
MWSUG 2019 – Paper HW037

Parallel Processing Your Way to Faster Software and a Big Fat Bonus:

Demonstrations in Base SAS®

Troy Martin Hughes

ABSTRACT

SAS® software and especially extract-transform-load (ETL) systems commonly include components that must be

serialized due to real process dependencies. For example, a transform module often cannot begin until the data

extraction completes, and a corresponding load module cannot begin until the data transformation completes. Although

process dependencies such as these cannot be avoided in many cases and necessitate serialized software design, in

other cases, programs or data can be distributed across two or more SAS sessions to be processed in parallel,

facilitating significantly faster software. This text introduces the concept of false dependencies, in which software is

serialized by design rather than necessity, thus needlessly increasing execution time and deprecating performance.

Three types of false dependencies are demonstrated as well as distributed software solutions that eliminate false

dependencies through parallel processing, arming SAS practitioners to accelerate both their software and salaries.

INTRODUCTION

Dependencies are an unavoidable reality of software and, in one definition, a dependency exists whenever a software

module or component requires prerequisite user input, data input, or the initiation or completion of some module, task,

or other activity. Dependencies aren’t all bad as they often prescribe business rules that improve data quality or software

quality. Especially in SAS data analytic development, dependencies often ensure that necessary data quality controls

are enforced, helping drive and demonstrate data integrity. For example, the requirement that data be transformed

before they are loaded within an ETL infrastructure yields confidence that requisite data cleaning, grooming, and

standardization have occurred before data are passed to stakeholders or dependent processes.

In some cases, (false) dependencies result purely from the sequencing of code rather than necessity. For example, if

one data set is ingested in a DATA step and, upon completion, a second DATA step ingests an unrelated data set,

these two DATA steps could in theory be run at the same time. Similarly, if the MEANS procedure is run followed by

the FREQ procedure, a false dependency exists because the procedures could be executed concurrently but are not.

Both false dependencies of process and false dependencies of data sets involve sequencing processes in series that

could be executed in parallel, and are described and distinguished in the following two sections.

A false dependency of throughput is a third type of false dependency and describes an unnecessarily serialized process

that occurs within a procedure or DATA step rather than between software modules. For example, when data are

ingested, typically the first observation is read, followed by the second, and so on until the entire data set is ingested

sequentially. In some cases, this serialization is required, but in other cases, non-sequential input/output (I/O)

processing can effectively distribute the data set for parallel processing. Some SAS procedures such as SORT or

MEANS take advantage of this divide-and-conquer logic through multithreading, introduced in SAS 9, but creative I/O

engineering can implement similar logic within the DATA step or other developer-built processes.

The identification and removal of false dependencies can dramatically improve software performance, yielding vigorous

execution. One distinction should be made, however, that software efficiency is not being improved—only software

speed. Parallel processing and distributed computing models often require more system resources (e.g., CPU cycles,

memory, disk space) due to the increased overhead of running concurrent SAS sessions and, in some cases, the

coordination and communication required among active sessions. Notwithstanding the increased resource

consumption, the enhanced software performance often substantially outweighs the slight decrease in efficiency.

FALSE DEPENDENCIES OF PROCESS

A false dependency of process occurs when two or more processes could be executed simultaneously but instead are

sequenced in serialized software design. A classic example of this false dependency occurs when a data set is created

and thereafter is processed through a series of analyses that are independent of each other. For example, the following

2

code creates the LIB.test data set, then runs the MEANS procedure on LIB.test, then runs the CORR procedure on

LIB.test:

data lib.test;

 set lib.dsn;

run;

proc means data=lib.test;

 var numvar1 numvar2 numvar3 numvar4;

run;

proc corr data=lib.test;

 var numvar1 numvar2;

run;

However, as both MEANS and CORR require only a shared lock on the LIB.test data set, the two procedures could be

run simultaneously to produce faster results. SAS locking is not further discussed, although the author provides a

comprehensive overview in a separate text: From a One-Horse to a One-Stoplight Town: A Base SAS Solution to

Preventing Data Access Collisions through the Detection and Deployment of Shared and Exclusive File Locks i. If the

previous code is functionally decomposed from one program into three distinct modules, the MEANS and CORR

procedures can be run in parallel. This transition from serialized to parallel software design is depicted in Figure 1,

including the substantial time savings during execution.

Figure 1. Transition from Serialized to Parallel Software Design

The following software engine can be saved as Engine.sas and spawns two SAS sessions that execute MEANS and

CORR procedures in parallel:

* this code saved as ENGINE.SAS;

data lib.test;

 set lib.dsn;

run;

systask command """%sysget(SASROOT)\sas.exe"" -noterminal -nosplash –sysin

 ""C:\means.sas"" -log ""C:\means.txt"" –print

 ""C:\means.txt""" taskname=task_means status=rc_means;

systask command """%sysget(SASROOT)\sas.exe"" -noterminal -nosplash –sysin

 ""C:\corr.sas"" -log ""C:\corr.txt"" –print

 ""C:\corr.txt""" taskname=task_corr status=rc_corr;

DATA step

PROC MEANS

PROC CORR

DATA step

PROC MEANS PROC CORR


 T

im
e

 

Serialized Design Parallel Design

Time Savings!!!

3

waitfor _all_ task_means task_corr;

When executed in the SAS Display Manager (aka the windowing environment), the SYSTASK command spawns two

new SAS sessions asynchronously (i.e., the second session does not wait for the first to complete, but executes

immediately after the first session initiates) that run Means.sas and Corr.sas, respectively. The WAITFOR statement

waits for both asynchronous sessions to complete, after which subsequent code (not shown) could start executing.

Note that that Means.sas and Corr.sas code must be saved as two separate programs, respectively, and that each

program must have access to the LIB library and LIB.Test data set:

* this code saved as C:\MEANS.SAS;

proc means data=lib.test;

 var numvar1 numvar2 numvar3 numvar4;

run;

* this code saved as C:\CORR.SAS;

proc corr data=lib.test;

 var numvar1 numvar2;

run;

Another common false dependency of process occurs when separate but prerequisite processes must complete before

a subsequent process can execute. For example, if two data sets must be joined to create a third data set, each data

set might require separate sorting or transformation prior to the final join. In traditional data analytic design, these

processes might be coded in series; however, parallel design could be implemented to remove false dependencies to

facilitate faster software. Figure 2 represents the shift from serialized to parallel design required to remove the false

dependency (in which the DSN2 sort must unnecessarily wait for the DSN1 sort to complete).

Figure 2. Transition from Serialized to Parallel Software Design

One drawback of the use of SYSTASK is its lack of availability within the SAS University Edition. Notwithstanding, the

SYSTASK command is not the only method to implement asynchronous or parallel design, although it remains one of

the most viable methods within the SAS Display Manager. Use of SYSTASK is detailed extensively in the “Automation”

chapter of the author’s text SAS Data Analytic Development: Dimensions of Software Qualityii.

FALSE DEPENDENCIES OF DATA SETS

A false dependency of data sets also involves data processes or modules that are unnecessarily serialized. The

principle difference from a false dependency of process is that this false dependency occurs because a rote process is

waiting for a data set to be processed before a subsequent iteration can process a subsequent data set. For example,

the following code sorts three data sets in series and, at first glance, may appear to be well written because the macro

code essentially kills three birds (data sets) with one stone (macro invocation):

SORT DSN1

SORT DSN2

Join DSN1

& DSN2

Join DSN 1

& DSN2

SORT DSN1 SORT DSN2


 T

im
e

 

Serialized Design Parallel Design

Time Savings!!!

4

%macro serial_sort(dsnlist=);

%let i=1;

%do %while(%length(%scan(&dsnlist,&i,,S))>1);

 %let dsn=%scan(&dsnlist,&i,,S);

 proc sort data=&dsn;

 by charvar1;

 run;

 %let i=%eval(&i+1);

 %end;

%mend;

%serial_sort(dsnlist=perm.dsn1 perm.dsn2 perm.dsn3);

The use of serialized input passed through the DSNLIST macro parameter may be an effective and efficient way to

write this software, but its implementation is an exceptionally slow way to run this software because it introduces two

false dependencies. The program cannot start sorting DSN2 until DSN1 has completed, and cannot start sorting DSN3

until DSN2 has completed. In theory, all data sets could be sorted in parallel given sufficient resources.

To remove these two false dependencies, all three data sets can be sorted simultaneously, again using a parent

process (aka engine) to asynchronously spawn batch child processes that sort the respective data sets in one-third the

time, assuming data sets of similar size and complexity. The following code should be saved as Engine.sas:

* this code saved as ENGINE.SAS;

%macro parallel_sort(dsnlist=);

%local sortvar i;

%let i=1;

%do %while(%length(%scan(&dsnlist,&i,,S))>1);

 systask command """%sysget(SASROOT)\sas.exe"" -noterminal -nosplash -sysin

 ""C:\sort.sas"" -log ""C:\sort&i..txt"" -sysparm ""dsn=dsn&i, dsnout=dsn&i,

 vars=charvar""" taskname=task_sort&i status=rc_task&i;

 %let i=%eval(&i+1);

 %end;

%let i=%eval(&i-1);

waitfor _all_

 %do j=1 %to &i;

 task_sort&j

 %end;;

%mend;

%parallel_sort(dsnlist=lib.dsn1 lib.dsn2 lib.dsn3);

The Engine.sas program spawns three instances of the Sort.sas program which run simultaneously in three separate

SAS sessions. The log files created by the three sessions must be dynamically named to ensure that the SAS sessions

do not attempt to write to the same log file, which would cause a file access collision. Thus, the first instance of Sort.sas

creates the log file Sort1.txt, the second instance Sort2.txt, and the third instance Sort3.txt. The task name and status,

whose functionality is not described in this text, also must be dynamically named with the incremental macro variable

&I to facilitate success of SYSTASK.

The name of the data set to be sorted is dynamically passed through the SYSPARM parameter, which is evaluated in

the respective instances of the Sort.sas program as the global macro variable &SYSPARM. The GETPARM macro,

included in the Sort.sas program for reference, parses the SYSPARM parameter, tokenizes comma-delimited values,

and dynamically assigns the parameterized values to global macro variables &DSN, &DSNOUT, and &VARS.

Significantly more customization could be implemented by supplementing the SYSPARM parameter with additional

fields and values to be parsed by the child processes via GETPARM. Thus, in the following code, when the first instance

of Sort.sas executes, it sorts LIB.DSN1 by the CHARVAR variable:

* this code saved as C:\SORT.SAS;

5

%macro getparm();

%local i;

%let i=1;

%do %while(%length(%scan(%quote(&sysparm),&i,','))>1);

 %let var=%scan(%scan(%quote(&sysparm),&i,','),1,=);

 %let val=%scan(%scan(%quote(&sysparm),&i,','),2,=);

 %global &var;

 %let &var=&val;

 %let i=%eval(&i+1);

 %end;

%mend;

%getparm;

proc sort data=&dsn out=&dsnout;

 by &vars;

run;

The WAITFOR statement in the Engine.sas program again waits for each respective child process to complete (as

indicated by the values assigned to the respective TASK_SORT&J macro variables). The three sorts are

asynchronously executed in parallel and, after the last sort has completed, subsequent code (not demonstrated) could

be executed. Given sufficient system resources and data sets of similar size and complexity, this design will sort these

three data sets in the same time that would have been necessary to sort one data set. This time savings is demonstrated

in Figure 3.

Figure 3. Transition from Serialized to Parallel Software Design

FALSE DEPENDENCIES OF THROUGHPUT

A false dependency of throughput exists not between processes but rather within a process due to serialized mechanics

often endemic to the software language itself. For example, if a data process or procedure requires that observations

be input or output in sequence, this can cause substantial delays when big data are encountered. With sufficient system

resources, however, some serialized input and analysis processes can be distributed through a divide-and-conquer

design that distributes disparate data across multiple SAS sessions for simultaneous processing.

For example, given a data set of 1 billion observations, the FIRSTOBS and OBS options in the SET statement of the

DATA step could be implemented to read the data set in parallel as four distinct chunks. The first chunk would be

created by setting FIRSTOBS to 1 and OBS to 250 million, the second chunk by setting FIRSTOBS to 250,000,001

and OBS to 500 million, the third chunk by setting FIRSTOBS to 500,000,001 and OBS to 750 million, and the fourth

chunk by setting FIRSTOBS to 750,000,001 and OBS to 1 billion. The MAKE_GROUPS macro dynamically creates a

SORT DSN1

SORT DSN2

SORT DSN1 SORT DSN2


 T

im
e

 

Time Savings!!!

SORT DSN3

SORT DSN3

Serialized Design Parallel Design

6

space-delimited list of these FIRSTOBS and OBS pairings when the total number of observations and desired number

of data chunks are provided as parameterized input:

%macro make_groups(obs= /* number of observations in data set */,

 groups= /* number of desired chunks into which to break data set */);

%global grouplist;

%let grouplist=;

%local i obs1 obs2;

%do i=1 %to &groups;

 %if &i=1 %then %let obs1=1;

 %else %let obs1=%sysevalf(&obs2+1);

 %if &i=&groups %then %let obs2=&obs;

 %else %let obs2=%sysevalf(&i*&obs/&groups,ceil);

 %let grouplist=&grouplist &obs1 &obs2;

 %end;

%mend;

After execution of MAKE_GROUPS, the &GROUPLIST macro variable can be used to assign values dynamically for

FIRSTOBS and OBS pairs. These pairs can be passed through successive, dynamic SYSTASK commands that dictate

parameterized values of LOW and HIGH that can be substituted into the FIRSTOBS and OBS options, respectively,

within each child process. A parent process spawning four child processes of unspecified functionality (not

demonstrated) could be represented in the following code fragment:

%macro distributed_process(dsn= /* data set name being distributed */,

 somevar= /* a variable that might be required */,

 groups= /* number of groups into which to divide data set for parallel

 processing */);

%local obs i low high;

proc sql noprint;

 select count(*) format=15. into :obs from &dsn;

quit;

%make_groups(obs=&obs, groups=&groups);

%do i=1 %to &groups;

 %let low=%scan(&grouplist,%sysevalf(((&i-1)*2)+1),,S);

 %let high=%scan(&grouplist,%sysevalf(&i*2));

 systask command """%sysget(SASROOT)\sas.exe"" -noterminal -nosplash -sysin

 ""C:\run_some_child_process.sas"" -log ""C:\run_some_child_process&i..txt""

 -print "" C:\run_some_child_process&i..out"" -sysparm ""dsn=&dsn,

 somevar=&somevar, low=&low, high=&high""" taskname=task&i status=rc&i;

 %end;

waitfor _all_

 %do i=1 %to &groups;

 task&i

 %end;;

*do some process after completion of the four parallel child processes;

%mend;

%distributed_process(dsn=lib.dsn1, somevar=charvar1, groups=4);

Thus, the FIRSTOBS and OBS pairs, after dynamic assignment by MAKE_GROUPS, can be used with a DATA step,

FREQ procedure, or other procedure or process to input or analyze data in parallel. Figure 4 depicts the performance

advantage of this divide-and-conquer method, subsetting a data set into four equally sized data chunks.

7

Figure 4. Divide-and-Conquer Design to Remove False Dependencies of Throughput

Divide-and-conquer solutions can vary in complexity and success depending on the type of process that is involved.

For example, if Figure 4 represents the comparison between an out-of-the-box serialized SORT procedure and a divide-

and-conquer SORT procedure run on four 250 million-observation chunks, an additional process (not depicted) would

be required to aggregate the four sorted chunks into a final sorted data set. The author demonstrates a divide-and-

conquer sort in a separate text: Sorting a Bajillion Records: Conquering Scalability in a Big Data World.iii

Another example of overcoming false dependencies of throughput is illustrated in the author’s text: From FREQing

Slow to FREQing Fast: Facilitating a Four-Times-Faster FREQ with Divide-and-Conquer Parallel Processingiv. This text

introduces the FREQFAST macro that utilizes divide-and-conquer parallel data ingestion and analysis to perform a

frequency analysis more than four times faster than the out-of-the-box FREQ procedure!

Although divide-and-conquer solutions often can improve performance, they can also degrade performance due to

system resource overhead or the relative efficiency of out-of-the-box SAS functionality, especially for multithreaded

procedures. Load testing or stress testing should be employed both to demonstrate the range of file sizes for which

parallel processing provides performance improvement, as well as the range of groups (i.e., number of subset data

chunks) that optimizes performance. For example, SAS practitioners might discover that a specific divide-and-conquer

solution improves performance only for data sets larger than 1 GB and only when the number of data chunks ranges

from between four to six. Testing takes time but is essential in justifying the switch to a distributed solution and can be

essential in overcoming false dependencies of throughput.

CONCLUSION

In shifting from serialized to parallel design that removes false dependencies, the performance of SAS software can be

dramatically improved as simultaneous SAS sessions execute software in parallel and as system resources are

consumed concurrently rather than in series. With sufficient system resource availability, tremendous time savings can

be achieved. A shift from monolithic to modular software design is often required, allowing parent processes to spawn

batch child processes that asynchronously execute in parallel. Although this shift can require substantial redesign and

refactoring of software, when technical requirements or business needs specify faster software, the removal of false

dependencies through parallel design can be an effective programmatic solution to achieve these objectives.

REFERENCES

i Troy Martin Hughes. 2014. From a One-Horse to a One-Stoplight Town: A Base SAS Solution to Preventing Data
Access Collisions through the Detection and Deployment of Shared and Exclusive File Locks. Western Users of SAS
Software (WUSS). Retrieved from http://www.lexjansen.com/wuss/2014/69_Final_Paper_PDF.pdf.

ii Troy Martin Hughes. 2016. SAS Data Analytic Development: Dimensions of Software Quality. John Wiley and Sons,
Inc.

iii Troy Martin Hughes. 2016. Sorting a Bajillion Records: Conquering Scalability in a Big Data World. SAS Global
Forum. Retrieved from http://support.sas.com/resources/papers/proceedings16/11888-2016.pdf.

Serialized Data Input/Analysis Parallel Data Input/Analysis


 T
im

e
 

Time Savings!!!

http://www.lexjansen.com/wuss/2014/69_Final_Paper_PDF.pdf
http://support.sas.com/resources/papers/proceedings16/11888-2016.pdf

8

iv Troy Martin Hughes. 2017. From FREQing Slow to FREQing Fast: Facilitating a Four-Times-Faster FREQ with

Divide-and-Conquer Parallel Processing. Western Users of SAS Software (WUSS).

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

