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ABSTRACT  

Probabilistic heavy-tailed distribution (Pareto, Weibull, Burr etc.) theory has vast applications involving in 
many real-life situations and natural phenomena. This area of research attracts not only for theoretical 
probabilistic nature but also for various branches of statistics. Heavy-tailed distribution are also used for 
modeling various biological, actuarial, financial, economic, hydrological, and engineering data. In this 
paper, we are modeling the cancer patient dataset and electrical blackouts dataset in the USA with 
generalized Pareto distribution. We also simulate the data arising from generalized Pareto distribution 
and estimate the parameters of generalized Pareto distribution (GPD) using maximum likelihood 
estimation. A suite of SAS procedure is used for all computation, specifically Procedure IML, SEVERITY, 
NLMIXED. 

Keywords: MLE, Pareto distribution, GPD, heavy tail, NLMIXED etc. 

INTRODUCTION  

In recent years, heavy-tailed distribution has gained a lot of interest in literature. Heavy tail distribution 
receives much popularity for its flexible modeling capability and skewed shaped form. Therefore, it is 
extensively used for many applied sciences including economics, statistics, risk management and actuarial 
science and survival analysis, and lifetime data analysis. Generalization of Pareto distribution also exists in 
the various form in the literature. Generalized Pareto distribution (GPD) was first introduced by Pickands 
(1975) for modeling extreme value data. The Pareto distribution is a special case of generalized Pareto 
distribution. Pareto distribution is generated by compounding a heavy-tailed conditional gamma distribution 
with parameters k and 𝜃−1, where the weight for 𝜃 has a gamma distribution with parameters 𝛼 and 𝛽. The 
extension of pareto distribution named Kumaraswamy Pareto distribution was first studied by Pereira et all 
(2012). Further, Akinsete et al. (2008) and Mahmoudi (2011) extended the Pareto and generalized Pareto 
distribution by introducing the beta Pareto and beta generalized Pareto distribution, respectively, which is 
based on a T-G family of distributions introduced by Eugene et al. (2002).  

In this paper, we will present a statistical framework for discerning generalized Pareto distribution using 
empirical data. We will introduce Pareto distribution and generalized version of pareto distribution and 
demonstrate its flexibility by showing the wide variety of shapes of the distribution, cumulative density 
function, and reliability function. We will also estimate the unknown parameters of the generalized Pareto 
distribution using Maximum likelihood method using PROC IML and PROC NLMIXED. Two real data sets 
are considered for fitting generalized Pareto distribution along with the goodness of fit test using PROC 
SEVERITY in SAS procedure.  

HEAVY TAIL PARETO DISTRIBUTION 

Heavy-tailed distribution is probability distribution whose tails is bounded by exponentially. Mathematically, 

lim
𝑥→∞

𝑒𝜆𝑥 𝑃(𝑋 > 𝑥) =  + ∞ . They usually have heavier tails then the exponential family. Moreover, moment 

generating function for heavy tail distribution is not finite on the positive real line. The distribution 𝐹(. ) from 

the random variable 𝑋 is heavy tail if and only if  

                                           ∫ 𝑒𝜆𝑥∞

−∞
𝐹(𝑥)𝑑𝑥 =  ∞;   ∀, 𝜆 > 0.  

 The probability density function (PDF) for a random variable 𝑋 is said to be a Pareto type II distribution or 

simply Pareto distribution, if it is given as 𝑓𝑋(𝑥) =
𝛼 𝛽𝛼

(𝑥+𝛽)𝛼+1  ;  ∀, 𝑥 > 𝛽 𝑎𝑛𝑑 𝛼, 𝛽 > 0 .  

The Pareto distribution is skewed to the right and characterized by a shape parameter 𝛼 and a scale 
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parameter 𝛽. The density 𝑓𝑋(𝑥)is a decreasing function of 𝑥 and achieves its maximum when 𝑥 is smallest. 

The cumulative density function (CDF) of Pareto distribution can be written as 𝐹𝑋(𝑥) = 1 − (
𝛽

𝑥+𝛽
)

𝛼

. 

The hazard rate function/survival function can be written as in the form ℎ(𝑥) =
𝑓𝑋(𝑥)

1−𝐹𝑋(𝑥)
. 

The PROC IML code for generating Pareto density plot is given in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: PDF and CDF of Pareto distribution for 𝜶 = 𝟏 𝒂𝒏𝒅 𝜷 = 𝟎. 𝟓 and 𝜶 = 𝟑 𝒂𝒏𝒅 𝜷 = 𝟎. 𝟑. 

GENERALIZED PARETO DISTRIBUTION (GPD) 

The probability density function of the three parameter Generalized Pareto distribution is 

                                                    𝑓𝑋(𝑥) =
1

𝜎
(1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−(1+
1
𝜉

)

  , 𝑥 ≥  𝜇, 𝜎 ≥ 0, 𝜉 > 0                  (1) 

Here 𝜇 is the location parameter, 𝜎  is the scale parameter and  𝜉 is the shape parameter. In this paper, 

we are working with two parameter GPD model with 𝜇 = 0. Therefore, two parameter GPD model is, 

                                                            𝑓𝑋(𝑥) =
1

𝜎
(1 +

𝜉𝑥

𝜎
)

−(1+
1

𝜉
)

  , 𝑥 ≥  0, 𝜎 ≥ 0, 𝜉 > 0 

The cumulative distribution function of the GPD can be written as, 

𝐹𝑋(𝑥) = 1 − (1 +
𝜉𝑥

𝜎
)

−1
𝜉

   , 𝜎 ≥ 0, 𝜉 > 0 

The GPD model in equation (1) is generalized in the sense that it contains various special cases. When 

𝜉 > 0 and 𝜇 = 0, the distribution is in the form of Pareto distribution with the transformation 𝛼 =
1

 𝜉
 , 𝛽 =

𝜎

 𝜉
. 

When  𝜉 = 0, the GPD model is reduced to exponential distribution and When  𝜉 = 1,  the GPD model 

becomes uniform U (0, 𝜎). 

The SAS code for generating PDF and CDF of generalized Pareto distribution is given in the appendix. 
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Figure 2: PDF and CDF of Generalized Pareto distribution for various values of 𝝈 and 𝝃. 

SIMULATION TECHNIQUE 

To simulate the data from generalized Pareto distribution, we use the probability integral transform theorem. 
By using the CDF of GPD and let it equal to U where, U ~Uni (0,1), we can get the following closed form 
expression for generating random variable arising from GPD model. 

𝑋 = 𝐹−1(𝑈) =
𝜎

𝜉
[ 

1

(1 − 𝑈)𝜉
− 1] 

Here, 𝑈 is the standard uniform random variable. The SAS code is given in the appendix to simulate data 
arising from Generalized Pareto distribution. 

NUMERICAL OPTIMIZATION USING PROC NLMIXED 

 

The estimation of 𝛼 and 𝛽 can be obtained using maximum likelihood estimation. The likelihood function of 
generalized Pareto distribution can be expressed as: 

𝐿(𝛼, 𝛽; 𝑥) =  ∏
1

𝜎
(1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−(1+
1
𝜉

)𝑛

𝑖=1

=
1

𝜎𝑛
 ∏ (1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−(1+
1
𝜉

)𝑛

𝑖=1

 

We consider Monte Carlo simulation technique to asses the performance of the MLEs of 𝜎 and 𝜉. We carry 
out the simulation using SAS software for various observations from generalized Pareto distribution. We 
consider different sample size n=50, 500,800,1000 and the number of replications is 5000. For simulation 
purpose, we are considering the true parameters valus for the generalized Pareto distribution is  𝜎 = 2 and 
 𝜉 = 3. Table 1 below shows the estimated parameters of 𝜎 and 𝜉, standard error, and confidence interval 
for the parameters. We observe that, when the sample size is increasing, the standard error for parameters 
𝛼 and 𝛽 are very small or close to zero and converges to true parameter value. 
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Table1: Standard error and estimated parameter when is  𝝈 = 𝟐 and  𝝃 = 𝟑 

 n Parameters Value S.E. 95% Confidence Limits 

50 𝝈̂ 2.0062 0.01133 1.9840 2.0284 

 

𝝃̂ 2.9898 0.007977 2.9742 3.0054 
 

500 𝝈̂ 2.0052 0.003587 1.9982 2.0123 
 

𝝃̂ 2.9984 0.002529 2.9935 3.0034 
 

800 𝝈̂ 2.0028 0.002833 1.9972 2.0083 
 

𝝃̂ 2.9997 0.002000 2.9958 3.0036 
 

1000 𝝈̂ 2.0010 0.002532 1.9960 2.0059 
 

𝝃̂ 3.0004 0.001789 2.9969 3.0039 
 

 

 

APPLICATION OF GPD MODEL USING PROC SEVERITY 

Example 1: 

The dataset consists of cancer patient data. The data represent the remission times (in months) of a random 
sample of 128 bladder cancer patients Lee and Wang (2003). Estimation of the parameters of GP 
distribution is done by PROC SEVERITY and compare it with other predefined distributions. We use Akaike 
information criterion (AIC), Consistent Akaike information criterion (AICC), Bayesian information criterion 
(BIC) is used to select the best model to fit the cancer data. Anderson darling and KS statistics is also given 
for goodness of fit test. Plot of the fitted densities and histogram, observed versus predicted probabilities 
for cancer patient data also given in figure 3 and 4. We also compare the GPD model with other distributions 
such as inverse gaussian distribution, Log normal distribution, pareto distribution, Weibull distribution. 
Comparing with other univariate distributions, we can observe that generalized pareto distribution has the 
lowest AIC, AICC and BIC value. Also, P-P plot suggested that the data are approximately normally 
distributed. By inspection, GPD model is the best model to fit the cancer data. 

 

Model Selection 

Distribution Converged 
-2 Log 
Likelihood Selected 

Gpd Yes 827.65117 Yes 

Igauss Yes 880.57157 No 

Logn Yes 830.19194 No 

Pareto Yes 827.65117 No 

Weibull Yes 828.16494 No 
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All Fit Statistics 

Distribution 
-2 Log 
Likelihood AIC AICC BIC KS AD 

Gpd 827.65117 * 831.65117 * 831.74717 * 837.35523 * 1.11074  1.42650  

Igauss 880.57157  884.57157  884.66757  890.27563  2.19822  7.86204  

Logn 830.19194  834.19194  834.28794  839.89600  0.71672 * 0.86238 * 

Pareto 827.65117  831.65117  831.74717  837.35523  1.11076  1.42654  

Weibull 828.16494  832.16494  832.26094  837.86900  0.80831  1.02110  

Note: The asterisk (*) marks the best model according to each column's criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Cancer patient data fitting with various distribution. 
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Example 2: 

In this dataset, we will investigate the number of customers affected by electrical blackouts in the United 
States between 1984 and 2002. The dataset was collected form Clauset et al. (2009). The disturbances 
dataset (NERC data) comes from the Disturbance Analysis Working Group (DAWG) Database who are 
investigating the disturbance occurred on the electric utilities in the USA. It is deemed to be the best-
recorded blackout sources in the United States power transmission system. The measurement unit 
(blackout size), is measured by three different quantities, the amount of power loss, the number of 
customers affected and the restoration time (Minute) (10). We are modeling the number of customers 

affects by blackouts and fit the dataset by various distributions using PROC SEVERITY. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4: customer blackout data modeling by various distributions. 
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We compare our dataset with Burr distribution, Pareto distribution, Weibull distribution, Gamma and 
Exponential distributions. We consider criteria like log-likelihood (LL), Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC) and AICC to identify the better model to fit the data. The better 
distribution is corresponding to the smaller values of LL, AIC, AICC, and BIC. Also, the Kolmogorov–
Smirnov (K–S) goodness-of-fit statistic and Anderson darling test statistics are used to conduct the 
appropriateness of the model. We observe that generalized Pareto distribution gives the smallest value 
regardless of AIC, AICC or BIC. It gives the better fit to our dataset. Also, from the P-P plot and cumulative 
density plot vs the observed data gives the similar conclusion. Looking at the information criteria, we can 
see that, other distributions do not provide an adequate fit to the dataset. 

CONCLUSION 

We define and study the Pareto and generalized version of Pareto distribution. Various properties of the 
distribution are also investigated. The method of maximum likelihood is suggested using SAS NLMIXED. 
In both applications, generalized Pareto distribution provides significantly better fit than the other 
distributions. Further extension of the generalized Pareto model and the application in different scenarios 
will be investigated in future. 
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APPENDIX 

/*## Pareto pdf for different parameters.*/ 

 

proc iml; 

start paretoPDF(x, a, b); 

f=j(nrow(x),ncol(x),0); 

idx = loc(x>b); 

if ncol(idx)>0 then do; 

v=x[idx]; 

f[idx] = (a*b##a)#(1/(x##(a+1))); 

end; 

return(f); 

finish; 

x=do(1,15,0.01); 

y1 = paretoPDF(x,1,0.5); 

y2 = paretoPDF(x,3,0.5); 

g = repeat({1,2}, 1, ncol(x));   /* 1,1,1,...,2,2,2 */ 

x = x  || x ; 

y = y1 || y2; 

title "Pareto distribution Series Plot "; 

call Series(x, y) group=g          

                 grid={X Y} 

                 label={"X" "pareto distribution for different parameters"} 

                 xvalues=0:5 

                 yvalues=do(0,0.5,0.02); 

 

/*Plotting density function of generalized pareto distribution*/ 

%let sigma_1=1; 

%let zeta_1 = 1; 

 

%let sigma_2=1; 

%let zeta_2 = 5; 

 

%let sigma_3=2; 

%let zeta_3 = 4; 

 

%let sigma_4=3; 

%let zeta_4 = 1; 

 

data GPD; 

do x = 0 to 5 by 0.01; 

pdf_gpd_1= (1/&sigma_1.)*(1+&zeta_1. * x )**(-1-(1/&zeta_1.)); 

pdf_gpd_2= (1/&sigma_2.)*(1+&zeta_2. * x )**(-1-(1/&zeta_2.)); 

pdf_gpd_3= (1/&sigma_3.)*(1+&zeta_3. * x )**(-1-(1/&zeta_3.)); 

pdf_gpd_4= (1/&sigma_4.)*(1+&zeta_4. * x )**(-1-(1/&zeta_4.)); 

output; 

end; 

run; 

 

title "Generalized Pareto distribution"; 

title2 "For different values of (*ESC*){unicode sigma} and (*ESC*){unicode 

xi} "; 

 

proc sgplot data = GPD noautolegend; 

series x=x y=pdf_gpd_1 / lineattrs = (thickness=2) 

legendlabel="(*ESC*){unicode sigma} = 1 (*ESC*){unicode xi} = 1"; 
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series x=x y=pdf_gpd_2 / lineattrs = (thickness=2) 

legendlabel="(*ESC*){unicode sigma} = 1 (*ESC*){unicode xi} = 5"; 

series x=x y=pdf_gpd_3 / lineattrs = (thickness=2) 

legendlabel="(*ESC*){unicode sigma} = 2 (*ESC*){unicode xi} = 4"; 

series x=x y=pdf_gpd_4 / lineattrs = (thickness=2) 

legendlabel="(*ESC*){unicode sigma} = 3 (*ESC*){unicode xi} = 1"; 

keylegend / position=NW location=inside across=1 noborder valueattrs=(size=9 

weight=bold); 

yaxis min=0 max=1 label="PDF" labelattrs=(size=9 weight=bold); 

xaxis min=0 max=5 label="x" labelattrs=(size=9 weight=bold); 

run; 

title; 

/*## Plotting CDF for PARETO DISTRIBUTION*/ 

 

proc iml; 

start paretoCDF(x,a,b); 

f=j(nrow(x),ncol(x),0); 

idx=loc(x>b); 

if ncol(idx)>0 then do; 

v=x[idx]; 

f[idx] = 1-(b/x)##a; 

end; 

return(f); 

finish; 

 

x=do(0.6,15,0.01); 

y1 = paretoCDF(x,1,0.5); 

y2 = paretoCDF(x,3,0.5); 

g = repeat({1,2}, 1, ncol(x));   /* 1,1,1,...,2,2,2 */ 

x = x || x; 

y = y1 || y2; 

title "Pareto CDF Series Plot "; 

call Series(x, y) group=g          

                 grid={X Y} 

                 label={"X" "pareto CDF for different parameters"} 

                 xvalues=0:5 

                 yvalues=do(0,0.5,0.02); 

 

 

/*Plotting cumulative density function of generalized pareto distribution*/ 

 

%let zeta_1 = 1; 

%let zeta_2 = 5; 

%let zeta_3 = 9; 

%let zeta_4 = 3; 

 

data GPD_cdf; 

do x = 0 to 5 by 0.001; 

cdf_gpd_1= 1-(1+&zeta_1.*x)**((-1/&zeta_1.)); 

cdf_gpd_2= 1-(1+&zeta_2.*x)**((-1/&zeta_2.));; 

cdf_gpd_3= 1-(1+&zeta_3.*x)**((-1/&zeta_3.));; 

cdf_gpd_4= 1-(1+&zeta_4.*x)**((-1/&zeta_4.));; 

output; 

end; 

run; 
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title "Generalized Pareto distribution"; 

title2 "For different values of (*ESC*){unicode theta} and (*ESC*){unicode xi} 

"; 

 

proc sgplot data = GPD_cdf noautolegend; 

series x=x y=cdf_gpd_1 / lineattrs = (thickness=2) legendlabel="(*ESC*){unicode 

theta} = 1 (*ESC*){unicode xi} = 1"; 

series x=x y=cdf_gpd_2 / lineattrs = (thickness=2) legendlabel="(*ESC*){unicode 

theta} = 1 (*ESC*){unicode xi} = 5"; 

series x=x y=cdf_gpd_3 / lineattrs = (thickness=2) legendlabel="(*ESC*){unicode 

theta} = 2 (*ESC*){unicode xi} = 20"; 

series x=x y=cdf_gpd_4 / lineattrs = (thickness=2) legendlabel="(*ESC*){unicode 

theta} = 3 (*ESC*){unicode xi} = 1"; 

keylegend / position=NW location=inside across=1 noborder valueattrs=(size=9 

weight=bold); 

yaxis min=0 max=1 label="PDF" labelattrs=(size=9 weight=bold); 

xaxis min=0 max=1 label="x" labelattrs=(size=9 weight=bold); 

run; 

title; 

/*## plotting hazard rate function of Pareto distribution*/ 

 

proc iml; 

start paretosurv(x,a,b); 

f=j(nrow(x),ncol(x),0); 

idx=loc(x>b); 

if ncol(idx)>0 then do; 

v=x[idx]; 

f[idx] = ((a*b##a)#(1/(x##(a+1))))/((b/x)##a); 

end; 

return(f); 

finish; 

 

x=do(0.6,15,0.01); 

y1 = paretosurv(x,1,0.5); 

y2 = paretosurv(x,3,0.5); 

g = repeat({1,2}, 1, ncol(x));   /* 1,1,1,...,2,2,2 */ 

x = x || x; 

y = y1 || y2; 

title "Pareto Survival Series Plot "; 

call Series(x, y) group=g          

                 grid={X Y} 

                 label={"X" "pareto survival plot for different parameters"} 

                 xvalues=0:5 

                 yvalues=do(0,0.5,0.02); 

 

title; 

 

 

proc univariate data=pareto; 

var x; 

histogram; 

inset n mean(5.3) std='std Dev'(5.3) skewness(5.3); 

output out=moments mean=_mean_ std=_stvdev_  

      skewness=_skewness_ kurtosis=_kurtosis_ n=_count_; 

run; 
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data moments; 

set moments; 

a_mme = _mean_*(_stvdev_**2+_mean_**2)/ 

          (_stvdev_**2-_mean_**2); 

b_mme = 2*(_stvdev_**2)/(_stvdev_**2 - _mean_**2); 

run; 

 

 

data _null_; 

set moments; 

call symput("a_mme",a_mme); 

call symput("b_mme",b_mme); 

run; 

/**/ 

/*## MLE estimation */ 

proc iml; 

use pareto; 

read all into x_obs; 

n_obs = nrow(x_obs); 

 

b_o = &b_mme; 

a_o = &a_mme; 

 

val_o= b_o//a_o; 

 

do i=1 to 10000; 

 

/*First derivative*/ 

d_b = n_obs/b_o + n_obs*log(a_o) - sum(log(x_obs + j(n_obs,1,a_o))); 

 

d_a = n_obs*b_o /a_o - (b_o+1) * sum((x_obs + j(n_obs,1,a_o))##(-1));  

 

/*Second derivative*/ 

 

d1_b = -n_obs/(b_o**2); 

d1_ab = n_obs/a_o - sum(x_obs+j(n_obs,1,a_o)); 

d1_a = -n_obs*b_o/(a_o**2) + (b_o+1) * sum((x_obs + j(n_obs,1,a_o))##(-2)); 

 

par_1 = d_b // d_a; 

par_2 = (d1_b || d1_ab) // (d1_ab || d1_a); 

 

val_n = val_o - (inv(par_2))*par_1; 

diff = sum(abs(val_n-val_o)); 

b_o = val_n[1]; 

a_o = val_o[2]; 

 

val_o = val_n; 

 

if diff < 0.0001 then i =10000; 

end; 

print diff val_n; 

quit; 
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/*Simulation Technique to generate GPD random variable*/ 

 

%let sigma=2; 

%let zeta=3; 

%let n=800; 

%let nsample=5000; 

 

data simulation(drop=i u); 

do sampleid = 1 to &nsample.; 

do i= 1 to &n.; 

u=ranuni(1234); 

x=-(&sigma./&zeta.)*(1-(1/(1-u)**(&zeta.))); 

output; 

end; 

end; 

run; 

 

/*Maximum likelihood estimation using proc NLMIXED*/ 

 

proc nlmixed tech=trureg data=simulation MAXFUNC=900 MAXITER=900; 

parms zeta=2.5 sigma=1.5; 

title 'Generalized pareto distribution '; 

bounds 0 < sigma zeta; 

xx=(1/sigma)*(1+(zeta*x)/sigma)**(-(1+(1/zeta))); 

ll=log(xx); 

model x~general(ll); 

run; 

 

/* Data Analysis;*/ 

 

data cancer; 

input x @@; 

cards; 

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 

3.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 

9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 

25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 

2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 

7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 

1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 

5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 

17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 

5.85 8.26 11.98 19.13 1.7 3.25 4.50 6.25 8.37 12.02 

2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 

12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69 

; 

run; 

/**/ 

/*http://support.sas.com/resources/papers/proceedings15/3307-2015.pdf*/ 

 

* Close all open ODS destinations; 

ods _all_ close; 

options nocenter nodate nonumber; 

title1 'Table [your table number here]'; 

title2 '[your table title here]'; 
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ods rtf file='APA.rtf' bodytitle_aux style=Journal; 

 

proc severity data=cancer print=all plots=pp; 

   loss x; 

   dist  gpd IGAUSS logn pareto weibull; 

   nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500; 

run; 

quit; 

ods rtf close; 

 

/*Data Analysis 2 */ 

proc severity data=work.pal print=all plots=pp; 

   loss x; 

   dist  burr pareto weibull exp gamma; 

   nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500; 

run; 

 


