
1

MWSUG 2019 - Paper AL-41

No Wrong Door – A case study
Jack N Shoemaker, Greensboro, NC

ABSTRACT

This is a case study of new implementation of SAS® on a Linux platform and the migration and transition of the
SAS® ecosystem to an open and flexible topology anchored by the new platform.

INTRODUCTION

The work described in this paper is based on work done at Medical Home Network (MHN) which is a
Chicago-based accountable care organization (ACO). The SAS® migration was done in the context of a
broader company initiative to broaden interoperability among various players. Briefly stated, the MHN
business model is to get pertinent and current information about health-care ‘events’ to the appropriate
health-care providers so that whatever clinical workflow applies can happen. A simple example is an
emergency-room visit which may trigger a follow-up from a care manager. The MHN model connects over
a dozen federally-qualified health clinics (FQHCs) and nearly two score associated hospitals in Cook
County. Given the heterogeneity of the transaction systems feeding the MHN ecosystem, the only way to
execute on the business model described previously is to take a ‘no-wrong-door’ approach to the data.
This means accepting data from whomever in whatever format is available. This approach has allowed
the MHN model to consume not only standard administrative and observational data, but also what are
very non-standardized sources of data for social determinants of health and other sorts of information
available in the broader health-care delivery environment. That there are no data strangers and there is
no wrong way for data users to request and analyze data was a guiding principle for this implementation
and migration.

PRIOR STATE

The prior-state configuration was simple. SAS® was installed on a Windows server. SAS® Enterprise
Guide® was installed on this same server for a defined set of users. No metadata server was created. As
shown in the diagram below, the set of defined users (noted as MDAT in the diagram) would establish a
remote desktop connection to the SAS® Windows server and do their work on that machine. There were
three ways to run SAS® programs – using the default SAS® display-manger system, using SAS®
Enterprise Guide®, or editing source code in an editor like Notepad++ or Emacs and then executing that
code in batch mode from a Windows command prompt.

When run without a metadata server running, SAS® Enterprise Guide® works like an integrated
development environment. That is, you get an editor and a way to submit code for execution. You need to
be logged into the local Windows server for this to occur because only the ‘localhost’ machine will be
available to SAS® Enterprise Guide®. Running SAS® Enterprise Guide® has several advantages not the
least of which is that there is no metadata server to administer and maintain. What you don’t get is the
ability to fire up SAS® Enterprise Guide® on any network-connected device and then connect to a server
running SAS® elsewhere on the network. For simple stand-alone implementations like the prior state at
MHN, this approach has much to recommend it as the burden of maintaining the metadata server
outweighs the benefit. SAS® Enterprise Guide® is just another local Windows application in this
configuration.

The SAS® server in the prior state was not completely isolated. As shown in the diagram below, the
server had connections to two servers hosted by a vendor shown as ‘Texture’ in the diagram. The vendor
maintained an MS\SQL-based data warehouse that provided much data to MHN. In addition, the vendor
maintained a file server that contained primary data upstream from the data warehouse. The Texture
vendor had a connection to a second vendor labeled ‘SNC’ on the diagram. Primary data from SNC was
made available to MHN by way of the Windows file server managed and maintained by the Texture
vendor.

2

Information requests in the prior state usually started with a walk-by or email request to one of the MDAT
team. They would RDP to the Windows server; do the work; and then email the results back to the
requestor. The work product was often an MS\Excel spreadsheet created by an ODS EXCEL destination.
Using the EMAIL device on a FILENAME statement allowed for direct delivery of the work product to the
requestor. This arrangement worked well but did not reflect the no-wrong-door philosophy. In fact, there
was really no door at all for the business users as they did not have (nor desire) RDP access to the SAS®
server.

10.134.1.24
Windows SAS Server

MDAT

MHN Internal Customer

PRIOR STATE

RDP

Walk-by request

Texture

PROD-DC1-SVSQL1
MS/SQL Server

10.134.1.16
Windows File Server

Email

ODBC

Windows Share

SNC

SFTP
PGP

Exhibit 1. Prior-state SAS® environment

CURRENT STATE

For current state a full-blown Office Analytics solution was deployed as shown in Exhibit 2. To simplify
administration the metadata server runs on the same physical Linux server as the SAS® application
server and object spawner. To simplify the network configuration, Linux-based authentication (what SAS®
calls DefaultAuth) was chosen in favor of integrated Windows authentication (IWA). So far, the user
burden of remembering a second set of credentials for data access has been outweighed by the benefit
of enhanced data access and visibility into the important data that the business users need to run their
operation. The spokes of the wheel are described below starting at Noon and proceeding
counterclockwise.

MHN DATA SCIENTIST

For the data scientists on staff we installed Anaconda which provides a Python kernel and an R kernel as
well as a Jupyter Notebook implementation. As part of the Anaconda installation on individual work
stations, we also installed a SAS kernel which allows for the execution of SAS jobs from within a Juypter
Notebook. Given that users have a variety of ways to run SAS®, rarely is a Jupyter Notebook used if
that’s all there is to do. More typically, users will import the SASpy package which allows the user to
reference native SAS® data sets as Python pandas. That is, these users use Anaconda to run Python
applications that use SAS® data sets.

Although not mentioned above, Jupyter Notebooks worked in the prior-state environment, though only on
the local server. That means running Anaconda from the server as opposed to the user workstation. Once

3

the effort was made to make a remote desktop connection to the server, there was little point in using
Anaconda except for the coolness factor. It is quite cool!

Exhibit 2. Current-state SAS® environment

MHN MS\EXCEL USER

Most of the business users fall into this category. That is, MHN is an MS\Office shop and MS\Excel is the
tool of choice for many users. The SAS Add-In for Microsoft Office (SASAMO) provides the connection.
SASAMO is a standard MS\Office add-in package, that is, it is a native Windows application that users
must install in order to make the SAS® add-in available. Once the add-in is available, users have three
main pathways to the data. A popular and bare-bones method is to access a SAS® data set from the
‘Data’ button on the SASAMO menu bar. Those users that are comfortable with Pivot tables often choose
to access data in that manner. The no-extra-fee-required nature of the Pivot drill-down is quite popular as
it allows the business user to grab the detail for a specific cell in the Pivot report. Most of the available
data sets contain columns suitable for classification and aggregation which fits nicely with how Pivot
tables function.

Some users prefer to load the data set details directly into a spreadsheet by applying filtering rules at the
point of import. In either case, providing this door for the business users has given the business users a
self-service capacity that they did not have in the prior state. This has allowed the MDAT team – the
SAS® experts – to focus on creating useful information rather than acting as extract clerks which was too
often the case in the prior-state model.

These two methods provide the user raw and unadorned data which is appropriate for those users with a
just-give-me-the-data attitude. These users prefer touching and handling the data directly and will
summarize and format those data as they see fit. Other users would prefer a more polished result or a
more guided filtering path. For these users, reports generated by a stored process are the answer.
Creating a stored process from an existing SAS® program is usually as simple as wrapping the source
code inside the STP begin and end macros supplied by SAS®. The facility also provides for creating
prompts and other sorts of user interaction as needed.

4

Once you have created a stored process you have the choice of storing the stored process in the
metadata server or storing the code as a file on the native file system. Storing the stored process in the
metadata server means that the stored process becomes a metadata object just like any other metadata
object in the metadata server. That means you can apply the granular security restrictions to the object if
there is a business need to do so. If you don’t have a business need for the type of security available
through the metadata server it is probably best to store the stored-procedure source code as an
operating-system file.

MHN ANALYST

This door is like current state with a couple of notable exceptions. The most important is that SAS®
Enterprise Guide® can run directly from a user’s workstation. As a native Windows application, SAS®
Enterprise Guide® can only run from a Windows device. That is, SAS® Enterprise Guide® does not work
on the Linux platform because it is a Windows application. Although SAS® Enterprise Guide® works fine
from user workstations, some users still prefer to make an RDP connection to a Windows server and then
use SAS® Enterprise Guide® from there. The main reason that users do this is that allows them to leave
their work running on the server while closing and logging off their desktop device at the end of the day.

DINOSAUR

What could be better than shelling into a Linux server, starting Emacs, and then using that environment to
write, modify, and execute SAS® programs? Although the author would answer is rhetorical question,
“Nothing”, no one else sees it this way. Notwithstanding, there are three score production jobs that run
through the cron scheduler at various points during the day, week, and month. These scheduled
production jobs are managed, monitored, and maintained from the Linux server which necessitates doing
some work from the shell prompt. (You can’t do everything in SAS®!)

A suitable workaround for many users is to use Notepad++ to edit source-code files – especially non-
SAS® source-code files like shell, Perl, and Awk scripts. Following the no-wrong-door philosophy, the
filesystems containing data and source code on the Linux server are exposed as Samba shares which
allows users to map a Windows drive letter to these shares and then reference files stored on Linux
through that mapped drive. This allows users to use Windows applications like Notepad++ on files stored
on the Linux server without the need to log into the server shell. Of course, the Samba share does
authenticate the inbound users, but this is transparent to the end user who just needs to know the share
name.

MDAT PROGRAMMER

SAS® Studio has been a welcome addition to the environment and has caught on as the user interface of
choice for the SAS® programmers. Somewhat surprisingly, SAS® Studio is also popular with some of the
business users who just want to see some data. For these users, pointing to a data set and applying a
filter gives them just what they need. It matters not that these business users are in a full-blown
programming environment. For whatever reason, the guided analysis available in SAS® Studio has not
taken root.

Unlike SAS® Enterprise Guide, SAS® Studio does not require any additional software to work. All one
needs is a browser on a device that can connect over the network to the Linux server. And that browser
need not be running on a Windows platform. This user interface is the future of SAS® due to the platform-
independent nature of the application.

SAS® Studio was not available in prior state because it connects to SAS® through the object spawner
which does not run in the stand-alone, local-server, prior-state environment. User authentication occurs
through the Linux operating system. Since DefaultAuth is used for the metadata server as well, this
means that the users have just one ‘SAS’ password to remember although that password is not
synchronized with their Windows credentials.

WINDOWS SERVERS

There are still Windows servers in the ecosystem as shown by the two servers at the bottom of the
diagram. One of these servers continues to run stand-alone, local-server SAS®. This was kept in place

5

mainly as a transition issue. That is, while the organization was migrating to a Linux-based ecology, it
helped to have the legacy Windows-only environment available. The use of SAS® on this sever has
vanished. The other Windows runs the PC Files Server service as well as some other useful non-SAS®
applications like Subversion for version control. The PC Files Server service allows SAS® applications
running on Linux to establish LIBNAME connections using the PCFILES engine. In the event, this
LIBNAME engine is rarely used in day-to-day practice. It is there if needed; however, the XLSX engine
provides cleaner and more direct access to MS\Excel spreadsheets.

Storage locations on these Windows servers are available on the Linux platform by way of CIFS mounts.
This is the reciprocal action of the Samba shares which provide Windows access to the Linux filesystems.
With these two sets of shares in place users and programmers may choose to work on whichever
environment suits their prejudices while retaining access to both platforms. As a matter of policy,
MS\Office files like MS\Excel spreadsheets are stored on one of the Windows servers while SAS® binary
files are stored on the Linux platform. Given the breath of sharing available between the two operating
systems, files and data sets may be stored in either location. Setting forth guidelines on what should be
stored where helps keeping things orderly though there was some confusion during the migration period
when users would typically use both platforms for SAS® during the day.

LEGACY CONNECTIONS TO VENDORS

The existing connections to the Texture and SNC vendors remain in place. The main difference is that the
new Linux server accesses data on the Texture file server by way of a CIFS mount instead of a Windows
share. More precisely, the Windows share is mounted to a Linux file system using the Linux mount
command and a CIFS connection type. Authentication is done using a non-user service account with
credentials stored in a hidden file that only the root account can see. Here is what a typical mount
command looks like.

mount -v -t cifs //10.134.1.16/FileServer /Texture/FileServer -o \
ro,credentials=/etc/.cifsrc.texture

Exhibit 3. Sample mount command using CIFS and hidden credentials

RESTFUL API CALLS

The last door to mention is the use of RESTful API calls to push data, to pull data, and to execute
programs on remote servers. Even in the prior-state environment there were API calls using PROC HTTP
to retrieve data from external sources. For example, here is a code fragment that pulls drug data from the
FDA.

%let FDA = www.accessdata.fda.gov/cder;

proc http
 method = “get”
 url =http://&FDA./ndctext.zip
 out = filename
;
run;

Exhibit 4. Using PROC HTTP to retrieve data from external sources

In addition to pushing and pulling data, RESTful API calls can execute programs on remote servers and
return results usually as JSON payloads. The box labeled ‘Closed Loop’ represents a new vendor that
provisions just such API calls. (MHN runs data through various models to score members and apply
appropriate clinical workflows as part of their primary mission.) What’s most interesting about this vendor
is that they would rather their customers run these models using the APIs that they have developed. To
that end, the full suite of Python-based APIs is installed in the ecosystem. This allows a data scientist to
run models directly by using the SASpy mechanism described at the beginning of this section. Thus, we
have come full circle in providing doorways into and out of the ecosystem.

6

GLOBAL CONFIGURATION

A key design consideration was that all SAS® execution environments – batch, EG, AMO, Studio – use
the same global configuration so that LIBNAMES, user-defined formats, macros, and macro symbols are
common across all.

Both the metadata server and SAS® Studio have their own autoexec files. This allows sites to customize
their environment as they see fit. For this implementation we chose to standardize everything. To do this,
the ‘usermods’ versions of the autoexec files for these two servers contains a single %include sstatement
that includes the global autoexec file. That means that there is just one configuration file to manage and
maintain. Here are some considerations on what to include in this common autoexec file.

GLOBAL SYMBOLS

It is often handy to have today’s date and other ‘special’ dates available as common macro symbols. This
encourages uniformity in coding and application. Here are some from the current-state environment.

/* current date as macro symbols */
%let _ = %sysfunc(date(), yymmdd10.);
%let __ = %sysfunc(date(), yymmddn8.);
%let RUNDATE = &__;
%let MMDDYY = %sysfunc(date(), mmddyy6.);
%let YYYYMM = %sysfunc(date(), yymmn6.);
%let MMDDYYYY = %sysfunc(date(), mmddyyn8.);

/* data and time constants */
%let EOT = %sysfunc(mdy(12, 31, 2299));
%let EODT = %sysfunc(dhms(&EOT., 0, 0, 0));
%let EXCEL_DATE_OFFSET = 21916; /* 01JAN1960 in Excel */

Exhibit 5. Date symbols in the common autoexec file

That the current date is expressed in six different formats just underscores how difficult standardization
can be. The first symbol, &_, expresses the current date in YYYY-MM-DD format which is ideal for
naming files, but no suitable if you want the date as part of a SAS® data set name. For that, the &__ is
used. The other renditions of the current date just reflect the reality of the existing code base.

ODBC DEFAULTS

ODBC connections are made through a common macro called %ODBCLibDef. When called without any
parameters, this macro creates a LIBNAME called DATAMART which points to a specific schema on the
MS\SQL server. The default values for these server details looks like this.

/* ODBC defaults */
%let SERVER = PROD-DC1-SVSQL1;
%let ODBCDSN = PROD;
%let DB = CAPDB;
%let SCHEMA = DATAMART;

Exhibit 6. ODBC default values in the common autoexec file

LIBNAMES

Defining a set of common LIBNAMES in a common autoexec file promotes standardization of data set
references. Here is a small sample from the current environment.

 libname auth "/proj2/prod/Auth/sasdata" access = readonly;
 libname claims "/proj2/prod/claims/sasdata" access = readonly;
 libname clin "/proj2/prod/Clinical/sasdata" access = readonly;
 libname elig "/proj2/prod/elig/sasdata" access = readonly;

Exhibit 7. Common LIBNAME definitions in the common autoexec file

7

GLOBAL OPTIONS

The OPTIONS statement allows you to customize MANY parts of the SAS® environment. Global options
should be just that – global and applicable to all programs. The SASAUTOS statement prepends a
directory contain user-written macros to the default SASAUTOS path. The FMTSEARCH option creates a
search path for user-defined formats in the COMMON.FORMATS and COMMON.EXTRAS catalogs.

/* standard options */
options
 sasautos = ("&CMN./programs", !SASAUTOS)
 fmtsearch = (work, common, library, common.extras)
 formchar = "|----|+|---+=|-/\<>*"
 missing = ''
 emailhost = mail.texturehealth.com
 emailport = 25
 ;
run;

Exhibit 8. Global OPTIONS in the common autoexec file

DEFAULT EMAIL ADDRESSES

There are still plenty of applications that use email to deliver files and advices. The most basic case is
that a programmer will send a file or email advice to themselves. To facilitate that common occurrence,
macro symbols for the to: and from: email fields are generated using the name of the current user. Note
that this works because as a matter of policy the user names are the same in the Windows and Linux
environments.

/* default SENDER and NOTIFY options */
%let SENDER = %str(sender = %("&SYSUSERID.@MHNChicago.org" %)
 from = %("&SYSUSERID.@MHNChicago.org" %)
 replyto = %("&SYSUSERID.@MHNChicago.org" %));
%let NOTIFY = %str(to = %("&SYSUSERID.@MHNChicago.org" %));

Exhibit 9. Default email addresses in the common autoexec file

The &SENDER and &NOTIFY symbols are used on a FILE statement associated with a FILENAME
reference using the EMAIL device type.

USER-SPECIFIC MODIFICATIONS

Users must be able to override the common autoexec as needed. To accomplish this, the last line of the
common autoexec file searches a user’s home directory for a file called ‘autoexec.sas’ and includes it if it
were found.

/* load user-specific autoexec if found */
%if %sysfunc(fileexist('$HOME/autoexec.sas')) %then %do;
 %put MHN_NOTE: Now loading user autoexec [%sysget(HOME)/autoexec.sas];
 %include '$HOME/autoexec.sas';
 %end;

Exhibit 10. Enabling user-specific modifications in the common autoexec file

CONCLUSION

Over the past three score decades, information-processing technology has become more powerful and
ubiquitous. This has changed not only how quickly we can turn around data-analysis tasks but also how
we think about approaching those tasks in the first place. User acceptance to any tool or technique is
inversely proportional to the amount of re-learning or change is involved. As we become ever more
interconnected, the data-sharing demands increase. Given that there are multiple ways for data

8

publishers to surface data and that there are multiple ways that business users want to use and
manipulate those data, a no-wrong-door approach ensures that there are no data strangers in the
ecosystem. This short essay describes one case example of making this a reality at an organization that
embraces interoperability as a necessary and core competency.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jack N Shoemaker
Greensboro, NC
jack.shoemaker@gmail.com

