
MWSUG 2017 - Paper TT07

The Proc Transpose Cookbook

Douglas Zirbel, Wells Fargo and Co, St Louis, MO

ABSTRACT

Proc TRANSPOSE rearranges columns and rows of SAS® datasets, but its documentation and behavior
can be difficult to comprehend. For common input files, this paper will show a variety of desired output
files, plus code and explanations.

INTRODUCTION

Do you have a SAS® file in one layout of rows and columns – but you need them in a different
arrangement? Maybe you have values for Heart Rate in one column with different rows for each patient’s
5 visits (vertical) – but you want one row for each patient with all 5 visits’ Heart Rates listed as variables
(horizontal)? Or vice versa? Or maybe it’s financial data, or demographic, or any other kind… and any
number of other column/row structures?

Proc TRANSPOSE changes the shape of part of your SAS dataset, usually by 90º. It can make values in
the rows for a variable become new variables and conversely, it can move variables from their horizontal
positions into values in rows. The TRANSPOSE Procedure flips columns and rows of SAS datasets
reliably, faster and simpler than you can with a DATA Step. Yet its documentation and behavior are
difficult to learn. This paper will show you how to turn SAS File “A” into SAS File “B” with Proc
TRANSPOSE. Its SAS File “A” examples are simple, but represent real-world SAS file structures. The
transposed File “B”s also represent typical transposition needs. A TRANSPOSE Samples Lookup Table,
a Syntax Summary, and the full sample SAS code are located in the Appendix for reference.

BASICS

This is above all a short course which you can take, with sample code and before-and-after pictures.
We’ll go through 10 examples of very simplified typical datasets that need to be transposed, along with
explanations. Yet it is also intended to serve as a reference. Here are your options.

 If you want to understand how TRANSPOSE works, go through the “Cookbook Situations”.

 If you want to go directly to a solution based on your file’s layout pattern, go to the “Samples

Lookup Table” in the Appendix.

 If you want syntax details, go to the “TRANSPOSE Syntax” section in the Appendix.

 If you want code, go to the “Code Used In Examples” section.

Here’s an example – a small vertical dataset that you want to re-arrange horizontally. Suppose there are
only two subjects and three dates which are, for now, just character variables. What you really want is a
file that has subject in the first column, but the weights (for the four dates) as their own columns.

What you have

subject date weight

Brittany jan31 145

Ann jan31 153

Brittany feb28 146

Ann feb28 151

Brittany mar31 144

Ann (etc..) mar31 150

What you want

subject jan31 feb28 mar31

Ann 153 151 150

Brittany 145 146 144

This is what we’ll be looking at throughout this paper – pictures of what you have, and what you want.
You should then be able to apply the examples to your own dataset situation and get what you want.

VERY SIMPLE PROC TRANSPOSES

TRANSPOSE has a default behavior, like most SAS procs. If you don’t tell it what to do, but simply name
the input and output datasets, it will turn all numeric columns for a row into a single column, and value of
numeric columns into new variables. When it’s done, it adds a _NAME_ variable to the transposed file so
that you can see where the values came from. Finally, unlike some other Procs, TRANSPOSE does not
print its output.

1) What you have

1.0 File: work.one_row

Obs count weight length width

 1 1 2 4 8

What you get

1.1 File: work.transp_one_row

Obs _NAME_ COL1

 1 count 1

 2 weight 2

 3 length 4

 4 width 8

proc transpose data=work.one_row

 out=work.transp_one_row;

run;

Note that TRANSPOSE also chooses a name for the new column -- COL1. And if you had 2 or more
rows before transposing, you’d get COL1, COL2... COLn in the output.

If the situation were reversed, where the input file had one column with multiple rows, your TRANSPOSE
result would be one row with many columns.

2) What you have

2.0 File: work.one_column

Obs count

 1 3

 2 7

 3 4

 4 1

What you get

2.1 File: work.transp_one_column

Obs _NAME_ COL1 COL2 COL3 COL4

 1 count 3 7 4 1

proc transpose data=work.one_column

 out=work.transp_one_column;

run;

What happens if you have more than one column in the input? You will get multiple rows in the output,
where each row will have the _NAME_ of the original column from the input.

Most of the time we want something more customized though, and TRANSPOSE provides several Proc
options and statements. The main statements are VAR, BY, and ID. We’ll get into specifics, but for the
moment, here is a diagram. We will use this BY, ID, and VAR highlighting in this paper:

Figure 1. BY, ID, and VAR relationships

BY is just like BY in SORT or PRINT, etc;
ID column values become new col
names;

VAR values are flipped 90° to fit the new

structure.

B

Y

I

D

V
A

R

B
Y

VAR

ID

COOKBOOK SITUATIONS

3) What you have
A by-group (person)
A var to transpose: count

3.0 File: work.by_var_and_transp_var

Obs person count

 1 sue 3

 2 sue 7

 3 ted 4

 4 ted 1

What you want (BY)
One row per person, counts as new columns

3.1 File: work.transp_by_var_and_transp_var

Obs person COL1 COL2

 1 sue 3 7

 2 ted 4 1

proc sort data=work.by_var_and_transp_var; /** You need to SORT first!! **/

 by person;

run;

proc transpose data=work.by_var_and_transp_var

 out=work.transp_by_var_and_transp_var (drop=_NAME_);

 by person;

 var count;

run;

The BY variable should be a discrete, or categorical, variable – that is, with a limited number of values for
the dataset. Why? Because your by-group is your main grouping of rows and you want a smaller,
manageable number of them.

The _NAME_ of the variable that was transposed doesn’t really help us in the output so we drop it.

4) What you have
A var w/values for new col names (week)
Vars to transpose: count, weight

4.0 File: work.id_var_and_transp_vars

Obs week count weight

 1 1 10 15

 2 2 20 25

 3 3 30 35

 4 4 40 45

What you want (ID)
One row per transposed variable, and one new column for
each ID value (week)

4.1 File: work.transp_id_var_and_transp_vars

Obs _NAME_ _1 _2 _3 _4

 1 count 10 20 30 40

 2 weight 15 25 35 45

proc transpose data=work.id_var_and_transp_vars

 out=work.transp_id_var_and_transp_vars;

 id week;

 var count weight;

run;

Note that the new columns are named with the week number, but automatically prefixed with “_”. Note
also, the ID variable (like BY) should be discrete/categorical. Why? Because the ID values will become
your new column names – and you probably don’t want too many new columns. BY and ID vars are most
often character-datatype vars, although they certainly can be numeric.

5) What you have
A var w/values for new col names (week)
Vars to transpose: count, weight (for dup ID
values, see Appendix Samples 5a)

5.0 File: work.id_var_and_transp_vars

Obs week count weight

 1 1 10 15

 2 2 20 25

 3 3 30 35

 4 4 40 45

What you want (ID and prefix)
One row per transposed variable, and one new column for each
ID value (week), and better-looking

5.1 File: work.transp_id_var_and_transp_vars

Obs measurement week1 week2 week3

week4

 1 count 10 20 30 40

 2 weight 15 25 35 45

proc transpose data=work.id_var_and_transp_vars

 out=work.transp_id_var_and_transp_vars (rename=(_NAME_=measurement))

 prefix=week;

 id week;

 var count weight;

run;

Important: notice that week’s values are unique. That is, there are not two “week” rows with the same
value. That (duplicate ID values) would lead to two new columns both named “week2”... can’t happen. If
this situation occurs in your input data, you could use Proc MEANS/SUMMARY to get average counts
and weights before running TRANSPOSE – if average values are acceptable to your customer. This is
shown in Appendix Samples and Code sections “5a”. And for an alternative solution, see example 10.

6) What you have

2 vars w/values to be new col names:
year, week
A var to transpose: weight

6.0 File: work.two_id_vars

Obs year week weight

 1 2016 1 170

 2 2017 1 172

 3 2016 4 171

 4 2017 4 163

What you want (multiple IDs)

One row for the transposed var with columns named using
year+week

6.1 File: work.transp_two_id_vars

 yrweek_ yrweek_ yrweek_ yrweek_

Obs Resolution 2016_1 2016_4 2017_1 2017_4

 1 weight 170 171 172 163

proc transpose data=work.two_id_vars /** but do a SORT BY year week first **/

 out=work.transp_two_id_vars /**(rename=(_NAME_=resolution)) **/

 name=Resolution

 prefix=yrweek_

 delimiter=_;
 id year week;

 var weight;

run;

Note that we can use the name= option to provide a new name for _NAME_, instead of using (rename=.

7) What you have
A by-group (person)
An ID var w/values to be new col names: bird
A var to transpose: count

7.0 File: work.by_var_and_id_var

Obs person bird count

 1 SUE Sparrow 30

 2 SUE Wren 32

 3 TED Sparrow 34

 4 TED Wren 39

 5 TED Robin 23

What you want (BY and ID)
One row per person, and turn an input column’s (bird)
values into the new COLs

7.1 File: work.transp_by_var_and_id_var

Obs person Sparrow Wren Robin

 1 SUE 30 32 .

 2 TED 34 39 23

proc sort data=work.by_var_and_id_var;

 by person;

run;

proc transpose data=work.by_var_and_id_var

 out=work.transp_by_var_and_id_var (drop=_NAME_);

 by person;

 var count;

 id bird;

run;

THE DOUBLE-TRANSPOSE SITUATION

Do you want to combine ID column values with existing column names? You can’t do this with a single
TRANSPOSE! Note: there are numerous alternative solutions to this. Josh Horstman’s SAS Global
Forum paper 1266-2014, Five Ways to Flip-Flop Your Data presents 5. He illustrates a relevant example:

CHOLESTEROL_IN

CHOLESTEROL_OUT

SUBJECT VISIT LDL HDL

SUBJECT LDL_1 LDL_2 HDL_1 HDL_2

1 1 115 33

1 115 112 33 43

1 2 112 43 2 136 121 51 50

2 1 136 51 3 99 100 57 59

2 2 121 50

3 1 99 57

3 2 100 59

8) What you have (SAS 9.2 and later)

A by-group (person)
An ID var (week) w/2+ values to be part of new
var names,
one or more vars to transpose: wren_count,
hawk_count

8.0 File: work.combine_id_and_vars

 wren_ hawk_

Obs person week count count

 1 SUE 1 17 3

 2 SUE 2 23 2

 3 TED 1 5 0

 4 TED 2 14 2

What you want (BY and 2 or more sets of ID columns)

One row per BY-group (person), and a set of columns for each
transposed var (wren_count, hawk_count) named with values
of the ID var (week) + transp vars’ names

(Output of second Transpose)

8.2 File: work.combine_id_and_vars_step2

 wren_ hawk_ wren_ hawk_

Obs person count_1 count_1 count_2 count_2

 1 SUE 17 3 23 2

 2 TED 5 0 14 2

proc transpose data=work.combine_id_and_vars /** first SORT BY person week **/

 out=work.combine_id_and_vars_step1;

 by person week;

 var wren_count hawk_count;

run;

Output of first Transpose:

8.1 File: work.combine_id_and_vars_step1

Obs person week _NAME_ COL1

 1 SUE 1 wren_count 17

 2 SUE 1 hawk_count 3

 3 SUE 2 wren_count 23

 4 SUE 2 hawk_count 2

 5 TED 1 wren_count 5

 6 TED 1 hawk_count 0

 7 TED 2 wren_count 14

 8 TED 2 hawk_count 2

proc transpose data=work.combine_id_and_vars_step1

 out=work.combine_id_and_vars_step2 (drop=_NAME_)

 delimiter=_;

 by person;

 var COL1; /** tranposing this to multiple columns **/

 id _NAME_ week; /** combining _NAME_ and week values for new column names **/

run; Output of this second Transpose is seen in Print 8.2 above

A DOUBLE-TRANSPOSE ALTERNATIVE

8a) What you have (SAS pre-9.2)
A by-group (person)
An ID var (week) w/2+ values to be part of new
var names,
one or more vars to transpose: wren_count,
hawk_count

8a.0 File: work.by_var_and_2_id_vals

 wren_ hawk_

Obs person week count count

 1 SUE 1 17 3

 2 SUE 2 23 2

 3 TED 1 5 0

 4 TED 2 14 2

What you want (BY and 2 or more sets of ID columns)
One row per BY-group (person), and a set of columns for each
transposed var (wren_count, hawk_count) named with values
of the ID var (week) + transp vars’ names

8a.3 File: work.by_var_and_2_id_vals_step2

 wren_ hawk_ wren_ hawk_

Obs person count_1 count_1 count_2 count_2

 1 SUE 17 3 23 2

 2 TED 5 0 14 2

proc transpose data=work.combine_id_and_vars

 out=work.combine_id_and_vars_step1a (drop=_NAME_)

 prefix=wren_count_;

 by person;

 id week;

 var wren_count;

run;

Output of first Transpose:

8a.1 File: work.combine_id_and_vars_step1a

 wren_ wren_

Obs person count_1 count_2

 1 SUE 17 23

 2 TED 5 14

proc transpose data=work.combine_id_and_vars

 out=work.combine_id_and_vars_step2a (drop=_NAME_)

 prefix=hawk_count_;

 by person;

 id week;

 var hawk_count;

run;

Output of second Transpose:

8a.2 File: work.combine_id_and_vars_step2a

 hawk_ hawk_

Obs person count_1 count_2

 1 SUE 3 2

 2 TED 0 2

data work.combine_id_and_vars_step3a;

 merge work.combine_id_and_vars_step1a

 work.combine_id_and_vars_step2a;

 by person;

run;

Output of this merge (work.combine_id_and_vars_step2a) is identical to Print 8.2 above

UNUSUAL SITUATIONS: COPY STATEMENT

9) What you have
A var to leave un-transposed: count
A var to transpose: count

9.0 File: work.copy_and_transp_var

Obs count

 1 10

 2 20

 3 30

 4 40

What you want (# of output rows = # of input rows)
a) Transposed var (count), and
b) same number of output rows as input rows

9.1 File: work.transp_copy_and_transp_var

Obs count _NAME_ COL1 COL2 COL3 COL4

 1 10 count 10 20 30 40

 2 20

 3 30

 4 40

proc transpose data=work.copy_and_transp_var

 out=work.transp_copy_and_transp_var;

 copy count;

 var count;

run;

Note that the transposed vars are put only on the first row. If there is a BY group/statement, the
transposed vars go on the first row of each BY group row. COPY does not need to be the same as VAR;
could be another variable.

UNUSUAL SITUATIONS: LET OPTION (NAMING TRANSPOSED VARIABLES WHEN ID HAS DUP
VALUES):

10) What you have
An ID var to be new col names but has
duplicate values: week
A var to transpose: wren_count

What you want (Only 1 of multiple ID values from input)
Take the last value of each ID group to be transposed

10.0File:

work.dup_id_values_LET_option

 wren_

Obs week time count

 1 1 8:00 17

 2 1 17:00 15

 3 2 8:00 23

 4 2 17:00 20

 5 3 8:00 5

 6 3 17:00 2

 7 4 8:00 2

 8 4 17:00 0

10.1 File: work. transp_dup_id_values_LET_option

Obs _NAME_ week1 week2 week3 week4

 1 wren_count 15 20 2 0

proc sort data=work.dup_id_values_LET_option;

 by week time;

run;

proc transpose data=work.dup_id_values_LET_option

 out=work.transp_dup_id_values_LET_option

 prefix=week

 LET;

 id week;

 var wren_count;

run;

Because LET takes the last set of values for the ID to transpose, make sure that you SORT prior to
TRANSPOSE so that you get the right values (in last position) for each by BY group.

CONCLUSION

Proc TRANSPOSE is an easy way to rearrange rows and columns – if you have examples to refer to.
Use those in this paper, and if you have other, interesting TRANSPOSE situations, feel free to send them
to me.

REFERENCES

Horstman, Joshua M, 2014, “Five Ways to Flip-Flop Your Data”, SAS Global Forum Proceedings 2014

Stuelpner, Janet, 2006, “The TRANSPOSE Procedure or How To Turn It Around”, Proceedings of SAS
Users Group International 31

Tilanus, Erik W., 2007, “Turning the data around: PROC TRANSPOSE and alternative approaches”, SAS
Global Forum Proceedings 2007

ACKNOWLEDGMENTS

Thanks to Josh Horstman for permission to include a portion of his paper.

CONTACT INFORMATION

Your comments, feedback, and questions are valued and encouraged. Contact the author at:

Douglas Zirbel
Wells Fargo & Co.
doug_zirbel@hotmail.com or douglas.w.zirbel@wellsfargo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:doug_zirbel@hotmail.com
mailto:douglas.w.zirbel@wellsfargo.com

APPENDIX

SAMPLES LOOKUP TABLE

Ex. What you have What you want What you do

1 One column, many rows Many columns, one row (simple) Basic/default Transpose

2 Many columns, one row Many rows, one column (simple) Basic/default Transpose

 Many columns, many rows Many rows, many columns (simple) Basic/default Transpose
3 A by-group (person) var

A var to transpose: count
One row per person, counts as
new columns

BY person;

VAR count;

4 Var w/values for new col names
(week)
Vars to transpose: count, weight

One row per transposed variable,
one new column for each ID value
(week)

ID week;

VAR count weight;

5 A var w/values for new col names
(week)
Vars to transpose: count, weight

One row per transposed variable,
and one new column for each ID
value (week), and better-looking

prefix=week

ID week;

VAR count weight;

5a ID var with dup values: week

Var to transpose: count

One row per transposed var, one

new var for each ID value...but no

dup-ID ERRORs

(this works if mean values are

acceptable by your customer)

Summarize dup IDs with

Proc MEANS first, then

transpose that output proc

means data=..NWAY;

 class week; /*(ID)*/

 var count;

 output out=...

 mean(count)=count;

run;

6 2 vars w/values to be new col names:
year, week
A var to transpose: weight

One row for the transposed var with
columns named using year+week

prefix=yrweek_

delimiter=_

ID year week;

VAR weight;

7 A by-group (person)
An ID var w/values to be new col
names: bird
A var to transpose: count

One row per person, and turn an
input column’s (bird) values into the
new COLs

BY person;

VAR count;

ID bird;

8 A by-group (person)
An ID var (week) w/2+ values to be
part of new var names,
one or more vars to transpose:
wren_count, hawk_count

One row per BY-group (person),
and a set of columns for each
transposed var (wren_count,
hawk_count) named with values of
the ID var (week) + transp vars’
names

Double transpose:
BY person week;

VAR wren hawk;

then
BY person;

VAR COL1;

ID _NAME_ week;

8a (Above, alternative method) (Above, alternative method) Double transpose:
BY person;

ID week;

VAR wren_count;

then
BY person;

ID week;

VAR hawk_count;

Then merge
9 A var to leave un-transposed: count

A var to transpose: count
What you want (# of output rows
= # of input rows)
a) Transposed var (count), and
b) same number of output rows as
input rows

COPY count;

VAR count;

10 An ID var to be new col names but
has duplicate values: week
A var to transpose: wren_count

Take the last value of each ID
group to be transposed

Sort first by ID
LET option

ID week;

VAR wren_count;

TRANSPOSE SYNTAX

PROC TRANSPOSE Proc name (required); note: unlike some Procs, TRANSPOSE does not print
anything

Proc options

data= Input dataset (required, otherwise it picks up _last_ dataset)

out= Transposed output file. (required, otherwise it writes output files as work.data#, e.g.
work.data1, etc)

obs/where/keep/rename… Many ordinary dataset options are also available after the data= or out=

prefix= a prefix to use for constructing names for transposed variables in the output data set.
For example, if PREFIX=QTCB, then the names of the variables are QTCB1,
QTCB2, …, QTCBn; otherwise, transposed columns are COL1, COL2, … COLn

suffix= a suffix to use in creating names for transposed vars in the output dataset

name= the name for the variable in the output data set that contains the name of the variable
that is being transposed to create the current observation; if you don’t use this, the
column will automatically be named _NAME_

label= a name for the variable in the output data set that contains the label of the variable
that is being transposed to create the current observation; like name=, if the variable

being transposed has a variable label and you don’t use this option, the column will
be automatically named _LABEL_

delimiter= Provides a delimiter character (e.g. _) to separate new column names – when the ID

statement has more than one variable (new with SAS 9.2)

let An odd option. It allows duplicate values of an ID variable (used to name the new
column(s)). PROC TRANSPOSE transposes the observation that contains the last
occurrence of a particular ID value within the data set or BY group. You might want
this – but be sure to sort your data so that the last occurrence value is the one you
want. Try it to see how it works.

Proc Statements

VAR Names the variable(s) to be transposed – can be character or numeric; if you don’t
have a VAR statement, all numeric vars will be transposed

ID A variable whose values will become the new transposed columns – often a numeric
value and often used with the prefix= option. If it is numeric and no prefix= is given

the number will be prefixed with an underscore when it becomes a var name

IDLABEL Can only be used with the ID statement – creates variable labels for the transposed
vars by using the value of another column that is related to the ID column. For
example, if studentnum is unique and you use ID studentnum; then IDLABEL
student_last_name; could provide the student’s last names as the column labels to
be used with e.g. proc print data=work.xyz label;.

BY The BY var(s) is not transposed (flipped) – it is often found in the first column(s); data
must be first SORTed by the same BY var(s) before using BY in Proc TRANSPOSE.
For each BY-group, the proc creates one row for each var it transposes: for example,
if 3 “horizontal” numeric vars for a single BY-group row are transposed, there will be
3 rows with that BY var value in the output (and vice versa):
 (# of output rows) = (# of BY-groups) * (# of transposed vars)

COPY Another unusual feature. Copies one or more vars directly from the input data set to
the output data set without transposing them – the best of both worlds, i.e., you get
transposed vars + the original rows; the number of rows in the output dataset is equal
to the number of rows in the input dataset, and the first row for each by-group
contains transposed values. Try it to see how it works.

RUN A Good SAS Practice (GSP)

Other statements

attrib Associates attributes (format, informat, label, length) with variables by changing the
descriptor information of the SAS dataset

format Associates formats with variables

label Assigns descriptive labels to variables

where Selects observations from SAS datasets that meet a particular condition

11

CODE USED IN EXAMPLES

**;

* CURRENT PROGRAM SUMMARY SECTION ;

**;

* Pgm name : $Id:

Proc_Transpose_Cookbook_MWSUG_2017_TT07.sas 649 2017-03-31

18:39:55Z n550513 $;

* Curr Descr: Samples for MWSUG 2017 paper TT07;

**;

* Declare print macro, obs= is optional, otherwise max;

**;

%macro proc_print(run_yn=y, data=, obs=, example_num=);

 %if %upcase(&run_yn) ne N %then %do;

 %if &obs eq %str() %then %do;

 %let obs = max;

 title "&example_num File: &data";

 %end;

 %else %do;

 title "&example_num File: &data (obs=&obs)";

 %end;

 proc print data=&data (obs=&obs) width=min

 heading=h;

 run;

 %end;

%mend proc_print;

*******************************;

* 1) Transp 1 row;

*******************************;

data work.one_row;

 infile cards;

 input count weight length width;

 cards;

1 2 4 8

;

run;

%proc_print(data=work.one_row, example_num=1.0);

proc transpose data=work.one_row

 out=work.transp_one_row;

run;

%proc_print(data=work.transp_one_row, example_num=1.1);

*******************************;

* 2) Transp 1 column;

*******************************;

data work.one_column;

 infile cards;

 input count;

 cards;

3

7

4

1

;

run;

%proc_print(data=work.one_column, example_num=2.0);

proc transpose data=work.one_column

 out=work.transp_one_column;

run;

%proc_print(data=work.transp_one_column, example_num=2.1);

*******************************;

* 3) By var + transp var;

*******************************;

data work.by_var_and_transp_var;

 infile cards;

 input person $ count;

 cards;

sue 3

sue 7

ted 4

ted 1

;

run;

%proc_print(data=work.by_var_and_transp_var,

example_num=3.0);

proc sort data=work.by_var_and_transp_var; /** You need to

SORT first!! **/

 by person;

run;

proc transpose data=work.by_var_and_transp_var

 out=work.transp_by_var_and_transp_var

(drop=_NAME_);

 by person;

 var count;

run;

%proc_print(data=work.transp_by_var_and_transp_var,

example_num=3.1);

*******************************;

* 4) ID var + transp var;

*******************************;

data work.id_var_and_transp_vars;

 infile cards;

 input week count weight;

 cards;

1 10 15

2 20 25

3 30 35

4 40 45

;

run;

%proc_print(data=work.id_var_and_transp_vars,

example_num=4.0);

proc transpose data=work.id_var_and_transp_vars

 out=work.transp_id_var_and_transp_vars;

 id week;

 var count weight;

run;

%proc_print(data=work.transp_id_var_and_transp_vars,

example_num=4.1);

*******************************;

* 5) ID var + transp var w/prefix;

*******************************;

data work.id_var_and_transp_vars;

 infile cards;

 input week count weight;

 cards;

1 10 15

2 20 25

3 30 35

4 40 45

;

run;

%proc_print(data=work.id_var_and_transp_vars,

example_num=5.0);

proc transpose data=work.id_var_and_transp_vars

 out=work.transp_id_var_and_transp_vars

(rename=(_NAME_=measurement))

 prefix=week;

 id week;

 var count weight;

run;

%proc_print(data=work.transp_id_var_and_transp_vars,

example_num=5.1);

*******************************;

* 5a) dup ID values ;

*******************************;

data work.dup_id_values;

 infile cards;

 input week count;

 cards;

1 10

2 20

2 24

3 30

4 40

;

run;

%proc_print(data=work.dup_id_values, example_num=5a.0);

proc means data=work.dup_id_values NWAY NOPRINT;

 class week;

 var count;

 output out=work.means_dup_id_values (drop=_type_

freq) mean(count)=count;

run;

%proc_print(data=work.means_dup_id_values,

example_num=5a.1);

proc transpose data=work.means_dup_id_values

 out=work.transp_means_dup_id_values

(rename=(_NAME_=measurement))

 prefix=week;

 id week;

 var count;

run;

%proc_print(data=work.transp_means_dup_id_values,

example_num=5a.2);

***;

* 6) 2 or more id vars for the new columns;

***;

data work.two_id_vars;

 infile cards;

 input year week weight ;

 cards;

12

2016 1 170

2017 1 172

2016 4 171

2017 4 163

;

run;

%proc_print(data=work.two_id_vars, example_num=6.0);

proc sort data=work.two_id_vars;

 by year week;

run;

proc transpose data=work.two_id_vars

 out=work.transp_two_id_vars

/**(rename=(_NAME_=resolution)) **/

 name=Resolution

 prefix=year_week_

 delimiter=_;

 id year week;

 var weight;

run;

%proc_print(data=work.transp_two_id_vars, example_num=6.1);

***;

* 7) A by var and an id var;

***;

data work.by_var_and_id_var;

 infile cards;

 input person $ bird $ count;

 cards;

SUE Sparrow 30

SUE Wren 32

TED Sparrow 34

TED Wren 39

TED Robin 23

;

run;

%proc_print(data=work.by_var_and_id_var, example_num=7.0);

proc sort data=work.by_var_and_id_var;

 by person;

run;

proc transpose data=work.by_var_and_id_var

 out=work.transp_by_var_and_id_var (drop=_NAME_);

 by person;

 var count;

 id bird;

run;

%proc_print(data=work.transp_by_var_and_id_var,

example_num=7.1);

***;

* 8) A by var and 2 or more id vars;

* (Double-transpose);

***;

data work.combine_id_and_vars;

 infile cards;

 input person $ week wren_count hawk_count;

 cards;

SUE 1 17 3

SUE 2 23 2

TED 1 5 0

TED 2 14 2

;

run;

%proc_print(data=work.combine_id_and_vars,

example_num=8.0);

proc sort data=work.combine_id_and_vars;

 by person week;

run;

proc transpose data=work.combine_id_and_vars

 out=work.combine_id_and_vars_step1;

 by person week;

 var wren_count hawk_count;

run;

%proc_print(data=work.combine_id_and_vars_step1,

example_num=8.1);

proc transpose data=work.combine_id_and_vars_step1

 out=work.combine_id_and_vars_step2

 (drop=_NAME_)

 delimiter=_;

 by person;

 var COL1; /** tranposing this to multiple columns **/

 id _NAME_ week; /** combining _NAME_ and week for new

column names **/

run;

%proc_print(data=work.combine_id_and_vars_step2,

example_num=8.2);

***;

* 8a) A by var and 2 or more id vars;

* (Double-transpose) - another way (merge);

***;

proc transpose data=work.combine_id_and_vars

 out=work.combine_id_and_vars_step1a

 (drop=_NAME_)

 prefix=wren_count_;

 by person;

 id week;

 var wren_count;

run;

%proc_print(data=work.combine_id_and_vars_step1a,

example_num=8a.0);

proc transpose data=work.combine_id_and_vars

 out=work.combine_id_and_vars_step2a

 (drop=_NAME_)

 prefix=hawk_count_;

 by person;

 id week;

 var hawk_count;

run;

%proc_print(data=work.combine_id_and_vars_step2a,

example_num=8a.1);

data work.combine_id_and_vars_step3a;

 merge work.combine_id_and_vars_step1a

 work.combine_id_and_vars_step2a;

 by person;

run;

%proc_print(data=work.combine_id_and_vars_step3a,

example_num=8a.2);

***;

* 9) Unusual - where you want same number ;

* of output rows as input rows (COPY stmt);

***;

data work.copy_and_transp_var ;

 infile cards;

 input count;

 cards;

10

20

30

40

;

run;

%proc_print(data=work.copy_and_transp_var,

example_num=9.0);

proc transpose data=work.copy_and_transp_var

 out=work.transp_copy_and_transp_var;

 copy count;

 var count;

run;

%proc_print(data=work.transp_copy_and_transp_var,

example_num=9.1);

***;

* 10) Unusual - where you keep only last row;

* for duplicate ID values (LET option);

***;

data work.dup_id_values_LET_option;

 infile cards;

 input week time wren_count;

 informat time time5.;

 format time time5.;

 cards;

1 08:00 17

2 08:00 23

3 08:00 5

4 08:00 2

1 17:00 15

2 17:00 20

3 17:00 2

4 17:00 0

;

run;

proc sort data=work.dup_id_values_LET_option;

 by week time;

run;

%proc_print(data=work.dup_id_values_LET_option,

example_num=10.0);

proc transpose data=work.dup_id_values_LET_option

 out=work.transp_dup_id_values_LET_option

 prefix=week

 LET;

 id week;

 var wren_count;

run;

%proc_print(data=work.transp_dup_id_values_LET_option,

example_num=10.1);

