MWSUG 2019 - Paper AL114

Deploying SAS® Viya® Docker images to the cloud - a step by step guide
Alan Zablocki, Ph.D., RedMane Technology, Chicago, IL

ABSTRACT

In this paper, we describe the steps to deploy a pre-built SAS® Viya® Docker image to the cloud. We use
Microsoft Azure as the cloud environment to deploy our single programming-only image. We explain how
to push massive Docker images to a private Azure Container Registry (ACR) and how to launch Azure
Container Instance (ACI) to host a Docker image. We also show how to share code and data between
Azure Storage and the SAS Viya Docker image, providing a complete data science working environment.
Finally, we demonstrate how to use our SAS Viya environment for machine learning with code examples
using SASPy, SAS Scripting Wrapper for Analytics Transfer (SWAT), TensorFlow and R.

INTRODUCTION

In our previous paper, “Deploying SAS Viya to Docker — a practical guide for data scientists”, we showed
how to build and deploy a local SAS Viya Docker image using sas-container-recipes, an open source
GitHub project. Our local deployment had persistent storage and support for open source data science
tools such as Jupyter Notebook, Python, and R. This enabled the local user to install additional packages
and libraries for both Python and R.

In this paper, we show how to deploy this image to the cloud using Microsoft Azure (see De Capite 2018
for a discussion on Azure and other cloud providers). We show how to tag and push large Docker images
to the Azure Container Registry (ACR), and how to create an Azure Container Instance (ACI) using Azure
CLI, a command-line tool for managing Azure resources. We discuss the differences in persistent storage
between the cloud and a local deployment, and outline the various error messages a user may encounter
while deploying a container instance.

SETTING UP YOUR AZURE CLOUD ACCOUNT

In this section, we provide a complete introduction to creating the Azure services needed to deploy a
Docker image to the cloud. We also explain the various authentication methods required for a successful
launch.

CREATING AN AZURE SUBSCRIPTION

First, you will need to create an Azure account. Once you have an account, you will need to create an
Azure subscription. This could be the free Azure subscription or a new pay-as-you-go one. If you are
using a company account, you may need an administrator to create a subscription for you, and then give
you owner permissions. To create a subscription, navigate to Subscriptions (see Figure 1).

Microsoft Azure

Home *» Subscriptions

Create a resource Subscriptions
AzurefdminRedMane
#+ Home
o add

IS Dashboard
Showing subscriptions in AzureAdminRedMane. Don't see a subscription? Switch directories

All services

My role @

* FAVORITES 8 selected
f Subscriptions Apply

Figure 1: To add a subscription, find subscriptions under the All services tab in the top left of the menu.

After creating a subscription, you will need to install the Azure CLI
AZURE CLI

Although Azure’s User Interface (Ul) makes some actions quite simple to carry out, we have found that
not all options are available through the Ul. Unfortunately, some of the missing options are needed for a
successful deployment, such as the ability to set “pull” permissions for the ACR. Follow these instructions
to install Azure CLI on RedHat, Fedora or CentOS: https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli-yum?view=azure-cli-latest.

Azure login and selecting subscriptions

Once you install the Azure CLI, log into Azure using the command az login and your Microsoft account
credentials. This will open a browser, ask you to confirm your user email and password and take you
back to the command prompt, at which point you will see a list of your subscriptions (see Figure 2).

[admin@RM-SAS-DOCKER-81 ~]% az login
Mote, we have launched a browser for you to login. For old experience with device cod
e, use "az login --use-device-code"
This tool has been deprecated, use 'gio open' instead.
See 'gio help open' for more info.
You have logged in. Now let us find all the subscriptions to which you have access...
[
{
"cloudName®: "AzureCloud",
"id": “"your first subsc number",
"ispDefault": false,
"name”: "Free Trial",
"state": "Disabled",
"tenantId”: "your first tenant id",
"user™: {
"name": "your user email",
"type": "user"

}

"cloudName®: "AzureCloud",
"id": "your second subsc number",
"ispDefault": false,
f@rame”: "some name",
"state": "Enabled",
"tenantId”: "your second tenant id",
"user™: {
"name”: "your user_email",
"type": "user"
}
}
]

Figure 2: The JSON output of the az login command will show all your subscriptions.

If you have more than one subscription, you can switch subscriptions using the az account set command.
Remove the symbols < and > and run:

az account set --subscription <your first subsc number>
CREATING AZURE SERVICES

The next two services that we will discuss can be created using the Ul as well as the Azure CLI. In this
section, we expand on the discussion in De Capite 2018, and show how to create a resource group and a

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-yum?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-yum?view=azure-cli-latest

storage account using the command line. We recommend creating a text file with all the commands and
pasting the commands in the command line as you follow this guide. You will want to set these five bash
shell variables first:

ACI SUBSCRIPTION=your first subsc number

ACI PERS RESOURCE GROUP=your_ resource_group
ACI_PERS STORAGE ACCOUNT NAME=chosenstoragename
ACI PERS SHARE NAME=chosensharename

ACR NAME=chosenregistryname

ACI PERS LOCATION=centralus

The variables above are your subscription ID, the name of your resource group, the storage account
name, the file share name in your storage account, the registry name where you will push your Docker
image and the location of all your services respectively.

Creating a resource group

To create a new resource group, set the correct subscription and run:

az account set --subscription $ACI SUBSCRIPTION
az group create SACI_PERS RESOURCE_ GROUP

Creating a storage account
To create a storage account, run:

az storage account create --resource-group $ACI PERS RESOURCE GROUP --name
SACI PERS STORAGE ACCOUNT NAME --location $ACI PERS LOCATION --sku
Standard LRS --kind StorageV2 --access-tier Hot --subscription

$SACI SUBSCRIPTION

You can modify storage kind and access tier options to match your requirements. In addition to the shell
variables set above, we also set the STORAGE_ACCOUNT and STORAGE_KEY variables. You will use
them when you set up persistent storage for your instance. Run the following code to set the necessary
variables:

STORAGE ACCOUNT=$ (az storage account list --resource-group
SACI_ PERS RESOURCE GROUP --query

"[?contains(name,'$ACI_PERS_STORAGE_ACCOUNT_NAME')].[name]" --output tsv)
STORAGE KEY=$ (az storage account keys list --resource-group

$ACI_PERS RESOURCE GROUP --account-name $STORAGE ACCOUNT --query
"[0].value" --output tsv)

Once you create the storage account, navigate to storage account settings and make sure that secure
transfer is not enabled under the Configuration options (see Figure 3).

sl sasviyastorpy3r3single - Configuration
B~ Storage acoount
—_ <<
M
- _ ~
Overview The cost of your storage account
=- Jﬂ,',:_-tivit}r |Qg !—?.E'.r.n_.m.':'_rﬂ
uM Access control (JAM) Account kind
StorageVz (general purpose v2)
& Tags
Performance
X Diagnose and solve proble... .:
W Data transfer .
* Secure transfer required @
Events (@ETED Enabled)

Figure 3: Set secure transfer to disabled under storage account settings.
Creating a file share

To create the file share where Docker will mount the folders inside the user /home directory (in our
example, cas and sasdemo), run:

az storage share create --name $SACI PERS SHARE NAME --account-name
$ACI_PERS_ STORAGE ACCOUNT NAME

If you navigate to portal.azure.com, you will now see that the resource group and the storage account
have been created, and that the storage account contains a file share.

DEPLOYING YOUR DOCKER IMAGE TO AZURE CONTAINER INSTANCES

In the previous section, we set up a subscription, a resource group and a storage account to hold the data
and code for the Docker image. In this section, we set up the ACR and we show how to push the image
to the ACR. Finally, we walk through how to deploy and launch a SAS Viya Docker image in ACI.

CREATING AN AZURE CONTAINER REGISTRY

To create a container registry, navigate to Container registries and add a registry. Ensure that you enable
the Admin user as shown in Figure 4. You will be able to launch multiple instances from a single registry
that holds your Docker image.

Home » Container registries » Create container registry

Create a resource Create container registry 1 X

Home

* Registry name
Dashboard

All services AZUrecrio

FAVORITES * Subscription
Pay-As-You-Go-Emerging-5olutions A
Subscriptions

* Resource group
Resource groups

A
i} automation Accounts Create new
Container registries * Location
Central Us W

Container instances

* Admin user @

a . L1
{ cnobie JREDC)

Figure 4: The container registry is created with the admin user enabled.

Kubernetes services

= Storage accounts

To create a registry via the Azure CLI, run:

az acr create --resource-group SACI PERS RESOURCE GROUP --name $ACR NAME --
sku Standard --admin-enabled true --location SACI_ PERS LOCATION

Note that when you create services in Azure, you may encounter errors if some of your chosen names do
not conform with the various Azure naming conventions (sometimes the symbols - and _ are allowed,
while other times, they are not).

PUSHING YOUR DOCKER IMAGES TO AZURE CONTAINER REGISTRY

Now that your container registry is set up, you will copy or push the Docker image to it. There are two
ways to push a Docker image to an ACR: using az acr login and using docker login. For large images, we
strongly advise the use of docker login over Azure CLI. When using az acr login, the authentication token
expires before the push is complete, and the push fails.

Pushing using Docker login

To push the image to the ACR, first find out the image ID of your image with the command docker
images. In our case, the image ID is 56c02aae8c9a. Next, create an alias to the fully qualified path of
your registry using the docker tag command (see
https://docs.docker.com/engine/reference/commandline/tag/ for more information). Once you have
“tagged” the registry, login using docker login. Note that the username and password for the registry are
not your Azure credentials but are instead found under Access Keys in the Settings as shown in Figure 5.
Note that our registry name (stored under the shell variable ACR_NAME) is sassinglepy3r3 and the
image name in the ACR will also be sassinglepy3r3 (indicated by the string immediately after azurecr.io/
in the docker tag command).

sassinglepy3r3 - Access keys
Container registry
- <«
Registry name
Overview
_ sassinglepy3r3
B Activity log
saa Access control (JAM) Login server
Tags sassinglepy3r3.azurecr.io
Quick start
Admin user @
Fvents (@EE Dbl)
Settings
""""""""""""""""""""""" 1 Username
Access keys ;
"""""""""""""""""""""" . sassinglepy3r3
Firewalls and virtual networks (...
& Locks
NAME PASSWORD
. Export template
password S=WPCoobk
Services
password? HWumnua

Figure 5: To push the Docker image to the registry you will need the username and password found under
Access keys tab in the container registry settings.

The complete set of commands to push your Docker image is:

docker tag 56c02aae8c9a sassinglepy3r3.azurecr.io/sassinglepy3r3
docker login sassinglepy3r3.azurecr.io
docker push sassinglepy3r3.azurecr.io/sassinglepy3r3

The push will take some time to complete, and depending on the speed of your network, can take as long
as an hour. If you need to interrupt the push for whatever reason, you can restart it. Layers that were
pushed previously will show the message “Layer already exists”. Once the push is complete, you can look
at the size of your image in the ACR Overview. The size in the ACR will be quite a bit smaller than the
size on your local machine. In Figure 6, we show the compression when uploading our single SAS Viya
image. The 25GB image on a local CentOS machine is just under 10GB in ACR.

Usage

Included in SKL Used Additional storage

100 G 9.406e 10.00as

Figure 6: The size of the Docker image is compressed from 25GB to just under 10GB in ACR.

AZURE CONTAINER INSTANCES PRE-REQUISITES

You are almost ready to create and launch your Docker instance. Before you do that however, you will
need to give permissions for the instance to pull the image from the ACR. This is not possible when using
the Ul. You will need a unique service principal for the instance you are launching and the associated
username and password. These credentials will be needed when creating the instance using the
command line.

Creating a service principal (non-optional)

To create a service principal, use the ACR name and choose a service principal name:

ACR NAME=sassinglepy3r3
SERVICE PRINCIPAL NAME=acr-service-principal-sassinglepy3r3

Although you can use the same image to set up separate instances (use the same shell variable
ACR_NAME), make sure that for each new instance you create, you use a unique
SERVICE_PRINCIPAL_NAME. If you do not you might see a message about an existing application
instance, and that it will be patched. This can lead to you being unable to restart a previous instance that
was set up with that same SERVICE_PRINCIPAL_NAME.

To create the authentication variables, run:

ACR_REGISTRY ID=$(az acr show --name $ACR NAME --query id --output tsv)
SP_PASSWD=$ (az ad sp create-for-rbac --name http://$SERVICE PRINCIPAL NAME
--scopes SACR REGISTRY ID --role acrpull --query password --output tsv)

SP APP ID=$(az ad sp show --id http://$SERVICE_ PRINCIPAL NAME --query appld
--output tsv)

=sassinglepy3r3

Notice that --role is set to acrpull which grants pull only permissions. Other options are acrpush (push and
pull permissions) and owner (push, pull and assign roles).

Creating the instance

To create a container instance, you will need the previous shell variables and the following information:
e --name : instance name (this can to be anything)

e --image : full address of the registry including the name after the forward slash (/)

e --ip-address : set to Public

e --ports: list of ports, currently maximum of 5 (see comments below)

e --dns-name-label : this will create the fully qualified domain name (FQDN)

e --cpu: number of CPUs

e --memory : RAM in GB

e --0s-type : must be Linux

e --azure-file-mount-path : The directory in the Docker container that will map to our file share

Unfortunately, ACI does not currently support port mapping, and it only supports a maximum of 5 ports. At
the time of writing, the sas-container-recipes project may have changed the default Jupyter port from
8888 to 8080, so this may free up a port. Until this is confirmed you can choose to launch your image with
port 5570, allowing the use of CAS, or launch with port 8787, the default RStudio-server port.

To launch an instance with CAS port 5570, use:

az container create --resource-group $ACI PERS RESOURCE GROUP --name
sassinglepy3r3 --image sassinglepy3r3.azurecr.io/sassinglepy3r3 —--ip-
address Public --ports 8080 5570 8888 20 443 80 --protocol TCP --dns-name-—

label sassinglepy3r3 --cpu 4 --memory 16 --os-type Linux --registry-
username $SP_APP ID --registry-password $SP_PASSWD --registry-login-server
sassinglepy3r3.azurecr.io --azure-file-volume-account-name
SACI_PERS STORAGE ACCOUNT NAME --azure-file-volume-account-key $STORAGE KEY
-—azure-file-volume-share-name $ACI PERS SHARE NAME --azure-file-volume-
mount-path /home/

To launch an instance with port 8787, use:

az container create --resource-group $ACI PERS RESOURCE GROUP --name
sassinglepy3r3 --image sassinglepy3r3.azurecr.io/sassinglepy3r3 —--ip-
address Public --ports 8080 8787 8888 20 443 80 --protocol TCP --dns-name-—
label sassinglepy3r3 --cpu 4 --memory 16 --os-type Linux --registry-
username $SP_APP ID --registry-password $SP_PASSWD --registry-login-server
sassinglepy3r3.azurecr.io --azure-file-volume-account-name
SACI_PERS STORAGE ACCOUNT NAME --azure-file-volume-account-key $STORAGE KEY
--—azure-file-volume-share-name $ACI PERS SHARE NAME --azure-file-volume-
mount-path /home/

The command prompt will show the message Starting, followed by Running. After a few minutes, you
should be able to see the new instance listed in the Ul under container instances (see Figure 7). If your
new instance is not showing, check the terminal for any error messages.

Container instances

AzureAdminRedMane

o= Add EE Edit columns Q) Refresh ¢

Subscriptions: All 2 selected — Don't see a subscription? Open Directory + Subscription seftings

Filter by name... All subscriptions e All resource groups s All locations
3 items
NAME RESOURCE GROUP LOCATION STATUS 05 TYPE
i sasdemodcp SASViya_Docker Central US Failed Linwx
i’ sassinglepy3ricas SASViya_Docker Central US Running Linwx
il sassinglepy3r3 SASViya_Docker Central US Creating Linwx

Figure 7: The container instance list, showing the instance we are creating, an instance that is currently
running, and an instance with a failed status, which was stopped normally. The Ul need not always show the
correct or most recent status (even if you hit refresh).

Once the instance is created, a JSON output will appear in the command line with various instance
properties, such as IP address and ports. If you click on the instance name (see Figure 7), you will be
taken to the overview panel, where you can see its status and any warning messages as well as RAM,
CPU and network traffic plots for the instance.

In our experience the Ul may show a status that is often misleading, such as failed or repairing. It is
typical to see a warning message such as the one shown in Figure 8. In this case, the instance creation is
proceeding normally, but because pulling such a large Docker image takes time, the service returns a
“waiting state and may not be running” message. Common instance states are waiting and repairing
when the image pull is attempted. The state failed shows up often as well despite the creation proceeding
normally. Clicking on the warning message takes you to a list of actions or events in the container
instance creation.

sassinglepy3r3
WP Coe o

o ‘ « Q! Restart M Stop [Delste) Refresh
4
. One or more of the containers in ‘sassinglepy3r3’ are in a "Waiting' state and may not be running. Click here to view container statuses.

W Overview
B Activity log Resource group (change) : SASViya_Docker 0S type : Linux

. Status . Creating IP address 1 52.242,214.13
s Access control (1AM)

Location © Central US FQDM : sassinglepy3r3.centralus.azurecontainer.io
& Tags
g Subscription (change) : Pay-As-You-Go-Emerging-Solutions Container count : 1

Smmgs Sllbscrlptlom P _

% Containers Tags (change) i Click here to add tags

Figure 8: Overview panel showing the correct status for newly created instance. A warning message about
waiting containers can be confusing at times.

Quite frequently the image pull may fail, and it can take a few attempts before the pull succeeds and the
container starts running. It is not unusual to see counts for the image pull as high as 5-10. In Figure 9, we
show the instance events with just a single image pull, before the instance starts running.

. sassinglepy3r3 - Containers
Container instances
o « O Refresh
@ Overview 1 container
B Activity log NAME IMAGE STATE PREVIOUS STATE START TIME RESTART COUNT
i Access control (JAM) sassinglepy3r3 sassinglepy3r3.azurecrio/... Running - 2019-07-11T17:59:19Z 0
& Tags
Settings
= Containers
Identity Events Properties Logs Connect
Properties Display time zone (®) Local time (_) UTC
ﬂ Locks
NAME TYPE FIRST TIMESTAMP LAST TIMESTAMP L MESSAGE COUNT
2 Export template
Started Normal 7/11/2019, 12:59 PM CDT 7/11/2019, 12:39 PM CDT Started container 1
Monitoring
Pulled MNormal 741172019, 12:58 PM CDT 7/11/20189, 12:59 PM CDOT Successfully pulled image ".. 1
Alerts
At Created MNormal 771172019, 12:58 PM CDT 7/11/2019, 12:59 PM COT Created container 1
ilil Metrics (preview)
Pulling Narmal 7/11/2019, 12:43 PM CDT 7/11/2019, 12:43 PM COT pulling image "sassinglepy... 1
Support + troubleshooting

Figure 9: Container instance events, with a single image pull required to start our instance. Frequently, it can
take 5-10 pulls before the instance starts running.

Another useful way to check the true status of the instance launch is with the Azure CLI command az
container show. To check the status of an instance run:

az container show --resource-group $ACI PERS RESOURCE GROUP --name
$SACR NAME --output table

New instances will show a status of pending, which will change to running once launched (see Figure 10).

[admin@RM-SAS-DOCKER-01 ~]$ az container show --resource-group SASViya Docker --name sas
singlepy3r3 --output table

Name ResourceGroup Status Image IP:
Jports Network CPU/Memory 0sType Location

sassinglepy3r3 SASViya Docker Running sassinglepy3r3.azurecr.io/sassinglepy3r3 52.
242.214.13:8080,5570,8888,20,443,80 Public 4.0 core/16.8 gb Linux centralus
[admin@RM-SAS-DOCKER-81 ~]1%

Figure 10: Instance status, including the number of CPUs, the amount of RAM, IP address and ports.

Finally, you can also use the CPU and Memory plots in the instance overview panel to see if the instance
launched correctly. Once the instance is up and running (and reachable), you will see a characteristic
step in the memory usage indicating a running Docker container. The memory usage should be between
1-3GB for a freshly launched image as shown in Figure 11.

o sassinglepy3r3
fommnansEecE
- « Q Restart M stop @ Delete | () Refresh !
-~ O
Resource group (change) : SASViya_Docker QS type ¢ Linux
i’ Overview group o) C P
Status ¢ Running IP address 1 52.242.214.13
B Activity log . .
Location : Central US FODN : sassinglepy3r3.centralus.azurecontainer.io
.
@M Access contral (IAM) Subscription (change) : Pay-As-You-Go-Emerging-Solutions Container count : 1
’ oo supserption 0 _
Settings Tags (change) ¢ Click here to add tags
%, Containers
Identity
CPU b Memory =2
Properties
ﬂ Locks 380
368
- Export template 300
GE
Monitoring - 2GB
Alerts o 15GE
ilil Metrics (preview) 100 1GE
ME
Support + troubleshooting
0 L}
New suppaort request 1245 PM 1PM 115 PM 130 PM 1245 PM 1PM 115 PM 130 PM
CPU Usage [Aug) Memary Usage [Ava)
sassinglepy3:3 sassinglepy 3l
21.78 1.86ce

Figure 11: Instance overview, showing the step-like increase in RAM indicating a running Docker container.

Although the above image launched very quickly (15-20 minutes), it can take up to 90 minutes. The most
frequent reason for the delay is the initial image pull. If the IP address is not reachable after 90 minutes,
try restarting the instance in the UlI.

Credentials summary

To ensure a successful deployment, you will need to use three separate sets of credentials:

e First, log into Azure with Microsoft Account credentials using az login

e Second, to push the image, use the username and access key for the ACR using docker login

e Third, use a service principal with its own username(id) and password for the instance to pull the
image from ACR

INSTANCE COSTS

Based on our instance, the daily cost for keeping an instance is about $8. It costs roughly $6 per day to
run the instance, with an additional $2 per day coming from ACR and the Storage account. One way to

minimize these costs, is to use scheduling automation runbooks that can stop and start instances during
working hours, yielding a savings of around 60%.

ERRORS AND UNUSUAL BEHAVIORS

In addition to the errors outlined in the previous section, we also experienced these behaviors:

Jupyter kernel stops or does not start

In Azure, you can use the FQDN to access Jupyter without explicitly including the port. If you use
http://sassinglepy3r3.centralus.azurecontainer.io/Jupyter to launch Jupyter, the kernel will likely die or

10

never start. Instead, use the IP address while explicitly specifying the port 8888, as in http://<ip-
address>:8888/Jupyter. A recent change in the sas-container-recipes GitHub project may mean that
Jupyter is now accessible on port 8080. This means that the FQDN address for Jupyter may work, while
previously, the kernel would crash.

Persistent storage location changes for Jupyter Notebook folder

In our previous paper, “Deploying SAS Viya to Docker — a practical guide for data scientists”, we
deployed a local SAS Viya Docker image. In that Docker image, the sasdemo user had the default folder
for Jupyter Notebooks set to /home/sasdemo/jupyter. When we deployed to Azure, Jupyter notebooks
were saved under /home/cas/jupyter instead. As a result, user saved packages for R and Python were
saved in two different folders.

USING YOUR DATA SCIENCE ENVIRONMENT

With your SAS Viya Docker instance live, you can begin to use it for various data science tasks. Before
we dive into some code examples, we discuss persistent storage, libraries and kernel tests.

PERSISTENT STORAGE FOR JUPYTER NOTEBOOK

Recall that when you created your instance, you used the flag --azure-file-mount-path to map the Azure
storage file share, here called sasdockerpy3r3single, to the /home folder in the Docker image. Therefore,
the Azure file share contains two folders from the Docker /home directory, namely cas and sasdemo, as
shown in Figure 12. Anything saved to these two folders will persist, even when you stop or restart your
Azure container instance.

Home » Storage accounts * sasviyastorpy3r3single - Files » sasdockerpy3r3single

sasdockerpy3r3single

File zhare

| « W Connect T Upload +;'+dd directory O Refresh [Delete share

EX

o Backup (Preview) is not enabled for this file share. Click here to enable backup.

Overview
s Access Control (IAM) Location: sasdockerpy3r3single
Settings »

Access policy MAME

Properties cas

sasdemo

Figure 12: The Azure file share holds the contents of the Docker image /home directory.

The default directory for your Azure Docker instance, where Jupyter stores notebooks is cas/jupyter/ as
shown in Figure 13. This is different from a local deployment, where the default directory was
sasdemol/jupyter. The file share corresponds to the user’s /nome folder. Any Jupyter notebook-regardless
of kernel-will be saved under /cas/jupyter.

11

Home > Storage accounts > sasviyastorpy3r3single - Files » sasdockerpy3r3single

sasdockerpy3r3single
File

0 « T Upload =+ add directory) Refresh @ Delete directory := Properties
Overview o Backup (Preview) is not enabled for this file share. Click here to enable backup.
s Access Control (AM) Location: sasdockerpy3r3single / cas / jupyter
Settings R
Access policy NAME TVPE
Properties []
.ipynb_checkpoints Directory
dmz_sas_single_jpy3r3_first_r_testipynb File
dmz_sas_single_jpy3r3_python_testipynb File
Jupyter_correct_8888port_test.ipynb File

Figure 13: Jupyter Notebooks are saved under cas folder instead of sasdemo when deploying in Azure.

PERSISTENT STORAGE FOR PYTHON LIBRARIES

Any library installed with pip using the --user flag, will be installed under /cas/.local/lib/python3.6/site-
packages as shown in Figure 14. We do not advise installing with pip as a root user inside the Docker
image.

Location: sasdockerpy3risingle / cas / local / lib / python3.6 / site-packages

NAME
L]
Jibs_cffi_backend
asnicrypto
asnicrypto-0.24.0.dist-info
berypt
berypt-3.1.7.dist-info
cffi

cffi-1.12.3.dist-info

cryptography

Figure 14: Python libraries installed with the flag --user persist and are saved in the cas folder.

12

PERSISTENT STORAGE FOR R LIBRARIES

The default library paths for R packages differ between RStudio and the R kernel in Jupyter. In RStudio,
the default library path is set to a local user folder (/home/sasdemo), while R sessions in Jupyter and the
bash shell use a system folder (/usr). In this section, we show how to configure Jupyter to use a local
library path, so that installed packages persist in Azure storage. In the next section, we discuss RStudio
settings.

RStudio Server

Before you can run R code in RStudio server, you will have to start the server. To do this, you will need to
exec into the image. In Azure, you can do this by navigating to containers under the instance settings and
clicking the connect tab. Choose the /bin/bash option as shown in Figure 15.

. sassinglepy3r3 - Containers

« Q) Refresh

B Overview 1 container
B Activity log NAME IMAGE STATE PREVIOUS STATE START TIME RESTART COUNT
.
i Access control (AM) sassinglepy3r3 sassinglepy3r3.azurecri.. Running - 2019-07-08T15:15:25Z 0
2 4 Tags
Settings
*+, Containers

Identity Events Properties Logs ! Connect

Properties
ﬂ Locks

~ Export template

Monitoring
Alerts
Choose Start Up Command

ilil Metrics (preview)

Support + troubleshooting ® fbinfbash) /bin/sh

New support request

Figure 15: You can exec into an Azure container instance and start services such as RStudio server under
Settings > Containers > Connect.

Once you connect to your running Docker instance (you will log in as a root user, shown by #), run the
command sudo rstudio-server start to start RStudio on port 8787. If you launched your instance with port
5570 (to allow CAS connections), you will need to either re-configure the server or launch a new instance
with port 8787 instead of port 5570. To re-configure the server, create the file /etc/rstudio/rserver.conf (if it
doesn’t already exist) and add an entry for port 8787:

www-port=5570
In the future, Azure may allow more than five ports or allow port mapping, which should make this part of

the setup easier. If you navigate to <ip-address>:8787, you should see the login screen with the default
sasdemo user and password (see Figure 16).

13

Sign in to RStudio

Username:

1 This connection is not secure. Logins entered
ra ;
here could be compromised. Learn More

View Saved Logins

Figure 16: If the RStudio server is running and port 8787 is open/available, you should see the login prompt.

Once you login to RStudio server, you will see the familiar RStudio interface where you can load libraries
and execute R code (see Figure 17). Use the .libPaths() command to show all the library paths accessible

in the R session.

R packages available

Packages in library

esquisse
gogthemes
minilI
modeltools
HLP
shinyWidgets
=slam

tm
topicmodels

Packages in library

askpass
assertthat

Console Terminal

>
> .1libPaths()

<« ¢ @ (D 52.230.228.3:8787
File Edit Code View Plots Session Build Debug Profile Tools Help
o - OCE i Go to file/function « Addins «-

‘/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.5":

Explore and Visualize Your Data Interactively
Extra Themes, Scales and Geoms for 'goplotz'
Shiny UI Widgets for Small Screens

Tools and Classes for Statistical Models
Natural Language Processing Infrastcructure
Custom Inputs Widgets for Shiny

Sparse Lightweight Arrays and Matrices

Text Mining Package

Topic Models

‘fusr/libéd4 /RS 1library’ :

Safe Password Entry for R, Git, and 55H

Easy Pre and Fost Assertions

Jobs

[1] "/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.5" "fusr/libs4/R/1library"
[3] "fusr/share/R/library"

» library()

Warning message:

In library() library f/usr/share/R/library' contains no packages

» library(topicmodels)

Figure 17: RStudio server interface accessible in the Docker container on port 8787, which must be open
when you first create the instance in Azure.

14

Note how RStudio automatically configured the path /home/sasdemo/R/x86_64-redhat-linux-gnu-
library/3.5 to store R packages. This is the path that you need to add to a Jupyter R session.

Configuring Jupyter Notebook R kernel

By default, an R session in Jupyter Notebook can only access two library paths (see Figure 18). The path
set by RStudio is not yet available. To fix this, add a .Rprofile file to the /home/cas folder in the Docker

- Jupyter New Rkernel test Last Checkpoint: 10 minutes ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help
+ = A 0B 4 ¥ HEun B C W Code .
In [1]:| .libPaths{}) # when you remove from cas .Rprofile file

YusrlibB4/Rilibrary' fusrishare/R/library’'

Figure 18: The default library paths when you first launch Jupyter with IRkernel.

image. You can do this by either uploading the file to the cas folder in the Azure file share or by logging
into the image and opening a new file with a text editor (e.g., vi .Rprofile) and typing:

.libPaths ("/home/sasdemo/R/x86 64-redhat-linux-gnu-library/3.5")

Remember to make sure that the path corresponds to your system and your version of R. In this paper,
we use R version 3.5. Save the file and restart the R kernel. Running the .libPaths() command should
now return the same three libraries that we saw when we used RStudio server. It's worth noting that in a
local deployment, the .Rprofile file was in the /home/sasdemo folder, and not /home/cas. This is due to
the directory swap we described in Persistent storage location changes for Jupyter Notebook folder.

’ JUpyter New_Rkernel_test Last Checkpoint: 29 minutes ago (unsaved changes) R
File Edit View Insert Cell Kermel Widgets Help Trusted & |R O
+ = @A B 4+ ¥ MHRun B C W Code -
In [1]: | .1ibPaths() # when you remove .Rprofile file from /home/cas/ the first library will not show

'/nome/sasdemo/R/x66_64-redhat-linux-gnu-library/3.2' usrflibb4/R/ibrary’ ‘usr/share/R/library'

In [3]: | library(caret)
library(esgquisse)
In [4]: library(topicmndels)

Error in library(topicmodels): there is no package called “topicmodels”
Traceback:

1. library(topicmodels)
2. stop(txt, domain = NA)

In [5]: install.packages("topicmodels") # this can take a while
Installing package into ‘/home/sasdemo/R/x86_ 64-redhat-linux-gnu-library/3.5"

(as "lib" is unspecified)
alsc installing the dependencies 'NLE’, 'modeltools’, ‘slam’, ‘tm"

In [6]: library(topicmodels |

Figure 19: Library paths now include the local library folder, if you use the .Rprofile file in the cas folder.

15

With the local path now available you can load packages that are installed in any of the three libraries,
and you can install new packages, such as topicmodels, as shown in Figure 19.

If you did not install RStudio server or if the server is not available in your instance due to port settings,
you should see a prompt from Jupyter about setting a local path when you attempt to install a new
package. You should see the option to set the exact same folder path as we saw with RStudio, namely
/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.5. If you are not given this option, you can create
your own folder (for example sasdemo/my_libs/R/x86_64-redhat-linux-gnu-library/3.5) and use that path
in the .Rprofile file instead.

DATA SCIENCE EXAMPLES

In this section, we demonstrate how to use your SAS Viya environment for data analytics and machine
learning with short code examples using SASPy, SAS Scripting Wrapper for Analytics Transfer (SWAT),
TensorFlow, and R.

SAS code in SAS Studio

To access SAS Studio, use the IP address found in the instance overview, e.g., http://52.242.214.13/ or
the FQDN, which is http://sassinglepy3r3.centralus.azurecontainer.io/ in our example (see Figure 20).

&« c @ (D) 52.242.214.13

SAS Viya Programming Docker Container

Access the software by browsing to:
* /SASStudio
using HTTP on port 80.

If port 80 1s forwarded to a different port on the host machine, use the host port instead.

Use the sasdemo / sasdemo login to access SAS Studio and CAS.

Figure 20: Welcome page with an access link to SAS Studio.

To log into a SAS Viya session, click the link on the access page or go to http://52.242.214.13/SASStudio
(see Figure 21).

16

http://sassinglepy3r3.centralus.azurecontainer.io/

Sign In to SAS®

User ID:

sasdem ol

Password:

aeaaaad
(] Remember my user ID

Sign In

THE
POWER
B TO KNOW

Figure 21: SAS login screen.

Once logged in, you can start coding in SAS (see Figure 22). Since you configured persistent storage,
your data and code will be accessible through Azure Storage.

&« c ‘@‘ @ sassinglepy3r3.centralus.azurecontainer.io/5ASStudio/main?locale=en_US&zone=GMT-05%253A00
SAS® Studio
~ Server Files and Folders [*test_sasStudio_cars.sas x
L."' v [%] CODE LOG RESULTS
i+ [Folder Shortcuts * H & 2 & 9 i ® % M WE
4 [Files (/) proc print data = sashelp.cars(obs=5);run;
3 bin
. proc sgplot data=sashelp.cars ;
> i boot heatmap x=msrp y=horsepower;;
- [l dev run;
I [l etc
4 [l home
> [l cas
I B sasdemo

Figure 22: SAS code example using SAS Studio.

Licensed SAS products can be found under the Task and Utilities menu, where for example, you can
access SAS Viya Supervised Learning methods such as Linear Regression (see Figure 23).

17

SAS® Studio

» Server Files and Folders

« Tasks and Utilities
4~ B O
BE My Tasks
4 I8 Tasks
b 8 Data
b I8 Graph
i Jj8 Combinatorics and Probability
b I8 Statistics
b I8 High-Performance Statistics
b 8 Power and Sample Size
b 18 Multivariate Analysis
b 8 Cluster Analysis
b 8 Econometrics
b I8 Forecasting
i Ji8 Metwork Optimization
b 8 SAS Viya Prepare and Explore
b 18 SAS Viya Unsupervised Learning
4 Lﬂ SAS Viya Supervised Learning
:# Linear Regression
lii Logistic Regression
|V Generalized Linear Models
|# Partial Least Squares Regression
|5 Quantile Regression
{3, Decision Tree
> Neural Network
&%, Forest
&% Gradient Boosting
Factorization Machine
Suppert Vector Machine
b 8 SAS Viya Evaluate and Implement
b 1B SAS Viya Text Analytics

b 8 SAS Viya Econometrics
b 18 SAS Viya Forecasting
4 §g Utilities

|#d SAS Program

i 8 SAS Viya Network Analysis and Optimization

E Linear Regression X

Settings = Code/Results Split | L. T
' DATA MODEL SELECTION OPTIONS OUTPUT
4 DATA

~ | He

Y Filter: (none)
4 Partition Data
Input data contains training data. Include:

[] validation data
[] Testdata

4 ROLES

4 Target

*Interval target: 1 tem

4 Inputs

Interval inputs:

Nominal inputs:

Figure 23: Access to various SAS products including SAS® Visual Data Mining and Machine Learning.

SAS code in Jupyter

You can execute SAS code using the SAS kernel in Jupyter Notebook (see Figure 24), a development
environment and a visualization tool in one. This makes it easy to show code and results side by side.

18

: Jupyter test SAS kernel cars Last Checkpoint: Last Tuesday at 10:22 AM {unsaved changes)

File Edit View Insert Cell Kernel Widgets Help
B + = &A@ B 4 + HRin B C M Code | | EA

In [3]: proc print data = sashelp.cars(cbs=2);run;

Out [3]: The SAS System
Obs Make Model Type Origin | DriveTrain MSRP Invoice @ EngineSizeCylinders H
1 Acura MDX S Asia All | 536945 | $33 337 a5]
2 Acura R3X Sedan Asia Front | $23 820 §21,761 20 4
Type S
2dr

In [2]: proc sgplot data=sashelp.cars ;
heatmap x=msrp y=horsepower;;
run;

500 ™ BN

400 - 10

300

Freguency

200 -

100

%0 $30.000 $100.000 $150.000 $200.000
MSRP

Figure 24: SAS code example with SAS kernel in Jupyter Notebook.

19

Python and SASPy

SASPYy is an open source Python package that allows access to SAS datasets and products. In your SAS

Viya Docker image, it is already installed and configured for use in Jupyter Notebooks.

: Jupyter test SASPy_IRIS_data Last Checkpoint: in a few seconds (autosaved)

File Edit View Insert Cell Kernel Widgets Help

B+ = A B 4+ & MHEn B C W Code < | =

In [9]: | #import saspy
import pandas as pd
from IPython.display import HTML
sas = saspy.SASsession()

In [10]: |iris = =as.sasdata('iris', "sashelp')
iri=s.describel()

Sepal Length (mm)

Out[10

Variable Label N HNMiss Median Mean StdDev Min P25 P50 P75 Max
0 Sepallength Sepal Length (mm) 150 0 58.0 5B8.433333 8280661 43 51 530 64 79
1 SepalWidth Sepal Width (mm) 150 0 300 30573333 4358663 20 28 300 33 44
2 PetalLength Petal Length (mm) 150 0 435 37.580000 17.652982 10 16 435 31 69
3 PetalWidth Petal Width (mm) 150 0 13.0 11.993333 7.622377 1 3 130 18 25

In [11]: |iri=s.heatmap('=epallength’, "sepalwidth")
45
O
n m |||
_ 3 L
E
E
s B mE 3
[T
% ; . “
] -2
. . m
. O |
40 50 60 70 80

Figure 25: SASPy code example using Python 3.6.

When using the sashelp library, you may encounter permission issues when partitioning data for training
and testing. Although you can use custom SAS or Python code to avoid this to some extent, you can use
a simple trick to circumvent the issue if you are using SASPy. You can save any dataset from the sashelp
library and make a local copy:

iris.to _csv('/tmp/iris.csv')

iriscsv = sas.read csv('/tmp/iris.csv', 'iris csv')

now you can partition a local copy or iris with not errors
iris part = iriscsv.partition(fraction=.7, var='species')

Python and SWAT

The SAS SWAT package is an interface to the SAS Cloud Analytics Services (CAS) engine. Recall that
when we launched our Azure container instance, we specifically included port 5570, the default port for
communication with the CAS server. In Figure 26, we show how to connect to CAS with SWAT and how
to import a remote dataset into a SAS session.

- Jupyter test SWAT Azure casb570 open Last Checkpoint: 3 minutes ago (unsaved changes) ":
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3
B o+ = @ B 4+ ¢ MHRun B C W Code «| | =1
In [14]: | # super short script

import swat
import matplotlib.pyplot as plt
$matplotlib inline

conn = swat.CAS ("IN

out = conn.upload('https://

iris = out.casTable
iris.plot()

NOTE: Cloud Znalytic Services made the uploaded file available as table IRIS in caslik CRSUSER(sasdemo).
NOTE: The table IRIS has been created in caslib CRSUSER(sasdemo)} from binary data upleoaded to Cloud Rnalytic Services.

out[14]: <matplotlib.axes._subplots.kxesSubplot at O0x7faf9196ddde>

- Sepallength
SepalWidth
Petallength

—— PetalWidth

N W A e~ o
$§
=
-—_5'
A—

Figure 26: Code example showing how to connect to CAS on port 5570 using the Python SWAT package.

TensorFlow example

In this section we use Tensorflow to build a neural network to classify images from the MNIST dataset
(see https://www.tensorflow.org/tutorials for more TensorFlow examples). Since we did not install
TensorFlow during the initial image build, we can use pip to install it locally with this command:

'pip3 install --user tensorflow==1.5 --no-cache-dir

We use pip3 explicitly and we disable the cache to prevent pip from hanging. We also force TensorFlow
version 1.5, although you can choose to install the newest version. The install takes quite a bit longer
than on a local machine. It may take as long as 20 minutes. Allow the process to finish, and do not exit
the install or you might corrupt the libraries. In Figure 27, we show the system paths including the
/home/cas/.local folder, where new libraries are saved. Once the install completes, restart the kernel. You
should now be able to import tensorflow.

21

https://www.tensorflow.org/tutorials

' jupyter Jupyter_correct 8888port_test Last Checkpoint: 21 minutes ago (autosaved) [ol

File Edit View Insert Cell Kernel Widgets Help Trusted |F'-.-"hm15 (o]
B+ = & B 4 % MRin B C W Code c =
In [2]: import pandas as pd
pd.__version_
Cut[2]: '0.24.1"

import sys

sys.path

Cut[3]: ['/usr/lib&4/python3é.zip',

'/usr/1ib&4/python3. 6",

'/usr/libé4/python3.6/lib-dynlead',

.

'/home/cas/ . local/lik/python3. §/site-packages’',

'/usr/local/1ib64/python3. 6/site-packages®,

'/usr/local/lib/python3.&/site-packages”,
'/usr/1ibé4/python3. 6/site-packages",
'/usr/lib/python3.&/site-packages’',
'/usr/local/lib/python3.&/site-packages/IPython/extensions",
' /home/cas/ . ipythen']

Figure 27: Python paths, including the /home/cas/.local path where pip installs new libraries.

In Figure 28, we test our TensorFlow install by training a neural network on the MNIST dataset.

) Jupyter Tensorflow v1.5 example test Last Checkpoint 2 minutes ago {unsaved changes) ?
File Edit View Insert Cell Kernel Widgets Help Trusted | ¢ |Pv‘:ho|13 g
B+ = & B 4 ¥ WRun B C W Code v | =
In [5]: import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y test) = mnist.leoad_data()
x_train, x test = x train / 255.0, x test / 255.0

model = tf.keras.models.Sequential ([

tf.keras.layers.Flatten(input shape=
tf.keras.layers.Dense (512, activatio
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense (10, activation—tf.nn.softmax)
1)
model.compile (optimizer='adam',
loss="sparse catego

'1)

. 2B)) .
f.nn.relu),

ossentropy',
metrics=["accur

model.fit(x train, y train, epochs=3)
model.evaluate (x_test, y_test)

000/60000 [160000/60000 [1 - 16s 260us/step - loss: 0.0964
7

Epoch 3/5
§0000/600

160000/€0000 [1 - 15s 253us/step - loss: 0.08E8
- acc: 0.9

Epoch 4/5
£0000/6

160000/60000 [1 - 153 24Tus/step - loss:

=}
=
[
Iy
w

160000/60000 [1 - 15s 246us/step - loss: 0.0431

10000/10000 [110000/10000 | 1 - 1s #2us/step

Out[5]: [0.062152132305991835, 0.9812]

Figure 28: Building a small neural network using TensorFlow in the Docker instance.

22

Machine Learning with R and Jupyter Notebook

Your new data science environment comes with IRkernel, the R kernel for Jupyter Notebook. In Figure
29, we use the R package ggplot, to visualize the iris dataset. We use the repr package to resize the
ggplot output images.

: Jupyter test R kernel IRIS part2 Last Checkpoint: 18 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help
B+ = & B 4+ ¥ MR B C W Code <=
In [1]: | library(ggplotl)

In data (iris)

B

In [3]: | #summa

In [4]: librarv(repr)
options (repr.plot.width=6, repr.plot.height=4)
ggplot (data=iris, aes(x = Sepal.Length, y = Sepal.Width}) +
geom point (aes(color=Species, shape=Species)) +
xlak ("Sepal Len

yvlab("Sepal W +
ggtitle ("Sepal Length vs Width")
Sepal Length vs Width

45-

40-
= 35- Species
&S, &

setosa
= ~ A
® . 4 versicalor
% 30- A Aa AN
w Ak Ahbhmis & virginica
Y Y F Y F 3
F F » a
i Ahd
25- a oy
F 3 F Y
i A i
i
20- &
5 6 7 8

Sepal Length

Figure 29: R code example in Jupyter Notebook.

In addition to visualization, we can also train various machine learning models to predict the type of iris
species. In Figure 30, we show a minimal code example, which trains five different models and uses
cross-validation.

23

library(repr)

options (repr.plot.width=6, repr.plot.height=4)
likbrary(caret)

data (iris)

validation index <- createDataPartition(iris§Species, p=0.80, list=FALSE)
validation <- iris[-validation_ index,]

iris <- iris[validaticon_index,]

control <- trainControl (method="cv", number=10)

metric <- "Accuracy"
set.seed (1234)
fit.lda <- train(Species~., data=iris, method="1da",

set.seed (1234)

metric=metric, trControl=control)

fit.cart <- train(Species~., data=iris, method="rpart", metric=metric, trControl=control)
set.seed (1234)

fit.knn <- train(Species~., data=iris, method="knn", metric=metric, trControl=control)
set.seed (1234)

fit.svm <- train(Species~., data=iris, method="svmRadial", metric=metric, trControl=control)
set.seed (1234)

fit.rf «<- train(Species~., data=iris, method="rf", metric=metric, trControl=control)

results «<- resamples(list(lda=fit.lda, cart=fit.cart, knn=fit.knn, svm=fit.svm, rf=fit.rf})

mmmaryv (results)

predictions «- predict(fit.lda, walidation)
confusionMatrix (predictions, validatianSpecie51

Figure 30: Complete code example in R, illustrating data partitioning, training 5 machine learning models and
obtaining predictions using the caret package.

We apply our 5 models to the validation data and find that that Linear Discriminant Analysis (LDA) has the
best accuracy (97.5% accuracy), followed by the k-nearest neighbor algorithm. We achieve 100%
accuracy on validation data (see the confusion matrix in Figure 31).

predictions <- predict(fit.lda, wvalidatiomn)
confusionMatrix (predictions, wvalidation$Species)

Confusion Matrix and Statistics

Reference
Prediction setosa versicolor wirginica
setosa 10 a a
versicolozx ol 10 ol
virginica aQ aQ 10

Figure 31: Predictions for the validation data and the confusion matrix for the different classes. In this case,
we achieve perfect classification.

CONCLUSION

In this paper, we’ve shown how to deploy a single SAS Viya Docker image to the Azure cloud. We
described in detail how to set up an Azure account for Docker deployments and how to push large Docker
images to the Azure container registry. We also explained how to successfully deploy an Azure container
instance using the Azure CLI. Finally, we showed examples of using SAS, Python, and R, in the SAS
Viya data science environment. We focused on running pure SAS code in Jupyter Notebook using the
SAS kernel, accessing SAS procedures using SASPy and SWAT and using pure Python and R to
perform basic machine learning in Jupyter Notebook.

24

REFERENCES

De Capite, D. 2018. “Docker Toolkit for Data Scientists - How to Start Doing Data Science in. Minutes!”

Proceedings of SAS Global 2018 Conference, 1875-2018. Denver, CO.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1875-2018.pdf

SAS Container Recipes https://github.com/sassoftware/sas-container-recipes

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Alan Zablocki

RedMane Technology
alan_zablocki@redmane.com
www.alanzablocki.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

25

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1875-2018.pdf
https://github.com/sassoftware/sas-container-recipes

