
1

MWSUG 2019 - Paper HW-086

Base SAS® & SAS® Enterprise Guide®

Automate Your SAS® World with Dynamic Code ~ Forwards & Backwards

Your newest BFF (Best Friend Forever) in SAS

Kent  Ronda Team Phelps ~ The SASketeers ~ All for SAS & SAS for All!

Illuminator Coaching, Inc. ~ Des Moines, Iowa

ABSTRACT

Communication is the basic foundation of all relationships, including our SAS relationship with the server, PC,

or mainframe. To communicate more efficiently ~ and to increasingly automate your SAS world ~ you will

want to learn how to transform static code into dynamic code that automatically re-creates the static code, and

then executes the re-created static code automatically. Our workshop highlights the powerful partnership that

occurs when dynamic code is creatively combined with a dynamic FILENAME statement, the SET INDSNAME

option, a macro variable, and the CALL EXECUTE command within one SAS Enterprise Guide Program node.

You have the exciting opportunity to learn how to design dynamic code forwards and backwards to re-create

static code while automatically changing the year ~ as 1,574 time-consuming manual steps are amazingly

replaced with only one time-saving dynamic automated step. We invite you to attend our Dynamic Code

Hands-On Workshop, in which we detail the UNIX and Microsoft Windows syntax for our project example and

introduce you to your newest BFF (Best Friend Forever) in SAS. (Please see the appendixes to review

additional starting-point information about the syntax for IBM z/OS, and to review the source code that

created the data sets for our project example.)

INTRODUCTION

SAS is highly regarded around the world, and rightly so, as a powerful, intuitive, and flexible programming

language. As we like to say, SAS enables you to creatively program Smarter And Smarter. However, as

remarkable as it is, SAS will remain an island unto itself without your coding proficiency.

The tagline for SAS is The Power To Know® and your ‘power to know’ greatly expands with your determination

to communicate more efficiently with the server, PC, or mainframe (referred to as server going forward). The

Power To Know enables The Power To Transform which leads to The Power To Execute ~ but these

powers will quickly go down the drain if you do not continuously learn how to request data more efficiently

and how to increasingly automate your SAS world.

Here are 3 questions to ask yourself when designing your SAS program:

 How do I request data more efficiently from the server while protecting the integrity of the data?

 How do I automate my program to eliminate time-consuming and error prone manual processing to gain

back valuable time for more enjoyable SAS endeavors?

 How do I pursue and accomplish this grand and noble deed?

2

Good News ~ we are going to design a SAS Enterprise Guide program node to:

 Transform a static FILENAME statement into a dynamic FILENAME statement to obtain a Directory Listing

of files from a folder on the server.

 Utilize the Directory Listing to transform Extract, Append, and Export static code into dynamic code.

 Dynamic code is executable code based upon parameters that can change, and therefore may or may

not run exactly the same way.

 The dynamic code in this workshop re-creates static code which is executable code that never changes

and always runs exactly the same way.

 The dynamic code will be stored in a variable in a SAS data set.

 Execute the dynamic code automatically with no manual processing or intervention.

The SAS project in this workshop demonstrates:

The Power To Know through a dynamic FILENAME statement

The Power To Transform static code into dynamic code using the SET INDSNAME option and a macro variable

The Power To Execute dynamic code automatically using the CALL EXECUTE command

We invite you to journey with us as we share how

Dynamic Code

can become your BFF in SAS.

 A Tale of SAS Wis-h-dom 

As stated before, the SAS programming language is powerful, intuitive, and flexible. When we wish for a better

way to design our programs, we can tap into the built-in wisdom of SAS. Thus, we have coined the phrase SAS

Wis-h-dom to describe the blending of a SAS wish with SAS wisdom. Discovering the power of combining

dynamic code with a dynamic FILENAME Statement, the SET INDSNAME option, and the CALL EXECUTE

command was as Bob Ross, the well-known painter on PBS, so often said, “A happy accident.”

When Bob needed to change his plan for a painting, he referred to the detour as a Happy Accident. Likewise,

when we started the following project with one plan in mind, we soon found that in order to overcome obstacle

bumps on the project road, we needed to discover creative new ways to accomplish the Project Requirements.

On a recent SAS quest, we made several discoveries which we are eager to share with you through our project

example. This project was prompted by a business need to make the research and analysis of vital variables

from 14 years of weekly snapshot data sets more efficient. Read on to learn about the Project Requirements,

the SAS Wis-h-dom that transpired along the way, and the Happy Accidents which occurred on the journey.

Project Requirements:

 Extract vital variables from 52 weekly data sets per year for 14 years (2006-2019) from a folder on the

server and combine them with a Load_Date variable created from the Friday date value derived from the

filenames of the data sets.

3

 Append the 52 weekly data sets per year to create 14 yearly data sets.

 Export the 14 appended yearly data sets back to the folder on the server.

Since SAS Enterprise Guide was being used to design this project, the first decision to make was, “Should the

program be designed with Graphical User Interface (GUI) and/or a program node?

Here are the questions considered in the programming decision, “To GUI or not to GUI?”:

 What will it take to manually add 52 weekly data sets to the project?

 What will it take to manually create 52 queries to select vital variables from 52 data sets?

 What will it take to manually enter the derived value of the Load_Date variable in 52 queries?

 What will it take to manually append the 52 new data sets created by the 52 queries?

 What will it take to manually export the appended yearly data set back to the server?

 Once the program is designed, what will it take to manually swap 52 inputs and manually update the

Load_Date variable in 52 queries ~ 13 more times ~ while running the program for the 14 year timeframe?

Are you getting tired yet?

It was determined that the 209 manual steps needed to design the program, and the 105 manual steps

needed to update the program each year, could be done with GUI. However, it also became apparent that the

1,574 manual steps required to run the program for the 14 year timeframe would be excessive and prone to

errors. As a result, our SAS intuition said, “There must be a smarter, easier, and faster way to do this in SAS!”

By the way, are you in tune with your SAS intuition? Be sure to listen closely when the quiet, reassuring voice

within you says with conviction, “There must be a better way to do this in SAS!” We encourage you to honor

your SAS intuition and to let it motivate you to find new ways to maximize your programming.

“And now for the rest of the story…”,

as Paul Harvey so often said on the radio.

The SAS Quest

Starting

is the first step

towards success.

John C. Maxwell

Sometimes at the beginning of a project it can be challenging to figure out how to accomplish the requirements.

Always remember, the only thing we really need to do is take the first step ~ and the rest will soon follow.

Dear SAS Wisdom,

We wish we could find a way to automate this program
and eliminate manual processing and intervention ~

We look forward to hearing from you soon,

Thank You!

4

Our first step was to revise the previous programming questions:

 What will it take to automatically create one DATA step to read and append 52 data sets together?

 What will it take to automatically extract vital variables in one DATA step?

 What will it take to automatically enter the derived value of the Load_Date variable in one DATA step?

 What will it take to automatically export the appended yearly data set back to the server?

 Once the program is designed, what will it take to automatically swap 52 inputs and automatically update

the Load_Date variable in one DATA step ~ 13 more times ~ while running the program for the 14 year

timeframe?

 Team Phelps Law 

Everything is easier than it looks;

it will be more rewarding than you expect;

and if anything can go right

~ it will ~

and at the best possible moment.

We began a quest to accomplish the grand and noble deed  of automating this program. Our first task was to

find a way to transform a static FILENAME statement into a dynamic FILENAME statement to read 52 weekly

data sets from a folder on the server automatically and sequentially ~ rather than manually one at a time. A

Google search led to an article titled Using FILEVAR= To Read Multiple External Files in a DATA Step.

Here is a brief overview of the article:

 The article explained many different ways to transform a static FILENAME statement into a dynamic

FILENAME statement to automatically and sequentially read the content of multiple data sets.

Obstacle Bump ~ Unfortunately this article did not cover how to use a dynamic FILENAME statement to

obtain a Directory Listing of the filename of each data set while reading multiple data sets ~ Bummer!

 Happy Accident Detour  ~ We did not give up and began a series of researching detours. Along the way

we finally discovered that when a dynamic FILENAME statement is used, SAS will actually assign a variable

called FILENAME to the name of each file being read ~ Yea!

This knowledge enabled us to transform a static FILENAME statement into a dynamic FILENAME statement to

obtain a Directory Listing of the filenames in order to derive the value of a variable from the filenames of the

files being read.

Obstacle Bump ~ A dynamic FILENAME statement can be used to obtain a Directory Listing that can be used
to transform static code into dynamic code that automatically re-creates the static code; however, we
determined the same dynamic FILENAME statement could not be used again within the re-created static code
to obtain the name of each data set as it is actually being read.

Our SAS intuition pondered once again, “Surely, when multiple input data sets are used as inputs in a DATA
step, there must be a way to obtain the name of the data set from each input observation as it is read!”

 Happy Accident Detour  ~ Another Google search happily uncovered a SET option called INDSNAME
which identifies the input data set being read with each input observation.

We concluded that a variable called FILENAME can be used to identify the name of an input data set when
using a dynamic FILENAME statement, and a variable called INDSNAME can be used to identify the name of
the input data set when using a SET statement using the SET INDSNAME option.

5

Learning this information enabled us to design a program to use:

 A dynamic FILENAME statement to obtain one Directory Listing for 14 years of the filenames of the 52

weekly data sets per year from a folder on the server.

 The Directory Listing to transform Extract, Append, and Export static code into dynamic code that

automatically re-creates the static code to:

 Extract vital variables from the data sets and combine them with a Load_Date variable created from the

Friday date value derived from the filenames of the data sets using the SET INDSNAME Option.

 Append the 52 weekly data sets per year to create 14 yearly data sets.

 Export the 14 appended yearly data sets back to the folder on the server.

Once the program has run, the re-created Extract, Append, and Export static code can be run manually by

copying and pasting the code into another program node. Please note this program fulfills most of the project

requirements… but remember, our SAS wish was to COMPLETELY automate this project.

SAS Illumination

Sometimes success is seeing

what we already have

in a

new light.

Dan Miller

Obstacle Bump ~ After we determined how to transform a static FILENAME statement into a dynamic

FILENAME statement to obtain a Directory Listing to transform Extract, Append, and Export static code into

dynamic code that automatically re-creates the static code ~ a very important question arose, “Is there also a

way to execute the re-created static code automatically?” You guessed it… our SAS intuition spoke up again,

“There must be a way to call and execute a variable in a SAS data set containing a SAS DATA step.”

 Happy Accident Detour  ~ It only took one more hopeful Google search to find a White Paper titled CALL

EXECUTE: A Powerful Data Management Tool which revealed that a CALL EXECUTE command actually existed!

Here is a brief overview of the White Paper:

 CALL EXECUTE (variable); resolves and executes the value of a variable.

 The variable can be a character variable in a data set containing SAS statements such as a DATA step.

O! The joy… of sweet success ~ when we discovered that the CALL EXECUTE command can execute the re-

created static code automatically ~ and thus enable us to COMPLETELY automate this project!

As we
continue on
our journey,
we will shed
more light

on this
exciting

SAS
quest.

6

SAS Illumination ~ we will use a dynamic FILENAME statement to obtain a Directory Listing to transform

Extract, Append, and Export static code into dynamic code that automatically re-creates the static code, and

then use the CALL EXECUTE command to execute the static code automatically without any manual processing

or intervention!

As you can see from this SAS quest, it pays to listen to your SAS intuition. Our determination to overcome

obstacles ~ and a series of simple Google searches ~ led to resources which illuminated how to fulfill the

project requirements and enabled this project to become a very successful reality. Always remember there is a

treasure chest of SAS information waiting on the web to help you maximize the quality, efficiency, and

automation of your programming.

 On the next leg of our journey

 we will walk you through a

 step-by-step demonstration of

 The Power To Know, Transform, and Execute

The first step is the most important step you will take ~

and the last step is the most rewarding step you will experience.

Kent  Ronda Team Phelps

Here is the program displayed as a SAS Enterprise Guide program node:

 Create Yearly
data sets

Yea!!!

 Strike up the band,
Toss the confetti,

 Release the balloons!

Applause… Applause… Applause…

Bring out the treats for everyone!

Create
Yearly

data sets

7

Disclaimer: This workshop details the UNIX and Microsoft Windows syntax for our project example. Please

refer to your specific Operating System (e.g. UNIX, Windows, or IBM z/OS) Manual, Installation

Configuration, and/or in-house Technical Support for further guidance in how to create the SAS code

presented. See Appendix A for additional starting-point information regarding the syntax for IBM z/OS.

The following example highlights how to transform a static FILENAME statement into a dynamic FILENAME

statement to obtain a Directory Listing of the 52 weekly data sets for each year from a folder on the server.

This code will obtain and store the Directory Listing:

 This code will obtain a Directory Listing of the data sets following the file*.sas7bdat pattern from

the SMILEY folder on the server and store it in a data set.

 Create
Yearly

data sets

These are the 3 weekly data sets being processed in our example:

 Each must follow the same pattern fileYYYYMMDD.sas7bdat (See Appendix B for code to create).

This is a sample of the columns and formatting for each data set:

 This contains each Special Person, Number, and Code for employees of the  Smiley Company .

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH fpath SAS_data_set_and_path $100;

 RETAIN fpath;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 ...

 OUTPUT;

 END;

RUN;

THE POWER TO KNOW
Through a Dynamic FILENAME Statement

8

Creating a dynamic FILENAME statement:

 The FILENAME statement assigns indata as a file reference (fileref) to the folder and file pattern.

 The asterisk within the file pattern file*.sas7bdat transforms the static FILENAME statement into

a dynamic FILENAME statement which will read multiple files automatically and sequentially.

 The FILENAME=<variable> statement assigns the path and name of each file being read.

 In summary, a dynamic FILENAME statement and the FILENAME=<variable> statement will obtain
the Directory Listing.

Creating a DATA step to read and store the Directory Listing:

 The DATA statement creates an output data set called path_list_files.

 The LENGTH statement assigns a length of 100 characters to a variable that will store each unique

data set path and filename called fpath.

 The RETAIN statement retains the value of fpath until it is assigned a new filename later in the code.

 The LENGTH statement also assigns a length of 100 characters to a variable that will be used to store

and track changes to the data set path and filename called SAS_data_set_and_path.

 In summary, the path_list_files data set is created to contain the 100 character fpath and

SAS_data_set_and_path variables which will be used to read and store the Directory Listing.

Preparing the INFILE indata (fileref) for use and the INPUT of data:

 The INFILE statement assigns indata to be read with the INPUT statement.

 The TRUNCOVER option tells SAS the input data may or may not be the same length.

 The FILENAME=SAS_data_set_and_path statement assigns SAS_data_set_and_path to the path

and filename being read.

 The INPUT statement reads the INFILE indata (fileref) sequentially without creating any variables.

 In summary, INFILE assigns indata to be read with an INPUT of variable length (without creating

any variables) while assigning SAS_data_set_and_path to each path and filename being read.

FILENAME indata '/SMILEY/file*.sas7bdat';

 DATA path_list_files;

 LENGTH fpath SAS_data_set_and_path $100;

 RETAIN fpath;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

9

Creating an IF-THEN DO-END statement to detect new filenames being read:

 The IF-THEN statement executes the contents of the DO-END when a new filename is read.

 The fpath = SAS_data_set_and_path statement assigns the fpath variable to the value of the

SAS_data_set_and_path variable which contains the path and filename as each new file is read.

 The OUTPUT statement is executed within the IF-THEN DO-END statement to ensure that we only

write an observation for the Directory Listing when a new file is read and fpath changes.

 In summary, the fpath variable is assigned to the path and filename of each new data set (Directory

Listing) up to 100 characters as the filename of the data sets change.

Here are the statements combined with a RUN statement:

This is the output data set created by the preceding statements:

 Next we will explore how this Directory Listing is used to transform static code into dynamic code.

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 ...

 OUTPUT;

 END;

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH fpath SAS_data_set_and_path $100;

 RETAIN fpath;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 ...

 OUTPUT;

 END;

RUN;

/SMILEY/file20180105.sas7bdat

/SMILEY/file20180112.sas7bdat

/SMILEY/file20190104.sas7bdat

10

The following example highlights how to transform Extract, Append, and Export static code into dynamic code

that automatically recreates the static code to Extract vital variables from 52 weekly data sets and combine

them with a Load_Date variable (derived from the filenames of the data sets), how to Append the 52 weekly

data sets to create a yearly data set, and how to Export the yearly data set back to the folder on the server.

This is the original Extract static code for weeks 1 and 3:

 Each weekly DATA step creates a file_final_YYYYMMDD data set with the Load_Date variable
derived and formatted as a SAS date (date9) from the YYYYMMDD create date of the input data set.

 A KEEP statement keeps the Special_Person, Special_Number, and derived Load_Date.

DATA file_final_20190104;

 SET '/SMILEY/file20190104.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '04JAN2019'd;

 KEEP Special_Person Special_Number Load_Date;

RUN;

THE POWER TO TRANSFORM

Static Code into Dynamic Code Using the SET INDSNAME Option and a Macro Variable

Here is the Append code beginning to be combined with the Export code:

 The Append DATA step creates final_YYYY data sets with YYYY matching each input data set year.

 Each of the file_final_YYYYMMDD data sets are SET as data sets one after another.

DATA '/SMILEY/final_2018.sas7bdat' '/SMILEY/final_2019.sas7bdat';

 SET file_final_20180105.sas7bdat

 file_final_20180112.sas7bdat

 file_final_20190104.sas7bdat;

RUN;

DATA file_final_20180105;

 SET '/SMILEY/file20180105.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '05JAN2018'd;

 KEEP Special_Person Special_Number Load_Date;

RUN;

Here is the Extract, Append, and Export code almost completely combined:

 This Append SETs the 52 original data sets as inputs thereby eliminating the 52 Extract DATA steps.

 Question: Since the dynamic FILENAME statement used to execute the dynamic code that recreates
this static code is not available during the runtime of this static code, how do we obtain Load_Date?

 Question: How do we determine which output data set each input data set should be written to?

DATA '/SMILEY/final_2018.sas7bdat' '/SMILEY/final_2019.sas7bdat';

 SET '/SMILEY/file20180105.sas7bdat'

 '/SMILEY/file20180112.sas7bdat'

 '/SMILEY/file20190104.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '05JAN2018'd;

 KEEP Special_Person Special_Number Load_Date;

RUN;

11

Here is the Extract, Append, and Export code completely combined:

 Create a variable Current_File with a LENGTH long enough for each input data set name and path.

 Place the LENGTH before the SET statement so the complete data set name and path are captured.

 Add INDSNAME=Current_File to the end of the SET statement so Current_File will always be
assigned the data set name and path of the observation being read.

 Use the MDY, INPUT, and SUBSTR functions to transform the month, day, and year of each data set
name and path (Current_File) into Load_Year and Load_Date.

 Use SELECT(Load_Year) to write each observation to the correct OUTPUT data set by Load_Year.

DATA '/SMILEY/final_2018.sas7bdat' '/SMILEY/final_2019.sas7bdat';

 LENGTH Current_File $100;

 SET '/SMILEY/file20180105.sas7bdat'

 '/SMILEY/file20180112.sas7bdat'

 '/SMILEY/file20190104.sas7bdat'

 INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 Load_Year = SUBSTR(Current_File,13,4);

 Load_Date = MDY(INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.);

 SELECT(Load_Year);

 WHEN('2018') OUTPUT '/SMILEY/final_2018.sas7bdat';

 WHEN('2019') OUTPUT '/SMILEY/final_2019.sas7bdat';

 END;

RUN;

Here is the Extract, Append, and Export code efficiently combined:

 Add Prior_File, IF Current_File NE Prior_File THEN, and Prior_File = Current_File to
assign Load_Date with data set changes, and add File_Load_Year and IF Load_Year NE
File_Load_Year THEN to assign Load_Year = File_Load_Year with data set year changes.

 Add RETAIN Load_Date Load_Year statement to retain Load_Date and Load_Year.

DATA '/SMILEY/final_2018.sas7bdat' '/SMILEY/final_2019.sas7bdat';

 LENGTH Current_File Prior_File $100;

 SET '/SMILEY/file20180105.sas7bdat'

 '/SMILEY/file20180112.sas7bdat'

 '/SMILEY/file20190104.sas7bdat'

 INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date Load_Year;

 IF Current_File NE Prior_File THEN

 DO;

 File_Load_Year = SUBSTR(Current_File,13,4);

 IF Load_Year NE File_Load_Year THEN Load_Year = File_Load_Year;

 Load_Date = MDY(INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

 Prior_File = Current_File;

 END;

 SELECT(Load_Year);

 WHEN('2018') OUTPUT '/SMILEY/final_2018.sas7bdat';

 WHEN('2019') OUTPUT '/SMILEY/final_2019.sas7bdat';

 END;

RUN;

12

Begin to transform static code into dynamic code using quotes and timing:

Use quotation marks to surround the static code and what changes within:

 Create a variable dyncode long enough to contain the concatenation with spaces removed (CATS) of
the static code in quotation marks.

 Surround the static code with quotation marks to begin the process of transforming the code.

 If single quotes are contained within the static code, use double quotes to surround the static code.

 Surround the years of the output data sets with double quotes and commas because they will be
derived from the years of the input data sets.

 Surround the names of the input data sets with double quotes and commas because they will be
derived from the names of the input data sets.

Identify the timing of changes with each observation of static code:

 The DATA, LENGTH, and SET statements will begin to be derived during the first observation and will
be updated with each input data set name and output data set year ~ forwards and backwards.

 The /SMILEY/file20180105.sas7bdat through /SMILEY/file20190104.sas7bdat input data set
names and the output data set years 2018 and 2019 will be derived from each observation of fpath.

 The INDSNAME=Current_File; through RUN; statements will occur at the end after all observations
of the Directory Listing have been read.

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 dyncode $10000;

 RETAIN fpath; FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN

 DO; fpath = SAS_data_set_and_path;

 dyncode = CATS("

 DATA '/SMILEY/final_","2018",".sas7bdat'

 '/SMILEY/final_","2019",".sas7bdat';

 LENGTH Current_File Prior_File $100;

 SET '","/SMILEY/file20180105.sas7bdat","'

 '","/SMILEY/file20180112.sas7bdat","'

 '","/SMILEY/file20190104.sas7bdat","' INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date Load_Year;

 IF Current_File NE Prior_File THEN

 DO;

 File_Load_Year = SUBSTR(Current_File,13,4);

 IF Load_Year NE File_Load_Year THEN Load_Year = File_Load_Year;

 Load_Date = MDY(INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

 Prior_File = Current_File;

 END;

 SELECT(Load_Year);

 WHEN('","2018","') OUTPUT '/SMILEY/final_","2018",".sas7bdat';

 WHEN('","2019","') OUTPUT '/SMILEY/final_","2019",".sas7bdat';

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

13

Code for the timing of changes with each observation of static code:

 Add fpath_year dyncode_data_outputs dyncode_set_inputs and dyncode_when_outputs

variables to the RETAIN and LENGTH statements to determine changes in the year and to enable each
piece of the DATA step to be concatenated until the result is the complete dynamic code.

 Add IF _N_ = 1 THEN to begin the derivation of dyncode_data_outputs to be the DATA part of
the DATA step. This derivation will continue with each changing year of the input data sets.

 IF _N_ = 1 THEN also begins the derivation of dyncode_set_inputs to be the LENGTH and SET
part of the DATA step. This derivation will continue with each changing input data set.

 Add IF fpath NE SAS_data_set_and_path THEN to assign fpath = SAS_data_set_and_path;
only when the first observation of each new input data set is read.

 Assign dyncode_set_inputs to itself from either the IF _N_ = 1 THEN logic or the previous
IF fpath NE SAS_data_set_and_path THEN logic, remove the beginning and ending spaces
CATS(dyncode_set_inputs) and concatenate || it to each input data set and path CATS(fpath)
surrounded by single quotes '.

 Assign data_set_year = SUBSTR(fpath,13,4) to the year of the input data set.

 Add IF fpath_year NE data_set_year THEN to update dyncode_data_outputs to include each
new output data set with each data_set_year in the DATA line.

 IF fpath_year NE data_set_year THEN also updates dyncode_when_outputs to include the
new year and output data set with each data_set_year in the SELECT WHEN OUTPUT statement.

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 dyncode $10000

 dyncode_data_outputs dyncode_set_inputs dyncode_when_outputs $1000;

 RETAIN fpath fpath_year dyncode_data_outputs dyncode_set_inputs

 dyncode_when_outputs;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF _N_ = 1 THEN

 DO;

 dyncode_data_outputs = CATS("DATA ");

 dyncode_set_inputs =

 CATS("; LENGTH Current_File Prior_File $100; SET ");

 END;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 dyncode_set_inputs = CATS(dyncode_set_inputs)||

 " '"||CATS(fpath)||"' ";

 data_set_year = SUBSTR(fpath,13,4);

 IF fpath_year NE data_set_year THEN

 DO;

 fpath_year = data_set_year;

 dyncode_data_outputs = CATS(dyncode_data_outputs)||

 " '"||CATS("/SMILEY/final_",

 data_set_year,".sas7bdat'");

 dyncode_when_outputs = CATS(dyncode_when_outputs)||

 " "||CATS("WHEN('",data_set_year,

 "') OUTPUT '/SMILEY/final_",

 data_set_year,".sas7bdat';");

 END;

 END;

14

Code for the timing of changes after the final observation of static code:

 Add END=DONE to the INFILE statement so DONE will be set to True and the IF DONE THEN will
execute after the last observation is read from the last input data set.

 Assign dyncode to the concatenation of dyncode_data_outputs (DATA statement and output data
sets), dyncode_set_inputs (SET statement and data sets), the static code beginning with INDSNAME
and ending with SELECT(Load_Year);, dyncode_when_outputs (SELECT WHEN OUTPUT
statements), and the final END and RUN statements.

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 dyncode $10000

 dyncode_data_outputs dyncode_set_inputs dyncode_when_outputs $10000;

 RETAIN fpath fpath_year dyncode_data_outputs dyncode_set_inputs

 dyncode_when_outputs;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path END=DONE;

 INPUT;

. . .

 IF DONE THEN

 DO;

 dyncode = CATS(dyncode_data_outputs,dyncode_set_inputs)||

 " INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date Load_Year;

 IF Current_File NE Prior_File THEN

 DO;

 File_Load_Year = SUBSTR(Current_File,13,4);

 IF Load_Year NE File_Load_Year THEN Load_Year = File_Load_Year;

 Load_Date = MDY(INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

 Prior_File = Current_File;

 END;

 SELECT(Load_Year); "||dyncode_when_outputs||

 " END;

 RUN;";

 OUTPUT;

 END;

RUN;

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 dyncode $10000

 dyncode_data_outputs dyncode_set_inputs dyncode_when_outputs $10000;

 RETAIN fpath fpath_year dyncode_data_outputs dyncode_set_inputs

 dyncode_when_outputs;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path END=DONE;

 INPUT;

 IF _N_ = 1 THEN

 DO;

 dyncode_data_outputs = CATS("DATA ");

 dyncode_set_inputs =

 CATS("; LENGTH Current_File Prior_File $100; SET ");

 END;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 dyncode_set_inputs = CATS(dyncode_set_inputs)||

 " '"||CATS(fpath)||"' ";

 data_set_year = SUBSTR(fpath,31,4);

 IF fpath_year NE data_set_year THEN

 DO;

 fpath_year = data_set_year;

 dyncode_data_outputs = CATS(dyncode_data_outputs)||

 " '"||CATS("/folders/myfolders/SMILEY/final_",

 data_set_year,".sas7bdat'");

 dyncode_when_outputs = CATS(dyncode_when_outputs)||

 " "||CATS("WHEN('",data_set_year,

 "') OUTPUT '/folders/myfolders/SMILEY/final_",

 data_set_year,".sas7bdat';");

 END;

 END;

Assign a macro variable to the current file month, day, and year:

 Add the %LET to assign a new macro variable called Current_File_MDY to the three lines of code in
the parenthesis of the MDY function of the Load_Date assignment.

 Replace the code in the parenthesis of the MDY function with the macro &Current_File_MDY ~
please note that double quotes " already surround this section of code in the previous code box, so
no further changes are necessary.

%LET Current_File_MDY = INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

...

 IF Current_File NE Prior_File THEN

...

 Load_Date = MDY(&Current_File_MDY);

15

This is the dynamic code that recreates the original static code:

 We added the assignment of the Current_File_MDY macro variable to the beginning of the code and
the application of this macro variable &Current_File_MDY to the assignment of the Load_Date
variable.

%LET Current_File_MDY = INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 dyncode $10000

 dyncode_data_outputs dyncode_set_inputs dyncode_when_outputs $1000;

 RETAIN fpath fpath_year dyncode_data_outputs dyncode_set_inputs

 dyncode_when_outputs;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path END=DONE;

 INPUT;

 IF _N_ = 1 THEN

 DO;

 dyncode_data_outputs = CATS("DATA ");

 dyncode_set_inputs =

 CATS("; LENGTH Current_File Prior_File $100; SET ");

 END;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 dyncode_set_inputs = CATS(dyncode_set_inputs)||

 " '"||CATS(fpath)||"' ";

 data_set_year = SUBSTR(fpath,13,4);

 IF fpath_year NE data_set_year THEN

 DO;

 fpath_year = data_set_year;

 dyncode_data_outputs = CATS(dyncode_data_outputs)||

 " '"||CATS("/SMILEY/final_",

 data_set_year,".sas7bdat'");

 dyncode_when_outputs = CATS(dyncode_when_outputs)||

 " "||CATS("WHEN('",data_set_year,

 "') OUTPUT '/SMILEY/final_",

 data_set_year,".sas7bdat';");

 END;

 END;

 IF DONE THEN

 DO;

 dyncode = CATS(dyncode_data_outputs,dyncode_set_inputs)||

 " INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date Load_Year;

 IF Current_File NE Prior_File THEN

 DO;

 File_Load_Year = SUBSTR(Current_File,13,4);

 IF Load_Year NE File_Load_Year THEN Load_Year = File_Load_Year;

 Load_Date = MDY(&Current_File_MDY);

 Prior_File = Current_File;

 END;

 SELECT(Load_Year); "||dyncode_when_outputs||

 " END;

 RUN;";

 OUTPUT;

 END;

RUN;

16

After transforming the static code into dynamic code that automatically recreates the static code to Extract,

Append, and Export the yearly data set, the CALL EXECUTE command will execute the code automatically.

THE POWER TO EXECUTE
Dynamic Code Automatically Using the CALL EXECUTE Command

This is the dynamic code which recreates and runs the original static code:

 The CALL EXECUTE command executes the contents of the dyncode variable which was just created.

%LET Current_File_MDY = INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

FILENAME indata '/SMILEY/file*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 dyncode $10000

 dyncode_data_outputs dyncode_set_inputs dyncode_when_outputs $1000;

 RETAIN fpath fpath_year dyncode_data_outputs dyncode_set_inputs

 dyncode_when_outputs;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path END=DONE;

 INPUT;

 IF _N_ = 1 THEN

 DO;

 dyncode_data_outputs = CATS("DATA ");

 dyncode_set_inputs =

 CATS("; LENGTH Current_File Prior_File $100; SET ");

 END;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 dyncode_set_inputs = CATS(dyncode_set_inputs)||

 " '"||CATS(fpath)||"' ";

 data_set_year = SUBSTR(fpath,13,4);

 IF fpath_year NE data_set_year THEN

 DO;

 fpath_year = data_set_year;

 dyncode_data_outputs = CATS(dyncode_data_outputs)||

 " '"||CATS("/SMILEY/final_",

 data_set_year,".sas7bdat'");

 dyncode_when_outputs = CATS(dyncode_when_outputs)||

 " "||CATS("WHEN('",data_set_year,

 "') OUTPUT '/SMILEY/final_",

 data_set_year,".sas7bdat';");

 END;

 END;

 IF DONE THEN

 DO;

 dyncode = CATS(dyncode_data_outputs,dyncode_set_inputs)||

 " INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date Load_Year;

 IF Current_File NE Prior_File THEN

 DO;

 File_Load_Year = SUBSTR(Current_File,13,4);

 IF Load_Year NE File_Load_Year THEN Load_Year = File_Load_Year;

 Load_Date = MDY(&Current_File_MDY);

 Prior_File = Current_File;

 END;

 SELECT(Load_Year); "||dyncode_when_outputs||

 " END;

 RUN;";

 OUTPUT;

 CALL EXECUTE(dyncode);

 END;

RUN;

17

 Done and Done 

Here is the code with the dynamic code resolved as the original static code:

 This is the result of fully executing dyncode in the path_list_files data set:

 Please note that Windows users will need to add the specific drive letter to the path and reverse the

slashes from / to \ as shown below:

/* UNIX */ FILENAME indata '/SMILEY/file*.sas7bdat';

/* Windows */ FILENAME indata 'c:\SMILEY\file*.sas7bdat';

/* UNIX */ DATA '/SMILEY/final_2018.sas7bdat' '/SMILEY/final_2019.sas7bdat';

/* Windows */ DATA 'c:\SMILEY\final_2018.sas7bdat' 'c:\SMILEY\final_2019.sas7bdat';

DATA '/SMILEY/final_2018.sas7bdat' '/SMILEY/final_2019.sas7bdat';

 LENGTH Current_File Prior_File $100;

 SET '/SMILEY/file20180105.sas7bdat'

 '/SMILEY/file20180112.sas7bdat'

 '/SMILEY/file20190104.sas7bdat'

 INDSNAME=Current_File;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date Load_Year;

 IF Current_File NE Prior_File THEN

 DO;

 File_Load_Year = SUBSTR(Current_File,13,4);

 IF Load_Year NE File_Load_Year THEN Load_Year = File_Load_Year;

 Load_Date = MDY(INPUT(SUBSTR(Current_File,17,2),2.),

 INPUT(SUBSTR(Current_File,19,2),2.),

 INPUT(Load_Year,4.));

 Prior_File = Current_File;

 END;

 SELECT(Load_Year);

 WHEN('2018') OUTPUT '/SMILEY/final_2018.sas7bdat';

 WHEN('2019') OUTPUT '/SMILEY/final_2019.sas7bdat';

 END;

RUN;

18

CONCLUSION

The Power To Know through a dynamic FILENAME statement enables The Power To Transform static

code into dynamic code using the SET INDSNAME option and a macro variable which leads to The Power To

Execute dynamic code automatically using the CALL EXECUTE command. {Try saying that statement really

fast for fun} You have seen how 1,574 time-consuming manual steps, including changing the year, are

amazingly replaced with only one time-saving dynamic automated step.

On your future SAS quests, listen closely to your SAS intuition and pursue blending your SAS wishes with the

built-in wisdom of SAS. As you experience SAS Wis-h-dom, your research will lead you to your own Happy

Accident discoveries which will increase the efficiency and automation of your program designs. As you leave

here with your newest BFF in SAS, begin thinking about how you can benefit from this powerful partnership.

It’s not what the SAS world holds for you, it’s what YOU bring to it. You are like the language itself ~ you are

intuitive and flexible in designing your programs. As a SAS professional, you are inquisitive, research

oriented, and solution driven. Your optimistic and tenacious desire to design a quality program fuels your

thoroughness and attention to detail. When you are in your SAS zone, you are relentless in your pursuit to

overcome obstacles and maximize your programming.

Don’t be a reservoir, be a river. John C. Maxwell

SAS programming is Mind Art ~ a creative realm where each of you is an artist. Continue to develop and build

on your many skills and talents. Keep looking for different ways to share your God-given abilities and ideas.

Don’t be a reservoir of SAS knowledge, be a river flowing outward to empower those around you! Always

remember, your contributions make a positive impact in the world. Plan on coming back to the MWSUG

Regional Conference next year to shed some light on the exciting things you are learning. All of us are on the

SAS journey with you and we look forward to your teaching sessions in the future.

As we conclude, we want to introduce you to our SAS mascot, Smiley. Smiley represents the SAS joy which

each of us experience as we find better ways to accomplish grand and noble deeds using SAS. We hope we

have enriched your SAS knowledge. You may not use this powerful partnership on a daily basis, but when the

need arises ~ Oh, how valuable your relationship will be with your newest BFF in SAS!

 Thank You for sharing part of your SAS journey with us…
Happy SAS Trails to you… until we meet again 

It’s not what the world holds for you,
it’s what YOU bring to it!

Anne of Green Gables

Your life is like a campfire at night ~
You never know how many people will see it
and be comforted and guided by your light.

Claire Draper

19

ACKNOWLEDGMENTS

We want to thank the 30th Annual MWSUG 2019 Hands-On-Workshop Chair, Jay Iyengar, for accepting our

abstract and paper, and we want to express our appreciation to the Conference Co-Chairs, Jessica Chen

(Academic Chair) and Adrian Katschke (Operations Chair), the Executive Committee and Conference

Leaders, and SAS Institute for their diligent efforts in organizing this illuminating conference.

You inspire us to share what we are learning and we hope to be a light of encouragement to you as well ~ Your

friends, Kent  Ronda Team Phelps ~ The SASketeers ~ All for SAS & SAS for All! ~ Illuminator Coaching, Inc.

MEET THE AUTHORS

Writing is a permanent legacy.

John C. Maxwell

Kent  Ronda Team Phelps are the co-founders of Illuminator Coaching, Inc., and The SASketeers: All for

SAS and SAS for All! ~ they have co-authored 14 SAS White Papers ~ presented and co-presented at the

MidWest SAS® Users Group (MWSUG) Regional Conference for the last 7 years, including 4 Hands-On

Workshops ~ and co-presented at the SAS Global Forum (SGF) 2018 International Conference.

Kent wants to encourage and equip you to fulfill your life, career, and leadership potential as you build an

enduring legacy of inspiration, excellence, and honor ~ SAS® Certified Professional Programmer Analyst

Consultant ~ B.S. Electrical Engineering ~ serving for over 20 years as an essential bridge builder of

consensus and quality programming to connect the needs of Business and IT ~ happily programmed in Base

SAS® and SAS® Enterprise Guide® since 2007 with a strong focus on engineering innovative, efficient, and

automated solutions.

Ronda believes that YOU are a gift the world is waiting to receive, and she wants to encourage and equip you

to pursue your unique destiny as you navigate your life journey with intentionality, fulfilling purpose, and

enduring hope ~ Writer & Coach ~ gifted in helping others to explore and express their hearts and minds

through writing ~ served in the Banking and Insurance industries for 19 years.

CONTACT INFORMATION

We invite you to share your valued comments with us:

Kent  Ronda Team Phelps

The SASketeers ~ All for SAS & SAS for All!

E-mail: SASketeers@IlluminatorCoaching.com

 We look forward to connecting with you in the future! 

mailto:SASketeers@IlluminatorCoaching.com

20

REFERENCES

Agarwal, Megha (2012), The Power of “The FILENAME” Statement, Gilead Sciences, Foster City, CA, USA.

http://www.lexjansen.com/wuss/2012/63.pdf

Gan, Lu (2012), Using SAS® to Locate and Rename External Files, Pharmaceutical Product Development, L.L.C., Austin, TX,

USA.

http://www.scsug.org/wp-content/uploads/2012/11/Using-SAS-to-locate-and-rename-external-files.pdf

Hamilton, Jack (2012), Obtaining a List of Files in a Directory Using SAS® Functions.

http://www.lexjansen.com/wuss/2012/55.pdf

Lafler, Kirk Paul and Charles Edwin Shipp (2012), Google® Search Tips and Techniques for SAS® and JMP® Users,

Proceedings of the 23rd Annual MidWest SAS Users Group (MWSUG) 2012 Regional Conference, Software Intelligence

Corporation, Spring Valley, CA, and Consider Consulting, Inc., San Pedro, CA, USA.

http://www.mwsug.org/proceedings/2012/JM/MWSUG-2012-JM06.pdf

Langston, Rick (2013), Submitting SAS® Code On The Side; SAS Institute Inc., Cary, NC.

http://support.sas.com/resources/papers/proceedings13/032-2013.pdf

Michel, Denis (2005), CALL EXECUTE: A Powerful Data Management Tool, Proceedings of the 30th Annual SAS® Users

Group International (SUGI) 2005 Conference, Johnson & Johnson Pharmaceutical Research and Development, L.L.C.

http://support.sas.com/resources/papers/proceedings/proceedings/sugi30/027-30.pdf

Phelps, Kent  Ronda Team (2018), Hands-On Workshop (HOW): The Joinless Join ~ The Impossible Dream Come True;

Expand the Power of Base SAS® and SAS® Enterprise Guide® in a New Way, Proceedings of the 29th Annual MidWest SAS

Users Group (MWSUG) 2018 Regional Conference, The SASketeers ~ All for SAS and SAS for All! ~ Illuminator Coaching, Inc.,

Des Moines, IA, USA.

http://www.mwsug.org/proceedings/2018/HW/MWSUG-2018-HW-98.pdf

Phelps, Kent  Ronda Team (2018), Base SAS® and SAS® Enterprise Guide®: Automate Your SAS® World with Dynamic

Code ~ Your Newest BFF (Best Friend Forever) in SAS, Proceedings of SAS® Global Forum (SGF) 2018 International

Conference, The SASketeers ~ All for SAS and SAS for All! ~ Illuminator Coaching, Inc., Des Moines, IA, USA.

http://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2857-2018.pdf

Phelps, Kent  Ronda Team (2017), Hands-On Workshop (HOW): Base SAS® and SAS® Enterprise Guide® ~ Automate

Your SAS World With Dynamic Code; Your Newest BFF (Best Friend Forever) in SAS, Proceedings of the 28th Annual MidWest

SAS Users Group (MWSUG) 2017 Regional Conference, The SASketeers ~ All for SAS and SAS for All! ~ Illuminator Coaching,

Inc., Des Moines, IA, USA.

http://www.mwsug.org/proceedings/2017/HW/MWSUG-2017-HW03.pdf

Phelps, Kent  Ronda Team (2016), Base SAS® and SAS® Enterprise Guide® ~ Automate Your SAS World With Dynamic

Code; Your Newest BFF (Best Friend Forever) in SAS, Proceedings of the 27th Annual MidWest SAS Users Group (MWSUG)

2016 Regional Conference, The SASketeers ~ All for SAS and SAS for All! ~ Illuminator Coaching, Inc., Des Moines, IA, USA.

http://www.mwsug.org/proceedings/2016/TT/MWSUG-2016-TT11.pdf

Phelps, Kent  Ronda Team (2016), Hands-On Workshop (HOW): The Joinless Join ~ The Impossible Dream Come True;

Expand the Power of Base SAS® and SAS® Enterprise Guide® in a New Way, Proceedings of the 27th Annual MidWest SAS

Users Group (MWSUG) 2016 Regional Conference, The SASketeers ~ All for SAS and SAS for All! ~ Illuminator Coaching, Inc.,

Des Moines, IA, USA.

http://www.mwsug.org/proceedings/2016/HW/MWSUG-2016-HW03.pdf

SAS Institute Inc. (2016), SAS® 9.4 Companion for z/OS, Sixth Edition; Cary, NC; SAS Institute Inc.

http://documentation.sas.com/api/docsets/hosto390/9.4/content/hosto390.pdf?locale=en#nameddest=titlepage

http://www.lexjansen.com/wuss/2012/63.pdf
http://www.scsug.org/wp-content/uploads/2012/11/Using-SAS-to-locate-and-rename-external-files.pdf
http://www.lexjansen.com/wuss/2012/55.pdf
http://www.mwsug.org/proceedings/2012/JM/MWSUG-2012-JM06.pdf
http://support.sas.com/resources/papers/proceedings13/032-2013.pdf
http://support.sas.com/resources/papers/proceedings/proceedings/sugi30/027-30.pdf
http://www.mwsug.org/proceedings/2018/HW/MWSUG-2018-HW-98.pdf
http://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2857-2018.pdf
http://www.mwsug.org/proceedings/2017/HW/MWSUG-2017-HW03.pdf
http://www.mwsug.org/proceedings/2016/TT/MWSUG-2016-TT11.pdf
http://www.mwsug.org/proceedings/2016/HW/MWSUG-2016-HW03.pdf
http://documentation.sas.com/api/docsets/hosto390/9.4/content/hosto390.pdf?locale=en#nameddest=titlepage

21

SAS Institute Inc. (2016), SAS® 9.4 Macro Language: Reference, Fifth Edition; Cary, NC; SAS Institute Inc.

http://documentation.sas.com/api/docsets/mcrolref/9.4/content/mcrolref.pdf?locale=en#nameddest=titlepage

SAS Institute Inc. (2016), SAS® 9.4 DATA Step Statements: Reference; Cary, NC; SAS Institute Inc.

http://documentation.sas.com/api/docsets/lestmtsref/9.4/content/lestmtsref.pdf?locale=en#nameddest=titlepage

Spector, Phil, An Introduction to the SAS System; Statistical Computing Facility; University of California, Berkeley.

http://www.stat.berkeley.edu/~spector/

Support.SAS.com (2007), Using FILEVAR= to Read Multiple External Files in a DATA Step.

http://support.sas.com/techsup/technote/ts581.pdf

Watson, Richann (2013), Let SAS® Do Your DIRty Work, Experis, Batavia, OH.

http://www.pharmasug.org/proceedings/2013/TF/PharmaSUG-2013-TF06.pdf

TRADEMARK CITATIONS

SAS and all other SAS Institute, Inc., product or service names are registered trademarks or trademarks of SAS

Institute, Inc., in the USA and other countries. The symbol, ®, indicates USA registration. Other brand and

product names are registered trademarks or trademarks of their respective companies.

DISCLAIMER

We have endeavored to provide accurate and helpful information in this SAS Hands-On Workshop /

Presentation / White Paper. The information is provided in ‘Good Faith’ and ‘As Is’ without any kind of

warranty, either expressed or implied. Recipients acknowledge and agree that we and/or our company

are/is not, and never will be, liable for any problems and/or damages whatsoever which may arise from the

recipient’s use of the information in this paper. Please refer to your specific Operating System (e.g. UNIX,

Microsoft Windows, or IBM z/OS) Manual, Installation Configuration, and/or in-house Technical Support for

further guidance in how to create the SAS code presented.

Copyright © Kent  Ronda Team Phelps ~ The SASketeers ~ Illuminator Coaching, Inc. ~ All Rights Reserved

http://documentation.sas.com/api/docsets/mcrolref/9.4/content/mcrolref.pdf?locale=en#nameddest=titlepage
http://documentation.sas.com/api/docsets/lestmtsref/9.4/content/lestmtsref.pdf?locale=en#nameddest=titlepage
http://www.stat.berkeley.edu/~spector/
http://support.sas.com/techsup/technote/ts581.pdf
http://www.pharmasug.org/proceedings/2013/TF/PharmaSUG-2013-TF06.pdf

22

Disclaimer: This workshop details the UNIX and Microsoft Windows syntax for our project example.

Please refer to your specific Operating System (e.g. UNIX, Windows, or IBM z/OS) Manual, Installation

Configuration, and/or in-house Technical Support for further guidance in how to create the SAS code

presented.

APPENDIX A
Starting-Point Information About the Syntax for IBM z/OS

Executing the CALL EXECUTE command:

 The z/OS CALL EXECUTE command can take different forms depending on the z/OS version and

installation configuration even though the CALL EXECUTE command is considered to be a portable

function in SAS. Here are 2 reference links as a starting-point:

 SAS® 9.4 Macro Language: Reference, Fourth Edition:

http://documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1q1527d51eivsn1ob5hnz0yd1hx.htm&docsetVersion=9.4&locale=en

 SAS® 9.4 Companion for z/OS:

http://documentation.sas.com/?docsetId=hosto390&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en

 CALL EXECUTE(dyncode);

Creating the Dynamic FILENAME Statement:

 The z/OS dynamic FILENAME statement can take different forms depending on the z/OS version

and installation configuration. Here are 2 reference links as a starting-point:

 Using the FILENAME statement or Function to Allocate External Files from SAS® 9.4

Companion for z/OS:

http://documentation.sas.com/?docsetId=hosto390&docsetTarget=n0yrspsfthx1w5n1gyt6rgzh3qsu.htm&docsetVersion=9.4&locale=en

 Accessing UNIX System Services Files from SAS® 9.4 Companion for z/OS:

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n001udyg5mzcb1n1bhts48m1bal1.htm&locale=en

FILENAME indata '/SMILEY/file*.sas7bdat';

Creating the first dynamic code which exports a data set:

 The z/OS fpath_line can take different forms depending on the z/OS version and installation

configuration. Here are 2 reference links as a starting-point:

 Data Set Options under z/OS from SAS® 9.4 Companion for z/OS:

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1v0dy64syrm22n1o5kwd0qt6qd9.htm&locale=en

 SAS® 9.4 Companion for z/OS:

http://documentation.sas.com/?docsetId=hosto390&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en

dyncode_data_outputs = CATS("DATA '/SMILEY/file_",

http://documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1q1527d51eivsn1ob5hnz0yd1hx.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetTarget=n0yrspsfthx1w5n1gyt6rgzh3qsu.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n001udyg5mzcb1n1bhts48m1bal1.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1v0dy64syrm22n1o5kwd0qt6qd9.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en

23

APPENDIX B

The Code that Created the Data Sets for Our Project Example

DATA '/SMILEY/file20180105.sas7bdat'

 '/SMILEY/file20180112.sas7bdat'

 '/SMILEY/file20190104.sas7bdat';

 LENGTH Special_Person $20. Special_Number 8. Special_Code $1.;

 INFILE DATALINES DELIMITER=',';

 INPUT Special_Person $ Special_Number Special_Code $;

 SELECT;

 WHEN(_N_ LE 5) OUTPUT '/SMILEY/file20180105.sas7bdat';

 WHEN(_N_ LE 10) OUTPUT '/SMILEY/file20180112.sas7bdat';

 OTHERWISE OUTPUT '/SMILEY/file20190104.sas7bdat';

 END;

 DATALINES;

Smiley,10127911,A

Smiley's Son,10173341,K

Smiley's Twin,10376606,B

Smiley's Wife,10927911,A

Smiley's Son,11471884,E

Smiley,10027911,C

Smiley,10877911,H

Smiley's Son,11071884,A

Smiley's Twin,11173691,C

Smiley's Daughter,11375498,J

Smiley,10027911,H

Smiley,10877911,B

Smiley's Son,11071884,F

Smiley's Twin,11173691,H

Smiley's Daughter,11375498,D

;

RUN;

