
1

MWSUG 2018 - Paper AA117

An Introduction to the Process of Improving a Neural Network

YuTing Tian , M.S. Statistics, WCU PA

ABSTRACT

The top-level goal of this paper is to lay out a process for building a neural network in SAS®. It is hoped
that a reader can use the process, shown in this paper, as a template for building a Deep Neural Network.
A lower level goal is to build a network that can outperform a network in a paper by one of my professors.

Deep learning is a kind of neural network and a specific kind of machine learning (e.g. artificial
intelligence). Deep learning is a recent and powerful machine learning algorithm that enables a computer
to build a multi-layer non-linear model.

Even though deep neural networks are popular, not many papers discuss the overall process of building a
neural network in SAS. This paper explores a practical application, associated with the process of deep
neural network in SAS Enterprise Miner.

INTRODUCTION

This paper is divided into the following 9 sections. These correspond to the steps in our suggested
process build a neural network.

Section 1) A brief review of model history

Section 2) Clean/trim variables using the replacement tab

Section 3) Impute missing values with tree based replacement logic using the impute tab

Section 4) Select non-redundant variables using the variable clustering tab in SAS Enterprise Miner

Section 5) Select predicting variables using the variable selection tab in SAS Enterprise Miner

Section 6) Build 22 different Neural Network models using the AutoNeural node to evaluate many
different structures and transform functions.

Section 7) Use PROC Neural to train one deep-learning feedforward neural network using a structure that
we thought would be effective.

Section 8) Use a decision tree to create a benchmark for comparison.

Section 9) Model Comparison node

SECTION 1) A BRIEF REVIEW OF MODEL HISTORY

A consumer credit company
wants to take over the
process for approval of loans
and to automate the approval
process. In order to attain
this target, we use the Home
Equity dataset, which
contains 5960 observations
recording re-payment. The
target (Y) is BAD (a binary
variable), indicating whether
an applicant paid a loan or
was delinquent. For each
applicant, 12 input (X)
variables were recorded.

Figure 1

2

The loan approval model will create a probability of a given loan applicant defaulting loan repayment. A
threshold will be selected such that all loan applications whose probability of default is in excess of the
threshold will be recommended for rejection.

SAS Enterprise Miner has been a proven data mining workbench for many years. Using it, an analyst,
can create models, assess models, and create the scoring code for a “final” model. SAS Enterprise Miner
is a very convenient and quick method to perform the process of creating a neural network and using
SAS Enterprise Miner can significantly reduce development costs when compared to a process of
modeling using the SAS display manager. The diagram of our process is shown in in Figure 2, below:

Figure 2

In Figure 2, object one brings data into SAS Enterprise Miner.

Object two is a replacement node and in this node we reduced the impact of outliers by replacing their
high values with the upper limit of “normal activity”.

Object three is an impute node and we used this to replace missing values.

Object four is variable clustering and we used this tab to identify redundant variables. We use this tab as
a benchmark to judge the reasonableness of the results of the variable selection node.

Object five is the variable selection tab and we used this powerful SAS functionality to identify variables
that seem to predict y. The node, automatically, does several sophisticated techniques like creating all
possible interaction terms and optimal binning before testing to see if variables are likely to predict Y.

Object six is a partition node. We use this note to split the data into train, validate and test. The ratio
was .5, .25 and .25. We split the data after we had finished replacing missing values and transforming to
assure that the three partition datasets contained very similar data and were created using identical
business rules.

Object seven is the transform tab, which is not part of the main flow of data. We used this node to rename
the variables before sending them into a decision tree. The default names, produced by the variable
selection tab were so long that they could not be displayed in a decision tree. We use this node to shorten
the variable names so that the names fit well on axis of graphs.

Object eight identifies the 22 different auto neural nodes that we ran. One auto neural will identify many
different structures and transform functions , then select the best one. In the auto neural tab, to some
extent, a particular auto neural analyses a particular network structure.

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9

1

10

11

3

Object nine is a data export node. We use that because we want to build a deep neural network in the
display manager – not in SAS Enterprise Miner.

Object ten is a decision tree. It is good to create many different models and let them compete.
Competition will allow us to find the solution that saves the company the most amount of money. The
author feels that SAS Enterprise Miner is an incredible tool and adding analysis options is fast and easy.

Object eleven is a model comparison node. This is an incredibly convenient feature in SAS Eterprise
Miner and allows us to compare different types of models and to rank them by their predictive ability. The
deep neural net that we did by hand will not be compared using this node. We will calculate the
performance metrics for our deep neural net by hand and “merge” that result in the SAS Enterprise Miner
model comparison output.

SECTION 2) CLEAN VARIABLES USING THE REPLACEMENT NODE

We used the replacement node to interactively specify replacement values for class and
interval levels and to reassign some specified non-missing values before performing imputation
calculations for the missing value.

For each variable in this dataset, the process of this step is to trim the right side of the distribution to
create a tighter, more centralized distribution, and replace all the values over the “upper limit bounds” with
an upper limit value.

The CLAGE (see right) represents age of oldest
credit account in months.

In this example, we trim the right edge of the
distribution when value equals to 492, then we
will replace all values in the outliers of the
distribution (values > 492) with the upper limited
value 492. Although the point about 492 is far
away from the middle of the distribution, but
there are almost 200 applicants’ value is 492. So
we assume this point is probably to have an
important impact on BAD.

The CLNO (see above) represents the number of
credit accounts.

For CLNO, we trim the right edge of the
distribution when value equals to 53. We will
replace all outliers of the distribution (values >
53) with the upper limited value 53.

The DEBTINC (see above) represents debt-to-
income ratio

We trim values greater than 75 and we will replace
all values above 75 with a 75. Look at the point
74.18. It is far away from the distribution, but
almost 150 applicants have a debt-to–income ratio
close to 74.18. It probably has an important effect
on BAD prediction, so we will keep this special
value in the dataset.

4

The DEROG (see above) represents the number
of major derogatory reports

For DEROG, we trim the right edge of the
distribution when value is equal to 3, we will
replace all values in the outliers of (values > 3)
with the upper limited value 3.

The LOAN (see above) represents amount of the
loan requests.

For LOAN, we trim the right edge of the distribution
when value equals 50,500. We will replace all
values greater than 50,500 with an upper limit
value 50,500.

The MORTDUE (see above) represents amount
of the loan due on an existing mortgage

For MORTDUE, we trim the right edge of the
distribution when value equals to 250,437. We
will replace all values greater than 250,437 with
the upper limited value 250,437.

The NINQ (see above) represents number of
recent credit inquiries

For NINQ, we trim the right edge of the distribution
when value equals to 5. We will replace all values
greater than 5 with a 5.

The VALUE (see above) represents the value of
current property

For VALUE, we trim the right edge of the
distribution when value equals to 340,000. We
will replace values greater than 340,000 with a
value 340,000.

The YOJ (see above) represents year at present job

For YOJ, we trim the right edge of the distribution. We
will replace all values greater than 32 a 32.

Figure 3

5

SECTION 3) IMPUTE MISSING VALUES USING TREE BASED REPLACEMENT LOGIC

Figure 4 shows how SAS handled the class variables.
The impute tab, in SAS Enterprise Miner, that imputes
missing values has an incredibly convenient feature.

It allows an analyst to have SAS Enterprise Miner,
automatically, create a decision tree to predict missing
values.

Anyone who’s had to introduce inaccuracy in an X
variable by replacing missing values with a simple
mean will appreciate this feature.

Anyone who’s had to build ANCOVA models to predict
missing values will appreciate this feature. It’s very fast
and saves many person-hours.

We would like to impute the reasonable values for
observations that have a missing value. Many
modeling techniques will discard a complete row of
data if one of the variables in the model has a missing
value.

The fact that SAS Enterprise Miner will build a separate
decision tree to impute missing values for each of the X
variables that have missing values is a great timesaver
and increases the number of observations that we can
use in the model.

Figure 4

SECTION 4) SELECT NON-REDUNDANT VARIABLES USING THE VARIABLE
CLUSTERING TAB IN SAS ENTERPRISE MINER

Every modeler operating in the age of big data encounters two problems. When a data has many
columns the raw data contains X variables that have two types of problems.

Some of the possible X variables are redundant with other X variables. They should be removed before
the modeling process starts because they introduce multicollinearity, increase the run time, and violate
our goal of parsimony.

The other problem is that some of the X variables are not likely to help us predict Y.

Every modeling process should have two explicit steps. The first step should be an attempt to remove
redundant variables and we will do that using the variable clustering TAB and enterprise Miner and our
own intuition. The second step is to remove non-predicting X variables and we will do that in Section 5
using the variable selection node.

There is a step that is not on the flowchart because it is manual. We expect an analyst will take a look at
the output from the variable clustering and see which of those variables are selected by SAS as part of
the variable selection process. There’s nothing very formal about this comparison, it is just a “sniff test”.

6

The figures above give some idea of how SAS clusters the variables and which variables SAS considers
to be close to each other (multi-collinear).

Figure 5

The figure below shows the details of how SAS selects variables from clusters. It looks for variables that
are highly correlated with variables that are in its own cluster and uncorrelated with variables in other
clusters. To come up with a solution, this tab implements a very complicated algorithm involving an
iterative process.

The final table is shown below and the selected variables are highlighted in yellow.

 R-squared with

7 Clusters ------------------

 Own Next 1-R**2 Variable

Cluster Variable Cluster Closest Ratio Label

--

Cluster 1 IMP_REP_MORTDUE 0.8350 0.0943 0.1822 Imputed: Replacement: MORTDUE

 IMP_REP_VALUE 0.8967 0.0857 0.1130 Imputed: Replacement: VALUE

 REP_LOAN 0.2994 0.0241 0.7179 Replacement: LOAN

Cluster 2 IMP_REP_JOBSales 0.0147 0.0072 0.9924 IMP_REP_JOB=Sales

 IMP_REP_JOBSelf 0.0877 0.0295 0.9400 IMP_REP_JOB=Self

 IMP_REP_REASONDebtCon 0.9760 0.0102 0.0243 IMP_REP_REASON=DebtCon

 IMP_REP_REASONHomeImp 0.9760 0.0102 0.0243 IMP_REP_REASON=HomeImp

Cluster 3 IMP_REP_JOBOffice 0.6964 0.0330 0.3139 IMP_REP_JOB=Office

 IMP_REP_JOBOther 0.6964 0.0912 0.3340 IMP_REP_JOB=Other

Cluster 4 IMP_REP_DEROG 0.4510 0.0521 0.5792 Imputed: Replacement: DEROG

 IMP_REP_NINQ 0.4884 0.0235 0.5239 Imputed: Replacement: NINQ

 IMP_REP_YOJ 0.3102 0.0185 0.7028 Imputed: Replacement: YOJ

Cluster 5 IMP_REP_DELINQ 0.5315 0.0336 0.4848 Imputed: Replacement: DELINQ

 IMP_REP_JOBMgr 0.5315 0.0301 0.4831 IMP_REP_JOB=Mgr

Cluster 6 IMP_REP_DEBTINC 0.5562 0.0347 0.4597 Imputed: Replacement: DEBTINC

 IMP_REP_JOBProfExe 0.5562 0.0547 0.4695 IMP_REP_JOB=ProfExe

Cluster 7 IMP_REP_CLAGE 0.6151 0.0431 0.4022 Imputed: Replacement: CLAGE

 IMP_REP_CLNO 0.6151 0.1144 0.4346 Imputed: Replacement: CLNO

Figure 6

7

SECTION 5) SELECT PREDICTING VARIABLES USING THE VARIABLE SELECTION TAB
IN SAS ENTERPRISE MINER

Figure 7

The DMINE Procedure

 Effects Chosen for Target: REP_BAD

 Sum of Error Mean

Effect DF R-Square F Value p-Value Squares Square

Var: IMP_REP_DELINQ 1 0.113895 765.810689 <.0001 108.405410 0.141556

Var: IMP_REP_CLAGE 1 0.036860 258.550645 <.0001 35.082946 0.135691

Var: IMP_REP_DEROG 1 0.015647 111.798362 <.0001 14.893005 0.133213

Var: IMP_REP_DEBTINC 1 0.015369 111.852643 <.0001 14.627981 0.130779

Group:IMP_REP_JOB*IMP_REP_REASON 6 0.014155 17.454984 <.0001 13.473101 0.128646

Var: IMP_REP_NINQ 1 0.007339 54.786202 <.0001 6.984883 0.127493

Group:IMP_REP_JOB 2 0.001873 7.005678 0.0009 1.782756 0.127237

Var: REP_LOAN 1 0.001696 12.709266 0.0004 1.613905 0.126986

Figure 8

The variable selection node has a three-step process it applies as it decides whether a variable is likely to

predict Y. You can select from several stopping criteria and we used R-Square. If the Y variable is

continuous, SAS only does the first two of the steps listed below.

Step One: SAS Enterprise Miner computes the squared correlation between each variable with the Y
variable and rejects variables that have a value less than a minimum R squared.

Step Two: SAS Enterprise Miner uses a forward stepwise regression, using R squared is the criteria to
determine the importance of variables in a future model. SAS, automatically, creates interactions and can
create dummy variables. This is a very convenient, and powerful, node. The fact that other SAS tabs,
downstream in our process flow, recognizes the results of this tab makes it very convenient and a large
timesaver.

Step Three: If the Y variable is binary, SAS Enterprise Miner will perform a logistic regression, with
dynamic binning, as a final step in the process of identifying good predictors.

At this time, the author ran a decision tree just to see what a different algorithm would suggest as
important variables for predicting our Y. We will discuss the results of that decision tree later in the paper
but think a reader, at this time, might like to see what the decision tree considered to be important
variables.

8

Important variables as determined by different techniques

variable clustering variable selection
(in order of importance)

decision tree

IMP_REP_CLAGE IMP_REP_CLAGE X_DelInq (importance=1)

 IMP_REP_DEROG X_DebtInc (importance=2)

 IMP_REP_DEBTINC X_DEROG(importance=3)

IMP_REP_REASON_DEBTCON IMP_REP_JOB*IMP_REP_RE
ASON

X_Clage (importance=4)

 IMP_REP_NINQ X_NINQ(importance=5)

IMP_REP_JOB_PROFEXE

IMP_REP_JOBOFFICE

INP_REP_JOB_MGR

IMP_REP_JOB X_ClNO (importance=6)

 REP_LOAN X_MORTDUE(importance=7)

IMP_REP_VALUE X_LOAN(importance=8)

 X_VALUE(importance=9)

Figure 9

The Variable Clustering Tab is not a technique that identifies important predictive variables. Variable
Clustering technique just checks for redundant variables and is, in some ways, similar to a factor analysis.

The Variable Selection tab does identify variables that predict Y. Variable selection and a decision tree
both create measurements of how important a variable is in predicting a Y value. However; they use
different geometries and different algorithms and they are not expected to agree 100%. In this step, the
author was trying to determine if different techniques, with different underlying assumptions, would
identify the same variables as being important.

Because the Variable Selection tab is so powerful, the author decided to use the output from that
technique as input into the neural networks to follow.

SECTION 6) AUTO-NEURAL: BUILD 22 DIFFERENT NEURAL NETWORK MODELS USING
THE AUTONEURAL NODE TO EVALUATE MANY DIFFERENT STRUCTURES AND
TRANSFORM FUNCTIONS.

The auto neural tab/node has promise of being a powerful and huge timesaver for an analyst. The auto-
neural tab is really a macro system that calls PROC Neural with many different parameters. One call of
the auto-neural tab can evaluate dozens of neural networks.

The auto-neural node promises to evaluate many different structures of neural net and many different
transforms inside those structures.

The author found the documentation difficult to read and not to the usual extremely high standards for
SAS documentation. Understanding how the parameters that are set when auto-neural is invoked will
change the structure of the neural net produced is still not clear. SAS tech support has been very helpful.

Interpreting the output is also a challenge, though the output does feed very nicely into a model
comparison node in an SAS Enterprise Miner flowchart.

9

The author decided to run many (22) different auto-neural nodes for two reasons.

The first reason was to try and create enough examples so that the effect of different parameters could be
deduced from the output of the 22 different runs.

The second reason was, because the link between parameters and the neural network structure was hard
to determine, the author wanted to do enough neural nets so that the best structure would be selected.
This is not very different from a static procedure selecting several random starting processes in hopes of
avoiding a local minimum.

The parameter space was explored in the following manner.

Maximum number of nodes in a layer was set to: one, three and eight (the maximum allowed)

Structures for the neural net were set to: funnel, block and cascade (all the structures that allowed more
than one layer in the network)

When the author selected the cascade structure, the option for freezing weights was always set to “yes”.
This seems to be similar to freezing weights in a deep neural net and seems to be the default.

Tolerance (a setting that requests preliminary estimates of the weights) was set to: medium and High

Proc Auto-Neural will, automatically test many activation functions. The author selected: direct, normal,
sign and TanH.

The training options (a setting that has an impact on how the neural nets are grown) were set to:
increment and search.

There seems to be an interaction between the training options and the structure option, but this
interaction was not in any of the documentations we read and we would encourage the reader to explore
more.

Because of the great number of models built by the auto neural tab, and the difficulty in interpreting the
output, the output was simply passed to a model comparison node.

SECTION 7) USE PROC NEURAL TO TRAIN TWO DEEP-LEARNING FEEDFORWARD
NEURAL NETWORK USING A STRUCTURE THAT WE THOUGHT WOULD BE EFFECTIVE.

The goals of this paper were to create an efficient process for creating a deep neural net and to try and
build a net that would outperform one shown in a paper written by one of my professors. This is the step
where that deep neural net is built. The difference between the two deep neural networks is that one
uses an activation function of linear and one uses an activation function of tanH. Both of the neural
networks use a funnel structure starting with eight nodes

The code for the two deep neural networks the author built are included in the appendix to this paper. We
is thought that the logic of a deep neural is easier to understand if the code is typed in to the SAS display
manager.

A funnel structure was used because we had 8 x input variables and the Y was binary. It was assumed
that a “reasonable” structure would start with eight nodes and decrease by 1 node in each layer. The
code to do this is in the appendix. The accuracy of the two deep neural networks can be easily
understood using a confusion matrix and the two confusion matrices are shown in the model comparison
section.

10

SECTION 8) USE A DECISION TREE TO CREATE A BENCHMARK FOR COMPARISON.

We created this decision tree to provide a
benchmark for comparison that we could use to
judge the many models we were building using
neural net technology.

We paid particular attention to variables that the
decision tree considered to be important. We
wanted to see if the other SAS techniques would
identify the same variables as important.

We also were interested in seeing if we could
identify interactions that were high enough up in
the tree, so that we might be able to code them
manually. We thought that it was possible to
create second-order interactions if the decision
tree indicated their presence.

We thought that any indication of interaction that
showed up on, or below, the third level of the tree
would be too difficult to code manually.

Figure 10

The variable importance table is shown below (the decision tree is very large and very difficult to present).
We are very pleased to see the ratio of importance for validation and training to be so high. Mortgage,
with its ratio of .5371 is the only variable that shows much difference in importance (see yellow in Figure
11) between training and validate data sets. This suggests, to the author, that the random partitioning of
the data into training and validate created data sets that were very similar.

Variable Importance Ratio of

 Number of Number of Validation

Variable Splitting Rules in Relative Validation To Training

Name Rules Importance CV Trees Importance Importance Importance

X_DelInq 3 1.0000 37 1.0000 1.0000 1.0000

X_DebtInc 2 0.5925 23 0.5769 0.4902 0.8274

X_DEROG 2 0.5042 21 0.4701 0.4094 0.8120

X_clage 2 0.4667 23 0.4739 0.4196 0.8991

X_NINQ 2 0.4352 16 0.4018 0.4136 0.9503

X_clno 2 0.3610 18 0.3478 0.2973 0.8234

X_MORTDUE 2 0.3595 13 0.2945 0.1931 0.5371

X_LOAN 1 0.3119 12 0.3416 0.2449 0.7854

X_VALUE 1 0.2614 11 0.2397 0.2187 0.8367

Figure 11

Here is an enlargement of the top of the decision
tree. The variable “number of delinquencies” is
the most important variable in splitting
observations into people who pay off the loan
and people who do not pay off the loan.

If the number of delinquencies is less than 1.78 a
subject would go to the left. If the number of
delinquencies was greater than 1.78, the subject
would go to the right.

Figure 12

11

The “model” that is created by a decision tree is
a series of if-then statements. A small section of
that code is shown to the right.

These if-then statements allow a new
observation to be placed in a leaf.

All observations that end up in the same leaf are
assigned the same probabilities of being good or
bad.

****** ASSIGN OBSERVATION TO NODE ******;
IF NOT MISSING(X_DelInq) AND
 1.78481012658227 <= X_DelInq THEN DO;
 IF NOT MISSING(X_DelInq) AND 4.6 <= X_DelInq
 THEN DO;
 NODE = 7;
 LEAF = 18;
 P_REP_BAD1 = 0.96153846153846;
 P_REP_BAD0 = 0.03846153846153;
 Q_REP_BAD1 = 0.96153846153846;
 Q_REP_BAD0 = 0.03846153846153;
 I_REP_BAD = '1' ;
 U_REP_BAD = 1;
 END;
 ELSE DO;
Figure 13

SECTION 9) MODEL COMPARISON

We use the model comparison node to compare the output from the 22 auto neural nodes and the one
decision tree (remember; we had a preference for doing deep neural nets in the SAS display manager).

The fit statistics from the comparison node show that auto neural 13 had the best output (the lowest
misclassification rate) – though not much better than auto-neural 22.

As you will see, later on, we do not have 100% faith in misclassification rate and think that a more subtle
interpretation is required. Because of limited skills in SAS Enterprise Miner, and limited time, we have to
do that subtle investigation manually. We only did that subtle interpretation on auto neural 13 but, if more
time had been available, we would have done a detailed examination of the first few auto-neurals

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

 Train: Valid:

 Valid: Average Train: Average

Selected Misclassification Squared Misclassification Squared

 Model Model Node Model Description Rate Error Rate Error

 Y AutoNeural13 AutoNeural (13) 0.16107 0.09391 0.12756 0.12670

 AutoNeural22 AutoNeural (22) 0.16107 0.09391 0.12756 0.12670

 AutoNeural10 AutoNeural (10) 0.17315 0.12515 0.15374 0.14456

 AutoNeural19 AutoNeural (19) 0.17315 0.12515 0.15374 0.14456

 Tree2 Decision Tree (2) 0.17785 0.10472 0.13394 0.13760

 AutoNeural5 AutoNeural (5) 0.19933 0.15321 0.19940 0.15496

 AutoNeural12 AutoNeural (12) 0.19933 0.15463 0.18731 0.16615

 AutoNeural15 AutoNeural (15) 0.19933 0.15463 0.18731 0.16615

 AutoNeural18 AutoNeural (18) 0.19933 0.15463 0.18731 0.16615

 AutoNeural21 AutoNeural (21) 0.19933 0.15463 0.18731 0.16615

 AutoNeural24 AutoNeural (24) 0.19933 0.15463 0.18731 0.16615

 AutoNeural6 AutoNeural (6) 0.19933 0.15463 0.18731 0.16615

 AutoNeural9 AutoNeural (9) 0.19933 0.15463 0.18731 0.16615

 AutoNeural8 AutoNeural (8) 0.22685 0.14783 0.21920 0.15676

 AutoNeural11 AutoNeural (11) 0.23691 0.16539 0.21954 0.17636

 AutoNeural20 AutoNeural (20) 0.23691 0.16539 0.21954 0.17636

 AutoNeural17 AutoNeural (17) 0.24161 0.15880 0.22457 0.17584

 AutoNeural7 AutoNeural (7) 0.24295 0.16920 0.22054 0.18900

 AutoNeural14 AutoNeural (14) 0.41812 0.26298 0.39275 0.28434

 AutoNeural23 AutoNeural (23) 0.41812 0.26298 0.39275 0.28434

 AutoNeural16 AutoNeural (16) 0.46174 0.40613 0.47264 0.40066

 AutoNeural4 AutoNeural (4) 0.46174 0.40613 0.47264 0.40066

Figure 14

Enterprise Miner also produces some very attractive output that could easily be put into a presentation.

The ROC curves, that we present in Figure 14 show auto-neural13 (green) and auto-neural22 (blue) are
the best models for train, test and validate data sets. We were gratified to see that auto-neural models 13
and 22 were high performing models on train, validate and test data sets. This agreement, over all the
data sets used, increases our beliefs that we can use these models on new data.

12

Figure 15

SAS understands that the misclassification rate assumes equal penalties for the two types of mistakes.
Several procedures allow an analyst to set different penalties to be associated with creating a bad loan
versus not giving a loan to a good customer. We did not have time to explore this.

Below, and apologies for the small font, is the text output for the model comparison node. SAS produces
very many fit statistics and we just wanted to use an image give you an idea of how many. Each column
is a node that was compared and each row is a different statistic that SAS calculates. We leave, to the
readers, the task of studying the statistics that they find most interesting. This paper will use confusion
tables to select the best model.

Data Role=Test

 Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto

Statistics Neural13 Neural22 Neural10 Neural19 Tree2 Neural5 Neural12 Neural15 Neural18 Neural21 Neural24 Neural6 Neural9 Neural8 Neural11 Neural20 Neural17 Neural7 Neural14 Neural23 Neural16 Neural4

Test: Kolmogorov-Smirnov Statistic 0.44 0.44 0.34 0.34 0.44 0.14 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.25 0.14 0.14 0.19 0.35 0.05 0.05 0.10 0.10

Test: Average Squared Error 0.13 0.13 0.14 0.14 0.12 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.18 0.18 0.18 0.18 0.28 0.28 0.39 0.39

Test: Roc Index 0.77 0.77 0.73 0.73 0.76 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.63 0.58 0.58 0.61 0.72 0.49 0.49 0.52 0.52

Test: Average Error Function 0.44 0.44 0.47 0.47 . 0.49 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.56 0.56 0.59 0.60 0.85 0.85 2.02 2.02

Test: Bin-Based Two-Way Kolmogorov-Smirnov Probability Cutoff 0.20 0.20 0.17 0.17 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23 0.20 0.20 0.26 0.39 0.86 0.86 0.98 0.98

Test: Cumulative Percent Captured Response 35.57 35.57 31.54 31.54 38.12 16.44 22.15 22.15 22.15 22.15 22.15 22.15 22.15 16.44 15.77 15.77 18.12 25.17 12.08 12.08 16.11 16.11

Test: Percent Captured Response 14.09 14.09 11.07 11.07 16.41 8.39 6.04 6.04 6.04 6.04 6.04 6.04 6.04 8.39 8.39 8.39 7.72 9.73 5.70 5.70 4.36 4.36

Test: Divisor for TASE 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00

Test: Error Function 1317.40 1317.40 1402.48 1402.48 . 1475.89 1519.83 1519.83 1519.83 1519.83 1519.83 1519.83 1519.83 1536.32 1665.27 1665.27 1755.95 1774.79 2532.63 2532.63 6028.73 6028.73

Test: Gain 253.57 253.57 213.54 213.54 278.91 63.44 120.15 120.15 120.15 120.15 120.15 120.15 120.15 63.44 56.77 56.77 80.12 150.17 20.08 20.08 60.11 60.11

Test: Gini Coefficient 0.54 0.54 0.46 0.46 0.51 0.17 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.26 0.15 0.15 0.22 0.44 -0.02 -0.02 0.03 0.03

Test: Bin-Based Two-Way Kolmogorov-Smirnov Statistic 0.43 0.43 0.34 0.34 0.43 0.14 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.25 0.13 0.13 0.19 0.35 0.03 0.03 0.09 0.09

Test: Kolmogorov-Smirnov Probability Cutoff 0.21 0.21 0.09 0.09 0.15 0.16 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.17 0.17 0.26 0.35 0.12 0.12 0.97 0.97

Test: Cumulative Lift 3.54 3.54 3.14 3.14 3.79 1.63 2.20 2.20 2.20 2.20 2.20 2.20 2.20 1.63 1.57 1.57 1.80 2.50 1.20 1.20 1.60 1.60

Test: Lift 2.80 2.80 2.20 2.20 3.26 1.67 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.67 1.67 1.67 1.53 1.93 1.13 1.13 0.87 0.87

Test: Maximum Absolute Error 1.00 1.00 1.00 1.00 0.93 0.88 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Test: Misclassification Rate 0.16 0.16 0.17 0.17 0.14 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.23 0.24 0.24 0.24 0.25 0.42 0.42 0.46 0.46

Test: Lower 95% Conf. Limit for TMISC

Test: Upper 95% Conf. Limit for TMISC

Test: Mean Squared Error 0.13 0.13 0.14 0.14 . 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.18 0.18 0.18 0.18 0.28 0.28 0.39 0.39

Test: Sum of Frequencies 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00 1491.00

Test: Root Average Squared Error 0.36 0.36 0.37 0.37 0.34 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40 0.42 0.42 0.42 0.43 0.53 0.53 0.62 0.62

Test: Cumulative Percent Response 70.67 70.67 62.67 62.67 75.73 32.67 44.00 44.00 44.00 44.00 44.00 44.00 44.00 32.67 31.33 31.33 36.00 50.00 24.00 24.00 32.00 32.00

Test: Percent Response 56.00 56.00 44.00 44.00 65.19 33.33 24.00 24.00 24.00 24.00 24.00 24.00 24.00 33.33 33.33 33.33 30.67 38.67 22.67 22.67 17.33 17.33

Test: Root Mean Squared Error 0.36 0.36 0.37 0.37 . 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40 0.42 0.42 0.42 0.43 0.53 0.53 0.62 0.62

Test: Sum of Squared Errors 377.41 377.41 414.82 414.82 354.25 471.38 464.79 464.79 464.79 464.79 464.79 464.79 464.79 478.49 525.18 525.18 531.49 547.89 846.62 846.62 1160.01 1160.01

Test: Sum of Weights Times Freqs 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00 2982.00

Test: Number of Wrong Classifications 245.00 245.00 254.00 254.00 . 298.00 277.00 277.00 277.00 277.00 277.00 277.00 277.00 349.00 351.00 351.00 355.00 368.00 632.00 632.00 680.00 680.00

Figure 16

The confusion matrix for auto-neural 13 is below. Because of our limited experience with SAS Enterprise
Miner we had to copy the predicted status dataset (the method used was: click exported data, test,
browse, copy-paste to Excel) from auto-neural 13 and pasted into Excel. We created this table manually
though We are sure there is a better way.

The misclassification rate of .164 was the lowest of all the misclassification rates and suggests that this is
an excellent model. However; We thought a deeper analysis was in order. We think confusion matrices
are an excellent tool for judging model quality.

Auto-neural 13 would result in our giving a loan to 184 people who would not pay the loan. We think the
cost of giving a bad loan is much more expensive than the cost of not giving a loan to a good customer
and now say that auto-neural 13 might not be the best model to use.

13

xz

Figure 17

Below are the confusion matrices for the two neural nets. Both of them use a funnel structure with eight
nodes in the first hidden layer. One uses a linear transform function and the other uses tanH.

Deep Neural;Funnel Linear Network
Home Equity and Defaults

test linear LAYER Misclassification Table

Table of F_REP_BAD by I_REP_BAD

 F_REP_BAD(From: REP_BAD)

 I_REP_BAD(Into: REP_BAD)

Frequency|

Percent |

Row Pct |

Col Pct |0 |1 | Total

---------+--------+--------+

0 | 1147 | 46 | 1193

 | 76.93 | 3.09 | 80.01

 | 96.14 | 3.86 |

 | 83.60 | 38.66 |

---------+--------+--------+

1 | 225 | 73 | 298

 | 15.09 | 4.90 | 19.99

 | 75.50 | 24.50 |

 | 16.40 | 61.34 |

---------+--------+--------+

Total 1372 119 1491

 92.02 7.98 100.00

Deep Neural;Funnel TanH Network
Home Equity and Defaults

test tanh LAYER Misclassification Table

Table of F_REP_BAD by I_REP_BAD

 F_REP_BAD(From: REP_BAD)

 I_REP_BAD(Into: REP_BAD)

Frequency|

Percent |

Row Pct |

Col Pct |0 |1 | Total

---------+--------+--------+

0 | 1134 | 59 | 1193

 | 76.06 | 3.96 | 80.01

 | 95.05 | 4.95 |

 | 87.30 | 30.73 |

---------+--------+--------+

1 | 165 | 133 | 298

 | 11.07 | 8.92 | 19.99

 | 55.37 | 44.63 |

 | 12.70 | 69.27 |

---------+--------+--------+

Total 1299 192 1491

 87.12 12.88 100.00

Figure 18

Below is the confusion matrix for the decision tree.

14

Figure 19

While SAS creates many statistics to measure the performance of these models, we want to focus on
minimizing money lost. The expensive mistake to make is to grant somebody a lone when they will not
pay it back. In the tables above, the percentage of people who are likely to default on a loan is in red. The
model we want to pick is the model that has the lowest probability of giving someone a loan who will then
default on the loan.

We would select the deep neural net with a hyperbolic tangent activation function as the model to use.

SECTION 10) CONCLUSION

This paper had two goals. The first goal was to suggest a process, a series of steps, that could be
followed to produce deep neural nets that performed well. We suggest that the flow chart above is a
process that can be made a “way of working”, though we would appreciate any comments that would
improve this.

The second goal for this paper was to create a neural net that performed better than the neural net that
was published in a paper written by one of my professors. It should be said, that he was just trying to
demonstrate deep neural nets and not to “tune” the net to improve performance. However; the error rate
in that paper, on the training data set, was .74 and he did not partition the data.74% of the people that
would’ve defaulted on a loan were recommended to get a loan.

The models developed above outperforms that metric on the test data set, not the training data set, and
therefore can be considered superior.

15

SECTION 11) REFERENCES

Lavery, Russell. 2016. “An Animated Guide: Deep Neural Networks in SAS® Enterprise
Miner ”Proceedings of the 2016 MWSUG Conference, Available at:
https://www.mwsug.org/proceedings/2016/AA/MWSUG-2016-AA25.pdf

Book SAS Enterprise Miner 14.3: Reference Help (pdf. available to SAS Enterprise Miner customers)

Brown, Anna. “How to build a deep learning model in SAS Enterprise Miner .” SAS communities library.
11-05-2015 . Available at https://communities.sas.com/t5/SAS-Communities-Library/How-to-build-a-deep-
learning-model-in-SAS-Enterprise-Miner/ta-p/231190

PROC neural online documentation, available at:

http://support.sas.com/documentation/onlinedoc/miner/em43/neural.pdf

Many authors /blog, Why do we use neural networks? Quora, available at

https://www.quora.com/Why-do-we-use-neural-networks

SAS(R) LASR(TM) Analytic Server 2.5: Reference Guide; available at
http://support.sas.com/documentation/cdl/en/inmsref/67629/HTML/default/viewer.htm#p0o8wrmmp8zkisn
1riwf74uvagq9.htm

12) ACKNOWLEDGMENTS

Thanks to the people at SAS Tech Support.

13) CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 YuTing Tian YT899963@WCUPA.EDU

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://communities.sas.com/t5/SAS-Communities-Library/How-to-build-a-deep-learning-model-in-SAS-Enterprise-Miner/ta-p/231190
https://communities.sas.com/t5/SAS-Communities-Library/How-to-build-a-deep-learning-model-in-SAS-Enterprise-Miner/ta-p/231190
http://support.sas.com/documentation/onlinedoc/miner/em43/neural.pdf
https://www.quora.com/Why-do-we-use-neural-networks
http://support.sas.com/documentation/cdl/en/inmsref/67629/HTML/default/viewer.htm#p0o8wrmmp8zkisn1riwf74uvagq9.htm
http://support.sas.com/documentation/cdl/en/inmsref/67629/HTML/default/viewer.htm#p0o8wrmmp8zkisn1riwf74uvagq9.htm

16

14) APPENDIX

/*Deep Neural;Funnel Linear Network*/

options nocenter;

ODS LISTING;

DATA MWSUG.Em_save_train_Use;

 SET MWSUG.Em_save_train ;

RUN; QUIT;

DATA MWSUG.Em_save_validate_Use;

 SET MWSUG.Em_save_validate ;

RUN;QUIT;

DATA MWSUG.Em_save_test_Use;

 SET MWSUG.Em_save_test ;

RUN; QUIT;

PROC DMDB batch data=MWSUG.Em_save_train_Use

 out=MWSUG.DMDB_HmEq_train

 dmdbcat=MWSUG.DMDB_Cat_train_HmEq;

 var REP_LOAN

 /*REP_BAD*/

 IMP_REP_CLAGE

 IMP_REP_DEBTINC

 IMP_REP_DELINQ

 IMP_REP_DEROG

 IMP_REP_NINQ ;

 class REP_BAD GI_IMP_REP_JOB_IMP_REP_REASON G_IMP_REP_JOB;

 target REP_BAD ;

run;

PROC DMDB batch data=MWSUG.Em_save_validate_Use

 out=MWSUG.DMDB_HmEq_validate

 dmdbcat=MWSUG.DMDB_Cat_Validate_HmEq;

 var REP_LOAN

 /*REP_BAD*/

 IMP_REP_CLAGE

 IMP_REP_DEBTINC

 IMP_REP_DELINQ

 IMP_REP_DEROG

 IMP_REP_NINQ ;

 class REP_BAD GI_IMP_REP_JOB_IMP_REP_REASON G_IMP_REP_JOB;

 target REP_BAD ;

run;

17

PROC Neural

 data=MWSUG.Em_save_train_Use

validata=MWSUG.Em_save_validate_Use

testdata=MWSUG.Em_save_test_Use

 dmdbcat=MWSUG.DMDB_Cat_train_HmEq graph;

 performance compile details cpucount= 2

 threads= yes; /* ENTER VALUE FOR CPU COUNT */

 archi MLP hidden= 7;

 /*we set 7 hidden layers bacause we have 8 input variables ,

for the frist

 layer we set 8 neural nodes; we try linear function at first

time*/

 hidden 8 / id= h1 act= linear;

 hidden 7 / id= h2 act= linear;

 hidden 6 / id= h3 act= linear;

 hidden 5 / id= h4 act= linear;

 hidden 4 / id= h5 act= linear;

 hidden 3 / id= h6 act= linear;

 hidden 2 / id= h7 act= linear;

input REP_LOAN

 /*REP_BAD*/

 IMP_REP_CLAGE

 IMP_REP_DEBTINC

 IMP_REP_DELINQ

 IMP_REP_DEROG

 IMP_REP_NINQ

 / id= i level= int std= std;

 target REP_BAD / act= logistic id=t level= ordinal ;

 /* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */

 initial random= 123;

 prelim 10 preiter=80;

/* TRAIN LAYERS SEPARATELY */;

 *freeze i->h1; /*train the first layer*/

 freeze h1->h2;

 freeze h2->h3;

 freeze h3->h4;

 freeze h4->h5;

 freeze h5->h6;

 freeze h6->h7;

 train technique= congra maxtime=10000 maxiter= 10000 ;

 freeze i->h1;

 thaw h1->h2; /*train the second layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

18

 freeze h1->h2;

 thaw h2->h3; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h2->h3;

 thaw h3->h4; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h3->h4;

 thaw h4->h5; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h4->h5;

 thaw h5->h6; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h5->h6;

 thaw h6->h7; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

/* RETRAIN ALL LAYERS SIMULTANEOUSLY */;

 thaw i->h1;

 thaw h1->h2;

 thaw h2->h3;

 thaw h3->h4;

 thaw h4->h5;

 thaw h5->h6;

 thaw h6->h7;

 train technique= congra maxtime= 10000 maxiter= 1000;

 code file= '';

score data=MWSUG.Em_save_train_Use

outfit=MWSUG.Em_save_train_Use_fit

 out=MWSUG.Em_save_train_Use_out role=train;

score data=MWSUG.Em_save_validate_Use

outfit=MWSUG.Em_save_validate_Use_fit

 out=MWSUG.Em_save_validate_Use_out role=valid;

score data=MWSUG.Em_save_test_Use

outfit=MWSUG.Em_save_test_Use_fit

 out=MWSUG.Em_save_test_Use_out role=test;

run;

proc freq data=MWSUG.Em_save_train_Use_out ;

 tables f_REP_BAD *i_REP_BAD ;

 title2' train tanh LAYER Misclassification Table';

run;

19

proc freq data=MWSUG.Em_save_validate_Use_out ;

 tables f_REP_BAD *i_REP_BAD ;

 title2'validate tanh LAYER Misclassification Table';

run;

proc freq data=MWSUG.Em_save_test_Use_out ;

 tables f_REP_BAD *i_REP_BAD ;

 title3'test tanh LAYER Misclassification Table';

run;

/*Deep Neural;Funnel TanH Network*/

options nocenter;

ODS LISTING;

DATA MWSUG.Em_save_train_Use;

 SET MWSUG.Em_save_train ;

RUN; QUIT;

DATA MWSUG.Em_save_validate_Use;

 SET MWSUG.Em_save_validate ;

RUN; QUIT;

DATA MWSUG.Em_save_test_Use;

 SET MWSUG.Em_save_test ;

RUN; QUIT;

PROC DMDB batch data=MWSUG.Em_save_train_Use

 out=MWSUG.DMDB_HmEq_train

 dmdbcat=MWSUG.DMDB_Cat_train_HmEq;

 var REP_LOAN

 /*REP_BAD*/

 IMP_REP_CLAGE

 IMP_REP_DEBTINC

 IMP_REP_DELINQ

 IMP_REP_DEROG

 IMP_REP_NINQ ;

 class REP_BAD GI_IMP_REP_JOB_IMP_REP_REASON G_IMP_REP_JOB;

 target REP_BAD ;

run;

PROC DMDB batch data=MWSUG.Em_save_validate_Use

 out=MWSUG.DMDB_HmEq_validate

 dmdbcat=MWSUG.DMDB_Cat_Validate_HmEq;

 var REP_LOAN

 /*REP_BAD*/

 IMP_REP_CLAGE

 IMP_REP_DEBTINC

 IMP_REP_DELINQ

20

 IMP_REP_DEROG

 IMP_REP_NINQ ;

 class REP_BAD GI_IMP_REP_JOB_IMP_REP_REASON G_IMP_REP_JOB;

 target REP_BAD ;

run;

PROC Neural

 data=MWSUG.Em_save_train_Use

validata=MWSUG.Em_save_validate_Use

testdata=MWSUG.Em_save_test_Use

 dmdbcat=MWSUG.DMDB_Cat_train_HmEq graph;

 performance compile details cpucount= 2

 threads= yes; /* ENTER VALUE FOR CPU COUNT */

 archi MLP hidden= 7;

 /*we set 7 hidden layers bacause we have 8 input variables ,

for the frist

 layer we set 8 neural nodes; we try tanh function at frist

time*/

 hidden 8 / id= h1 act= tanh;

 hidden 7 / id= h2 act= tanh;

 hidden 6 / id= h3 act= tanh;

 hidden 5 / id= h4 act= tanh;

 hidden 4 / id= h5 act= tanh;

 hidden 3 / id= h6 act= tanh;

 hidden 2 / id= h7 act= tanh;

 input REP_LOAN

 /*REP_BAD*/

 IMP_REP_CLAGE

 IMP_REP_DEBTINC

 IMP_REP_DELINQ

 IMP_REP_DEROG

 IMP_REP_NINQ

 / id= i level= int std= std;

 target REP_BAD / act= logistic id=t level= ordinal ;

 /* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */

 initial random= 123;

 prelim 10 preiter=80;

/* TRAIN LAYERS SEPARATELY */;

 *freeze i->h1; /*train the first layer*/

 freeze h1->h2;

 freeze h2->h3;

 freeze h3->h4;

 freeze h4->h5;

 freeze h5->h6;

 freeze h6->h7;

 train technique= congra maxtime=10000 maxiter= 10000 ;

21

 freeze i->h1;

 thaw h1->h2; /*train the second layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h1->h2;

 thaw h2->h3; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h2->h3;

 thaw h3->h4; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h3->h4;

 thaw h4->h5; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h4->h5;

 thaw h5->h6; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h5->h6;

 thaw h6->h7; /*train the third layer*/

 train technique= congra maxtime= 10000 maxiter= 10000;

/* RETRAIN ALL LAYERS SIMULTANEOUSLY */;

 thaw i->h1;

 thaw h1->h2;

 thaw h2->h3;

 thaw h3->h4;

 thaw h4->h5;

 thaw h5->h6;

 thaw h6->h7;

 train technique= congra maxtime= 10000 maxiter= 1000;

 code file= '';

score data=MWSUG.Em_save_train_Use

outfit=MWSUG.Em_save_train_Use_fit

 out=MWSUG.Em_save_train_Use_out role=train;

score data=MWSUG.Em_save_validate_Use

outfit=MWSUG.Em_save_validate_Use_fit

 out=MWSUG.Em_save_validate_Use_out role=valid;

score data=MWSUG.Em_save_test_Use

outfit=MWSUG.Em_save_test_Use_fit

 out=MWSUG.Em_save_test_Use_out role=test;

run;

22

proc freq data=MWSUG.Em_save_train_Use_out ;

 tables f_REP_BAD *i_REP_BAD ;

 title2' train tanh LAYER Misclassification Table';

run;

proc freq data=MWSUG.Em_save_validate_Use_out ;

 tables f_REP_BAD *i_REP_BAD ;

 title2'validate tanh LAYER Misclassification Table';

run;

proc freq data=MWSUG.Em_save_test_Use_out ;

 tables f_REP_BAD *i_REP_BAD ;

 title3'test tanh LAYER Misclassification Table';

run;

