
1

MWSUG 2017 - Paper TT09

An Array of Possibilities: Manipulating Longitudinal Survey Data with
Arrays

Lakhpreet “Preeti” Gill, Mathematica Policy Research

ABSTRACT

SAS® arrays are well-suited for handling longitudinal survey data, which are data collected at multiple time points for
a sampled population. Depending on the research question and selected sample, the study period for observing
respondents may vary based on when they entered and exited the survey. For example, a researcher may only want
to add respondents to the study when they reach a certain age, and, in contrast to a cross-sectional study, this will
occur at different waves of the survey. In this paper, we will use the Health and Retirement Study to identify differing
baseline and follow-up measurements conditioned on age and response status, and learn different methods for
leveraging SAS arrays to manipulate the data.

INTRODUCTION

SAS processes data observation by observation, which makes it well-suited for working with longitudinal
data. These data typically take a “wide” file structure, with variables being added onto the dataset to
record new events (maintaining one observation per unit of analysis) instead of observations being added
to the dataset to record new events (creating multiple observations per unit of analysis).

With surveys that are longitudinal, arrays allow the programmer to identify relevant variables that are
associated with varying time points (survey “waves”), select the relevant wave variable for a respondent
(that could be different for the next respondent), and perform data manipulations (accounting for
differences among respondents’ waves).

The code in this paper relies on data from the Health and Retirement Study (HRS), which is an ongoing
panel study of pre-retirement and retirement adults ages 50 and older. The HRS started in 1992 and
interviews respondents every two years. It provides a wealth of information on the health, well-being and
financial solvency of an aging population. The publically available survey can be linked to a number of
other ancillary datasets, such as restricted access Social Security Disability Insurance (SSDI) claims
history or publically available genetic risk scores. Data and resources can be found here:
https://hrs.isr.umich.edu/.

Let’s create a hypothetical research scenario to guide examples for the paper. In this scenario, a
researcher wants to evaluate the effects of being denied SSDI through retirement. Does the applicant
chose to take early retirement or wait until reaching the full retirement age (“FRA”)? The baseline years
will run from Waves 1 (1992) to 7 (2004) and are based on when a respondent is between ages 58 and
60. The analysis years will run from Waves 4 (1998) to 11 (2012) and will be based on when a
respondent reaches the FRA. By creating analytic variables for these two measurement time points, this
paper will demonstrate how to:

• create and use an array index that varies for respondents

• assign variables and troubleshoot “out of range” cases

• use an index to create and populate time series variables

CREATING AN ARRAY INDEX

The first necessary step to using an array is having an index. A common form of an index is the variable
assigned to a start and stop value for a DO LOOP. Data are processed by iterating through the loop, with
each iteration instructing SAS on the array element to consider.

Here is a basic example:

ARRAY VARLIST (10) VAR1-VAR10;

DO I = 1 TO 10;

IF VARLIST{I} = . THEN VARLIST{I) = 0;

https://hrs.isr.umich.edu/

2

END;

The array reference is VARLIST, the array subscript that defines the range of elements in the array is 10,
the array elements are VAR1 to VAR10, and the index is the variable I, which is used in the array
statement to call an element from the array. The index increments by 1 for each iteration of the 10 loops,
then resets to 1 at the next observation.

In this case, a repeated action is performed on all variables that have a missing value. But what we want
is an action performed once on only one variable specific to a respondent’s baseline or analytic
conditions.

DYNAMICALLY GENERATE THE INDEX

The index for processing survey data needs to select the wave variable for a respondent, and so in this
case, the index value should be particular to each respondent. Once generated, the index can be used in
an iterative DO LOOP, but the primary purpose is to create variables using a simple assignment
statement.

Below is an example to help visualize this. We see a wide file in which a respondent’s age over the years
is captured in enumerated wave variables. Imagine that the data set continues to extend rightward, with a
series of wave variables for different measures. We want to use an array to identify the wave in which the
measurement conditions for baseline and analysis occur, and then use that wave to identify other
analysis variables going forward. So considering a baseline condition of being between ages 58 and 60,
Subject 1a reaches baseline in Wave 5 while Subject 3c reaches baseline in Wave 1.

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 …

SUBJECT_ID RELAGE_1 RELAGE_2 RELAGE_3 RELAGE_4 RELAGE_5 RELAGE_6 RELAGE_7…

1a 51 53 55 57 59 61 63

2b 48 50 52 54 56 58 60

3c 58 61 63 66 68 70 .
Raw data example of relative age for three respondents from Wave 1 to Wave 7

Putting this in practice, the following code dynamically generates an index using a DO LOOP to identify
the wave in which baseline conditions are met for a valid age and interview status combination:

Code 1

ARRAY RELAGE(11) RELAGE_1 - RELAGE_11; ①

ARRAY STATUS(11) RIWSTAT_1 - RIWSTAT_11;

DO K = 1 TO 11; ①

 IF NOT MISSING(B_INDX) THEN LEAVE; ②

 IF 58 <= RELAGE{K}<= 60 AND STATUS{K} = 1 THEN B_INDX= K; ③

END;

①The suffix for each variable in the array represents a wave. The index, K, for the DO LOOP therefore

maps to the 11 waves of the survey.

② The baseline index variable, B_INDX, is initialized. At the first iteration of the loop, it will be missing.

But this may not be true for later iterations, and a LEAVE statement is used to exit the DO LOOP at
the first encounter of a true condition to avoid overwriting with a later wave’s information that could
also be true. (Recall that the survey is biennial, but the baseline condition spans 3 possible years.)

3

③ The two baseline conditions of age and interview status are checked at each wave, and if true, the

variable B_INDX is set to the DO LOOP index, K.

With the index created, records that don’t have a value for B_INDX can be dropped. Also, note how the
hypothetical states that the baseline years run up until Wave 7. We didn’t need to have the range extend
to Wave 11, but it can serve as data validation step to catch any cases that fall outside of the expected
range for further examination.

Now looking to generate the index for the analysis measurement period, we see the wave range does not
start at 1. How do we approach the algorithm? We can let the array cycle through all 11 waves as we did
above, or we can simply alter the array subscript and reduce processing time:

Code 2.

ARRAY RELAGE(4:11) RELAGE_4 - RELAGE_11; ①

ARRAY STATUS(4:11) RIWSTAT_4 - RIWSTAT_11;

DO J = 4 TO 11; ②

 IF NOT MISSING(A_INDX) THEN LEAVE;
 IF 65 <= RELAGE{J}<= 666 AND STATUS{J} = 1 THEN A_INDX= J;

END;

The array subscript ① identifies the elements as, effectively, Waves 4 to 11 and the DO LOOP index, J,

② restricts the variable, A_INDX, from being populated with values less than 4. If, for example, the array

index started at 1, the programmer would experience an “out of bounds” error, since the array elements
are not identified with that value. We’ll look at cases for how to handle this error later in the paper.

USING AN ARRAY INDEX

Now that we have our indexes, B_INDX and A_INDX, assigning analytic variables will be a snap. We’ll do

three things: ① Assign a series of dummies using binary logic, ② account for missingness, and ③ create

a variable that can be used to check the dummy values against the original variable.

Code 3

ARRAY MSTAT (11)RMSTAT_1 - RMSTAT_11;

B_MSTATMAR = MSTAT{B_INDX} IN (1,2,3); ①

B_MSTATDIV = MSTAT{B_INDX} IN (4,5,6);

B_MSTATWID = MSTAT{B_INDX} = 7;

B_MSTATNEV = MSTAT{B_INDX} = 8;

IF MISSING (MSTAT{B_INDX}) THEN CALL MISSING(OF B_MSTAT:); ②

_MSTATCHK = MSTAT{B_INDX }; ③

The code groups the different values for marital status into four analytic dummy variables. A simple
assignment statement to the array reference is used and binary logic sets each variable equal to 1 or 0. If
the input raw variable is missing, however, all the dummies should be set to missing, and this is
accomplished using the CALL MISSING() routine. It’s good practice to check all coded variables, and the
final variable take the raw information from each respondent’s wave, and assigns that to a check variable.

Looking to the raw input data and comparing to the output data set, we can see how things are mapped
from the raw data to the processed data. Marital information from each respondent’s baseline wave
(B_INDX) are translated into the analytic dummies, and check variable.

4

B_INDX RMSTAT_1 RMSTAT_2 RMSTAT_3 RMSTAT_4

3 . . 1 1

4 . 2 2 5

7

Input 1. Raw input data for three respondents

B_INDX B_MSTATMAR B_MSTATDIV B_MSTATWID B_MSTATNEV B_MSTATCHK

3 1 0 0 0 1

4 0 1 0 0 5

7

Output 1. Processed data for three respondents

CALCULATIONS WITHIN THE ARRAY CALL

If we want to look to the next wave, we can perform a calculation on the index as follows:

Code 4

ARRAY STATUS (11) R_RIWSTAT_1 - R_RIWSTAT_11;

B_STAT = STATUS{B_INDX};

B_STATNXT = STATUS{B_INDX + 1};①

The assignment statement performs a calculation ① on the index to advance to the wave after the

baseline wave.

OUT OF RANGE SCENARIOS

If the log returns ERROR: ARRAY SUBSCRIPT OUT OF RANGE, something is not syncing between the
index and whatever is specified in the array subscript. Typically, the out of range error is triggered when
the index is too small or large for the range specified by the subscript, or the index value is missing.

Conditional logic

Manipulating the array index can take the array out of bounds. Consider the scenario where a
respondent’s analytic wave occurred in wave 11. If we were to check the status for the next wave, well,
there wouldn’t be one! The survey only has 11 waves.

Correct by conditioning out those cases:

 Code 5

IF A_INDX NE 11 THEN A_STATNXT = STATUS{A_INDX + 1};

Hard code the index

Sometimes a survey question wasn’t in place for the duration of the survey history or is constructed
differently at a particular wave. The Activities of Daily Living variable series from the HRS are an example
of this. The question from Wave 1 was constructed differently from later waves. One solution is to adopt
the Wave 2 values for respondents who reach baseline in Wave 1:

 Code 6

ARRAY ADLA (2:11) RADLA_2 - RADLA_11 ; ①

IF B_INDX NE 1 THEN DO; ②

5

 B_ADLA = ADLA{B_INDX} > 0;

 IF MISSING (ADLA{B_INDX}) THEN B_ADLA = .;

 _ADLABCHK = ADLA{B_INDX};

END;

ELSE IF B_INDX EQ 1 THEN DO; ③

 B_ADLA = ADLA{2} > 0; ④

 IF MISSING (ADLA{2}) THEN B_ADLA = .;

 _ADLAB1CHK = ADLA{2};

END;

First, the subscript that restricts the range to from 2 to 11 ① so that it can be tracked with the waves in the

index. Next, there are two forms of conditional logic. If the index is greater than one ②, the data are

processed as usual. If the index equals one ③, however, the data are processed differently. Because the

researcher made a decision to use Wave 2 if a respondent has a baseline in Wave 1, we can hard-code

④ the value of “2” directly into the array statement to assign the Wave 2 value.

ADVANCED USES OF ARRAYS

We have the basics down, so let’s look at two advanced examples of using arrays to get a sense of what
else is possible. Remember that arrays can serve as a temporary grouping of existing variables, or they
can create new variables. We’ll employ both tactics in the next examples.

ALIGN SUBSCRIPTS, INDEXES AND VARIABLE VALUES

In this example, we want to create dummy variables to control for time period effects based on when the
analysis occurred. The variable ANALYSIS_YR captures the year value for a respondent’s wave of
analysis. To create the dummies, we align the array statement and index to the values of the variable
ANALYSIS_YR:

 Code 7

ARRAY CY (1997:2012) CY_1997 – CY_2012; ①

DO I = 1997 TO 2012; ②

 IF ANALYSIS_YR = I THEN CY{I} = 1; ③

 ELSE CY{I} = 0;

END;

The first step creates the variables and sets the subscript to the range of values ① in ANALYSIS_YR. The

index is also synced ② to increment through the range of values in ANALYSIS_YR. Because of this, we

are able to use an assignment statement that evaluates when ANALYSIS_YR equals the index. When

this is true, the index populates the corresponding array element with a 1 ③, otherwise, the array element

receives a 0.

Output 2 shows an example crosstab of the ANALYSIS_YR values against a subset of the newly created
dummy variables:

6

ANALYSIS_YR CY_1997 CY_1998 CY_1999 CY_2000

1997 1 0 0 0

1998 0 1 0 0

1999 0 0 1 0

2000 0 0 0 1

Output 2. Crosstab from using a variable value to guide the array subscript and index

CREATE TIME SERIES VARIABLES

Arrays can be one method to create time series variables. In this example we want a series of variables
to capture household income between baseline and analysis. We need to use arrays of two different
lengths, and will therefore have two different indexes to increment.

 Code 8

ARRAY HITOT (11)HHITOT_1 - HHITOT_11; ①

ARRAY HHINC_SERIES (6); ②

 J = 1; ②

 DO I = B_INDX TO A_INDX ; ①

 HHINC_SERIES {J} = HITOT {I}; ③

 J + 1; ②

 END;

①The array reference HITOT uses the index I which increments from the baseline wave value

(B_INDX) to the analysis wave value (A_INDX).

②The array reference HHINC_SERIES creates 6 variables, HHINC_SERIES1 – HHINC_SERIES6. It

uses the array index J, which needs to be incremented by one at each iteration of the loop.

③The count of unique values between the start and stop values of I and J are the same, but the

elements it corresponds to in an array are different. This is why the assignment statement works.

The input example below shows how the raw data appeared, and the output example shows how this
translated to the time series variables.

B_INDX A_INDX HHITOT_3 HHITOT_4 HHITOT_5 HHITOT_6

4 6 9,500 10,000 15,000 20,000

3 4 44,000 42,000 40,000 38,000

Input 3. Raw data for household income

Output 3. Processed time series data for household income between baseline and analysis.

B_INDX A_INDX HHINC_SERIES1 HHINC_SERIES2 HHINC_SERIES3

HHINC_SERIES4-

HHINC_SERIES6

4 6 10,000 15,000 20,000 .

3 4 44,000 42,000 .

7

 CONCLUSION

In this paper, we learned about different ways to create indexes and employ them as:

• A variable (e.g. B_INDX)

• A calculation (e.g. B_INDX + 1)

• A hardcoded value (e.g., Wave = 2)

• A DO LOOP start and stop value (e.g., K = B_INDX to A_INDX)

• A tool for creating and populating time series variables

We also learned how to troubleshoot for out of bounds cases by using conditional logic for the array
index, and changing the range for the array subscript. There are many more ways to use arrays for
working with longitudinal data, but these key processing steps should set a strong foundation for growing
a programmer’s took kit.

REFERENCES

Kuligowski, Andrew T. and Mendez, Lisa (2016). “An Introduction to SAS® Arrays”. Proceedings of the
SAS Global Forum 2016 Conference. Cary, NC: SAS Institute, Inc.

Wright, Wendi (2005). “Loop-Do-Loop Around Arrays”. Proceedings of the Northeast SAS User Group
2005 Conference. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2011), “Using Arrays in SAS® Programming”. Cary, NC: SAS Institute, Inc.
https://support.sas.com/resources/papers/97529_Using_Arrays_in_SAS_Programming.pdf

ACKNOWLEDGMENTS

The author thanks Kerianne Hourihan, Dean Miller, Ken Peckham, and Scott Greiner of Mathematica for
their technical review, the Michigan SAS Users Group for giving feedback on a first draft of the
presentation, and Jody Schimmel Hyde, Laura Blue and April Wu for guiding research that used the HRS
data. The author also thanks Christopher Bost of MDRC for instilling in her a lasting love for SAS.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Lakhpreet “Preeti” Gill, Senior Programmer Analyst
Mathematica Policy Research
220 East Huron Street
Ann Arbor, MI
48104
pgill@mathematica-mpr.com
www.mathematica-mpr.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/resources/papers/97529_Using_Arrays_in_SAS_Programming.pdf
mailto:pgill@mathematica-mpr.com
http://www.mathematica-mpr.com/

8

.

