run; 
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Snippet 11.3 Use the Rand Function to Simulate the Data  
************************************************************************; 

*                                                                      *; 

*       Data Simulation.                                               *; 

*       Nobs = #scenarios * #rep * #trt * #subj.                       *; 

*       Need to use an array when the sample size is unbalanced.       *; 

*       Need to use an array when the means are different.             *; 

*       Allow trt to be numeric for use in array.                      *; 

*       then format trt with trtfmt. 0 = ref, 1 = inv.                 *; 

*       During program development use rep = 1000.                     *; 

*                                                                      *; 

************************************************************************; 

data sim01; 

     set psp01; 

     format trt trtfmt.; 

     array sampsize{2} (&cntsize &invsize);  /* needed when unbalanced */ 

     array mean{2}     (&cntmean &invmean);  /* needed when unequal    */ 

 

     seed = 20190328; 

     call streaminit(seed); 

 

     do rep = 1 to 10000; 

        do trt = 0 to 1; 

           do subj = 1 to sampsize{(trt+1)}; 

              x = rand('normal',mean{(trt+1)},sd); 

              output; 

              end; 

              end; 

              end; 

              run; 

 

Snippet 11.4 Summarize the results of the Simulations  
proc sort data = sim01; 

     by scenario rep; 

     run; 

 

ods output Summary = summ01; 

proc means data = sim01; 

     by scenario rep trt; 

     var x; 

     output out = sumout01 

              n = n 

              mean = mean 

              stddev = stdev 

              ; 

              run; 

 

proc sort data = sumout01; 

     by scenario rep; 

     run; 

 

Snippet 11.5 Structure the data so there is one observation per Study  
************************************************************************; 

*                                                                      *; 

*    Manually transpose the dataset to create one                      *; 

*    observation per study (rep).                                      *; 

*                                                                      *; 

************************************************************************; 

data sumout02; 

     set sumout01; 

     format cntmean invmean 8.1 cntstdev invstdev 8.2; 

     retain cntn cntmean cntstdev; 

     if trt = 1 then do; 

     invn = n; 

     invmean = mean; 

     invstdev = stdev; 

     end; 

     else do; 

     cntn = n; 

     cntmean = mean; 

     cntstdev = stdev; 

     end; 

     drop _type_ _freq_; 

     run; 
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data sumout03; 

     set sumout02; 

     if trt = 1; 

     keep scenario rep  

          cntn cntmean cntstdev  

          invn invmean invstdev; 

     run; 

 

Snippet 11.6 Calculate the pooled standard error  
************************************************************************; 

*                                                                      *; 

*    Calculate the pooled standard error.                              *; 

*    Also see McClave and Dietrick, page 346.                          *; 

*    Reorder variables using PROC SQL.                                 *; 

*                                                                      *; 

************************************************************************; 

 

data sumout04; 

     set sumout03; 

     format cntvar invvar 8.3   

            poolvar poolstderr 8.4; 

     cntvar = cntstdev*cntstdev; 

     invvar = invstdev*invstdev; 

     df         = cntn + invn - 2; 

     poolvar    = ((invn - 1) * invvar + (cntn - 1) * cntvar)/df; 

     poolstderr = sqrt(poolvar * (1/invn + 1/cntn)); 

     run; 

      

proc sql; 

     create table sumout05 as 

     select  

          scenario, 

          rep, 

          cntn, cntmean, cntstdev,   

          invn, invmean, invstdev,  

          df, poolvar, poolstderr 

      from work.sumout04; 

  quit; 

 

Snippet 11.7 Calculate the confidence interval for the difference 
************************************************************************; 

*                                                                      *; 

*    Calculate Confidence Interval for the difference.                 *; 

*    Only one side is needed for non-inferiority.                      *; 

*    Both sides are needed for equivalence.                            *; 

*    Also see McClave and Dietrick, page 351.                          *; 

*    P-value calculation.                                              *; 

*    Could use probt but the cdf function is more flexible for         *; 

*    other distributions.                                              *; 

*                                                                      *; 

************************************************************************; 

data b03; 

     set sumout0Snippet 11; 

     format critlev tcrit 8.3 

            llci ulci 8.4 

            tstat 8.4 pval 8.3; 

     NullDiff = &meandiff; 

     alpha = &alpha; 

     sides = &sides; 

     critlev = 1 - (alpha/sides); 

     tcrit = tinv(critlev,df); 

     llci  = ((invmean - cntmean) - NullDiff) - (tcrit * poolstderr); 

     ulci  = ((invmean - cntmean) - NullDiff) + (tcrit * poolstderr); 

     tstat = ((invmean - cntmean) - NullDiff)/poolstderr; 

     pval = (1 - cdf('t',abs(tstat),df,0)) * sides; 

     run; 



Page 17  MWSUG 2019, IN-113 

Power Estimation in Non-Inferiority Designs 

 

Snippet 11.8 Score the simulations 
************************************************************************; 

*                                                                      *; 

*    Score the simulations.                                            *; 

*    When improvement is smaller, use u < nim, for nim > 0.            *; 

*    When improvement is larger,  use l > nim, for nim < 0.            *; 

*    When testing equivalence, use both.                               *; 

*                                                                      *; 

************************************************************************; 

data pe04; 

     set b03; 

     length lresult uresult eresult $13.; 

     nim = &nim; 

     if llci = . then lresult          = '             '; 

     if llci <= nim then lresult       = 'Do Not Reject'; 

     else if llci > nim then lresult   = 'Reject       '; 

     if ulci = . then uresult          = '             '; 

     if ulci => nim then uresult       = 'Do Not Reject'; 

     else if ulci < nim then uresult   = 'Reject       '; 

     if lresult = '             ' or  

        uresult = '             ' then 

        eresult = '             '; 

     else if lresult = 'Do Not Reject' or  

             uresult = 'Do Not Reject' then 

             eresult = 'Do Not Reject'; 

     else if lresult = 'Reject       ' and  

             uresult = 'Reject       ' then 

             eresult = 'Reject       '; 

     run; 

 

proc sort data = pe04; 

     by scenario; 

     run; 

 

Snippet 11.9 Tally the simulations 
ods output OneWayFreqs = owf01; 

proc freq data = pe04; 

     by scenario; 

     table lresult uresult eresult; 

     run; 

 

Figure 11.3 Tabulated Results. The SAS code snippets (11.1-9) were executed on my desktop which has an Intel® i7-6700 

CPU with 16.0GB of physical RAM and running Microsoft Windows 10 Pro with SAS 9.4 installed.  The 

program was run in interactive mode and executed in 2 minutes and 20 seconds.  
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Example Power Simulation 

 

Obs   scenario    invmean    cntmean        nim      alpha   sides    invsize    cntsize         sd   lresultp   uresultp   eresultp 

 

  1       2          99.7       99.7   -21.9000      0.025     1           36         36     30.000      86.79       0.00       0.00 

  2       3          99.7       99.7   -21.9000      0.025     1           36         36     30.100      85.97       0.00       0.00 

  3       4          99.7       99.7   -21.9000      0.025     1           36         36     30.200      86.40       0.00       0.00 

  4       5          99.7       99.7   -21.9000      0.025     1           36         36     30.300      85.65       0.00       0.00 

  5       6          99.7       99.7   -21.9000      0.025     1           36         36     30.400      85.96       0.00       0.00 

  6       7          99.7       99.7   -21.9000      0.025     1           36         36     30.500      85.25       0.00       0.00 

  7       8          99.7       99.7   -21.9000      0.025     1           36         36     30.600      85.09       0.00       0.00 

  8       9          99.7       99.7   -21.9000      0.025     1           36         36     30.700      84.69       0.00       0.00 

  9      10          99.7       99.7   -21.9000      0.025     1           36         36     30.800      84.63       0.00       0.00 

 10      11          99.7       99.7   -21.9000      0.025     1           36         36     30.900      84.82       0.00       0.00 

 11      12          99.7       99.7   -21.9000      0.025     1           36         36     31.000      83.65       0.00       0.00 

 12      13          99.7       99.7   -21.9000      0.025     1           36         36     31.100      83.93       0.00       0.00 

 13      14          99.7       99.7   -21.9000      0.025     1           36         36     31.200      83.68       0.00       0.00 

 14      15          99.7       99.7   -21.9000      0.025     1           36         36     31.300      83.72       0.00       0.00 

 15      16          99.7       99.7   -21.9000      0.025     1           36         36     31.400      82.92       0.00       0.00 

 16      17          99.7       99.7   -21.9000      0.025     1           36         36     31.500      82.71       0.00       0.00 

 17      18          99.7       99.7   -21.9000      0.025     1           36         36     31.600      82.65       0.00       0.00 

 18      19          99.7       99.7   -21.9000      0.025     1           36         36     31.700      81.76       0.00       0.00 

 19      20          99.7       99.7   -21.9000      0.025     1           36         36     31.800      81.90       0.00       0.00 

 20      21          99.7       99.7   -21.9000      0.025     1           36         36     31.900      82.20       0.00       0.00 

 21      22          99.7       99.7   -21.9000      0.025     1           36         36     32.000      81.46       0.00       0.00 

  

  

  

  

  

  

  

  

  

CONFIDENTIAL, DRAFT 

Program Name - \\...\saspgm\Table14_NonInfEff.sas 

Data Source  - \\...\sasdata\ 

Output Name  - \\...\sasout\Table14_NonInfEff.pdf 
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12. Summary 
 

The one-sided hypothesis testing framework was reviewed. 

Two methods for calculating power for the Non-Inferiority 

Study Design were provided including the Power Procedure 

in SAS and example SAS program for simulations. The 

estimation of power for this example is similar among the 

manual calculation, the Power Procedure and to the 

simulation result.   

 

13. References 
Chow, S.-C., Chang, M., & Pong, A. (2005). Statistical 

Consideration of Adaptive Methods in Clinical 

Development. Journal of Biopharmaceutical 

Statisics, 15, 575–591. 

Elliot D, Giesen T. Primary flexor tendon surgery: the 

search for a perfect result. Hand clin 

2013;29(2):191-206. 

Goldstein, D. J., & Wilson, M. G. (1993). Adverse event 

frequencies generate hypotheses of efficacy and 

safety. Clinical Pharmacology and Therapeutics, 

54(3), 245–251. 

Hogg, R. V. (1979). Statistical Robustness: One View of Its 

Use in Applications Today. The American 

Statistician, 33(3), 108–115. 

McClave, J. T., & Dietrich, F. H. I. I. (1985). Statistics. San 

Francisco: Dellen Publishing Company, Division of 

Macmillan, Inc. 

O’Brien, R. G., and Muller, K. E. (1993). “Unified Power 

Analysis for t-Tests through Multivariate 

Hypotheses.” In Applied Analysis of Variance in 

Behavioral Science, edited by L. K. Edwards, 297–

344. New York: Marcel Dekker. 

SAS Institute Inc. 2016. SAS/STAT® 14.2 User’s Guide. 

Chapter 90, The Power Procedure. Cary, NC: SAS 

Institute Inc. 

Schuirmann, D. J. (1987). A comparison of the Two One-

Sided Tests Procedure and the Power Approach for 

assessing the equivalence of average bioavailability. 

Journal of Pharmacokinetics and Biopharmaceutics. 

http://doi.org/10.1007/BF01068419 

Su BW, Solomons M, Barrow A, et al. Device for zone-II 

flexor tendon repair. J Bone Joint Surg Am 

2005;87:923-35. Doi: 10.2106/JBJS.C.01483. 

Wilson, M. G. (2000). Lilly Reference Ranges. In S. S-C 

(Ed.), Encyclopedia of Biopharmaceutical Statistics. 

New York: Marcel Dekker, Inc. 

Wilson, M. G. (2010). Assessing and Modeling Time to 

Event Data with Non-Proportional Hazards. 

Procedings of the Mid-West SAS Users Group, Paper 

125–2010. 

Blackwelder, W. C. (1982). ‘Proving the Null Hypothesis’ 

in Clinical Trials. Controlled Clinical Trials, 3, 345–

353. 

Castelloe, J., & Watts, D. (2015). Equivalence and 

Noninferiority Testing Using SAS/STAT® 

Software. Paper SAS1911-2015, 1–23. 

Cochran, W. G., & Cox, G. M. (1964). Experimental 

Designs. New York: Wiley. 

Elliot, & Giesen. (2013). Primary flexor tendon surgery: 

the search for a perfect result. Hand Clin, 29(2), 

191–206. 

Mascha, E. J., & Sessler, D. I. (2011). Equivalence and 

noninferiority testing in regression models and 

repeated-measures designs. Anesthesia and 

Analgesia, 112(3), 678–687. 

https://doi.org/10.1213/ANE.0b013e318206f872 

McClave, J. T., & Dietrich, F. H. I. I. (1985). Statistics. San 

Francisco: Dellen Publishing Company, Division of 

Macmillan, Inc. 

Mukherjee, S. (2010). The Emperor of All Maladies: A 

Biography of Cancer. New York, New York: 

Scribner. Retrieved from 

https://archive.org/details/pdfy-

cWnUvQsgyf0XYuPn/page/n3 

Rothmann, M. D., Wiens, B. L., & Chan, I. S. . (2012). 

Design and Analysis of Non-inferiority Trials. Boca 

Raton: Chapman & Hall/CRC. 

Su, B. W., Solomons, M., Barrow, A., Senoge, M. E., 

Gilberti, M., Lubbers, L., … Rosenwasser, M. P. 

(2005). Device for zone-II flexor tendon repair. A 

multicenter, randomized, blinded, clinical trial. The 

Journal of Bone and Joint Surgery. American 

Volume. https://doi.org/10.2106/JBJS.C.01483 

Walker, & Nowacki. (2011). Understanding Equivalence 

and Noninferiority Testing. J Gen Intern Med, 26(2), 

192–196. 
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The content and computer code in this manuscript is 
for educational use only and is provided ‘as is.’ 
Although, care was taken to ensure its accuracy for this 
purpose, it may not apply universally to all problems, 
may or may not translate to another specific purpose 
or apply to the reader’s individual problem. 
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