MWSUG 2017 - Paper HW02

Cleaning Data with Just a Handful of SAS® Functions
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT:

A function is a routine that returns a value based on its arguments. Hundreds of functions are available
through SAS® and they can be used to do a number of tasks. This paper looks specifically at ways that you
can use functions to clean data. Functions are also used widely to manipulate data. This paper will look at
ways to manipulate dirt right out of the data. After a brief introduction, this paper is divided into six sections:
each looking at a main function, but also included will be a discussion as to how to use several functions to
get the job (cleaning data) done that allows users to create their own formats. That tool is the FORMAT
procedure.

INTRODUCTION:

Functions are very powerful routines that can be used in a number of places in SAS. While this paper looks
at using them in the DATA step, it is the author's hope that enough detail is shown so that users can apply
their knowledge and skills to see how they can be used in PROC steps as well. (Functions can be used in
several procedures, most notably PROC SQL, but they can also be used in WHERE statements in other
procedures as well. The typical syntax is:

function (argument...)

Figure 1.

Arguments:

are generally separated by commas,
can be variables,

can be expressions,

can be constants,

can be other functions.

(XX X X 4

This paper is divided into six sections with each one emphasizing a function. Each section will also have
other functions that play minor roles. The six sections are:

1. ELIMINATING LEADING ZEROS:

Sometimes you may have character variables that start with numbers. When these numbers start with
leading zeros, some users have found that this may present problems when moving data from SAS to other
kinds of data like spreadsheets, for example. The following example shows a DATA step that can remove
leading zeros.

S data leading_0;
input Number §;
Non_0 =indexc(Number, "123456789");
New_Number = substr(Number, Non_0);
cards;
0123
007_0K
00033Y
E proc print;
run;

Figure 2.

Here a CARDS statement is used primarily so you can see what the data looks like before being read.
After the INPUT statement, we see our first function: the INDEXC at work. The INDEXC function
looks at the first argument and returns the starting location of any of the values in the second argument.
Notice the second argument contains a string of numbers.... but zero is missing. So, what the INDEXC
function will tell us is the starting location of a non-zero and stores that value in a variable called Non_0. The
value of Non_0 is used in the second argument of the SUBSTR function. The SUBSTR function returns a
substring of the first argument. The second argument is the starting location of the substring. In this case,
where the non-zero starts. The PROC PRINT output shows how this works.

Hew_
Obs= Humber Mon_0 Humber

1 0123 2 123
2 007 _0K 3 f_0K
3 00033Y 4 337

Figure 3.

Note: the two assignment statements in the DATA step could have been writen as one, as follows:
New_Number = substr (Number, indexc (Number, '123456789"));

If leading zeros are unwanted, then they are the same as dirty data.

2. THE LENGTH FUNCTION:

Sometimes data comes at us as one long character string and we need to manipulate it. In this case, we
want to create two variables from it. In this case, we want to create CITY and STATE from the data shown
here.

™ VIEWTABLE: Work.City

city_state
King and Queen Court House VA

J—

2 Saint Mary of the Woods [N
3 West Palm Beach FL
4 Outer Banks NC

Figure 4.

In this data, we see that some values of CITY contain as many as five ‘'words'. The value of STATE takes
up the last 2 positions of CITY_STATE. How do we write a DATA step to split CITY_STATE into CITY and
STATE when STATE starts in different positions within CITY?

-ldata city_state;
set city;
length state § 5;
len=length(city_state);
state = scan(city_state, -1);
city=substr(city_state, 1, len - 3);
run;

Figure 5.

The first assignment statement uses the LENGTH function to get the length of the value of CITY_STATE
and stores it in a variable called LEN.

The second assignment statement uses the SCAN function to get the rightmost 'word' from CITY_STATE
and stores it in a variable called STATE.

The third assignment statement creates CITY and uses the value of the variable LEN created in the first
assignment statement. In this case, a subtraction expression is used as the third argument for the SUBSTR
function.

Opening a the viewtable window on the dataset shows the results.

™ VIEWTABLE: Work.City_state

city_state state | len city
1 King and Queen Court House VA VA 29 King and Queen Court House
2 Saint Mary of the Woods IN [N 26 Saint Mary of the Woods
3 West Palm Beach FL FL 18 West Palm Beach
£ Outer Banks NC MNC 14 Quter Banks
Figure 6.

3. THE TRANSLATE FUNCTION:

Sometimes dirty data comes at us with characters values that should be numbers. The most common
examples of this is when a lower case 'L' is found in a numeric value instead of a 1; and the letter 'o' found
in a string of digits instead of 0. The STREET_ADDRESS in the data below illustrates this situation.

ik VIEWTABLE: Sasuser.A_patient

patient_id patient street_address
ADT11 Ms. Jean Smith 4 Comer 5t.
AS9126 Mr. Ronald Moore 130 Marcet 5t
BO31073 Ms. Beth Adams 4434 Glenwood Ave.
BOO1324 Mr. Gus Polinski 180 Cannon Dr.

Figure 7. First 4 observations of SASUSER.A_Patient

o (G | R [=

The TRANSLATE function is used in the DATA step below. The typical form of the TRANSLATE function
is:

translate (character value , go to, from)

Argument 1 is the character value that will be translated. Argument 2 is the value or list of values that will
be created. Argument 3 is the 'from this letter' value. Argument 2 and 3 can be a list of values as seen in
the DATA step below.

- data fix_it (keep=numbers new);;
set sasuser.A_patient;
numbers = scan(street_address, 1, '');
new=translate(numbers,'0011’, 'OoLl’);
run;

Figure 8.

First, the street numbers are isolated and put into the variable NUMBERS. Then the TRANSLATE function is
used to convert any one of these letters: ‘O0’ to the digit ‘0’ (zero), and any of these letters: ‘LI’ to the digit ‘1'.
The next step is to rebuild STREET_ADDRESS with all numbers. The DATA Step below is an expansion
of the above DATA step. The statements starting with the arrow are new.

- data fix_it (drop=numbers new);
set sasuser.A_patient;
numbers = scan(street_address, 1, ' ');
4+ new=translate(numbers,'0011", "OoLl');
space = index(street_address, ' ');
street_address = trim(new) !! substr(street_address, space);
run;

Figure 9.

Opennng the Viewtable window shows the results of the above DATA Step. named INCOME in
the code below.

kgt VIEWTABLE: Work.Fix_it i

patient_id | patient street _address Space |
1 AD1107 Ms. Jean Smith 4 Comer 5t. 2
2 AS9126 Mr. Ronald Moore 130 Market St. 4
3 B031073 Ms. Beth Adams 4421 Glenwood Ave. 4]
4 B001324 Mr. Gus Polinski 180 Cannon Dr. 4
i) ADITA Mr. Bill Pegg Jr. 101 Cannon Dr. 4
6 B591401 Mrs. Mary P. Fox 210 Ear Ave. 4

Figure 10.

4. THE ATTRN FUNCTION WITH THE MODTE ARGUMENT:
The ATTRN function returns information about a numeric attribute of an open SAS data set. The typical
syntax is:

attrn (dsid, attribute - name)

Selected values of ATTRIBUTE-NAME are: any, modte, nobs, nlobs, nvars, etc.

For example, use the ATTRN function to find out how many rows and columns are in a data set.

3748 data null_;

3249 ds id=0PEN('sashelp.class');

3250 if dsid ne 0 then do;

3251 totobs = ATTRN(d=id, "NOBS"”); put totobs=;
3252 totvars= ATTAN(d=id, "NVARS'); put totwvars=;
3253 end ;

3254 rc = CLOSE(dsid);

3255 run;

totobs=119

totvars=5h

NOTE: DATA statement used (Total process time):

Figure 11.

Many users want to know how old, or fresh, is the data. Use the ATTRN function to see how old the dirt is
that is in the data.

-data _null_;
dsid=OPEN(' SASHELP.CLASS');
Update_Dt=attrn(dsid, "MODTE");
rc = close(dsid);
call symput('Updte', put(Update_Dt, datetimez2z2.));
run;

title "The Class Dataset was Last Updated: &Updte";

-proc print data=sashelp.class(obs=7);
run;

The Class Dataset was Last Updated: 255EP08:11:34:53

Obs=s Mame Sex fige He ight Height
1 fAlice F 13 56.5 84.0
2 Barbara F 13 65.3 98.0
3 Carol F 14 62.8 102.5
4 Jane F 12 £9.8 84.5
5 Janet F 15 62.5 112.5
b Jovce F 11 51.3 L0.5
7 Judy F 14 64.3 90.0

Figure 12 and 13.

5. THE PROPCASE FUNCTION:
The PROPCASE function ‘shifts’ a character value to the proper case. The typical syntax is:

propcase (argument <, delimeter(s) >)

where :
argument is a character variable or expression

delimiter specifies one or more delimiters that are enclosed in quotation marks. The default
delimiters are blank, forward slash, hyphen, open parenthesis, period, and tab.

* Tip: If you use this argument, then the default delimiters, including the blank, are no longer in effect.

Sometimes data is dirty and is NOT in the correct case. Notice the values of Street_Address in
the data below:

patient_
id patient ztreet_address city_cnty_st

Boo1324 Mr. Gus Polinski 180 Cannon Dr. Durham, Durham, HC, 27705-2102

Ad3121 Mr. Bill Peag Jr 100 cannon Dr. Durham, Durham, HC, 27705-2102

AI82210 Mr. Fred Gold 705 Cannon Drive Durham, Durham, HC, 27705-2105

Ag82212 Mr. Ed D. Cox Jr 752 Cannon Drive Durham, Durham, HC, 27705-2105

co3ioz Mr=. Sue Mathis 2LE6 Cannon Drive Durham, Durham, HC, 27705-2102

Figure 14.
Use a DATA step with the PROPCASE and TRANWRD functions to clean the data seen above.
-data p_sug.cannon_drive_2;
set p_sug.a_patient;
if index(upcase(street_address), 'CANNON') > 0;
street_address = propcase(street_address);
street_address = tranwrd(street_address, 'Drive’, 'Dr.");
run;
= proc print data=p_sug.cannon_drive_2;
run;
patient_
id patient street_address city_cnty_st

BO01324 Mr. Gus Polinski 180 Cannon Dr. Durham, Durham, NHC, 27705-2102

03121 Mr. Bill Pegg Jr 100 Cannon Dr. Durham, Durham, NC, 27705-2102

982210 Mr. Fred Gold 705 Cannon Dr. Durham, Durham, NC, 27705%-2105%

Ag982212 Mr. Ed D. Cox Jr 752 Cannon Dr. Durham, Durham, NHC, 27705-2105

Co3102 Mr=. Sue Mathis 216 Cannon Dr. Durham, Durham, NC, 27705-2102

Figures 15 and 16.

Notice the ‘clean’ values of STREE_ADDRESS.

6. THE COMPRESS FUNCTION:
The COMPRESS function returns a character string with specified characters removed from the original

string. The typical syntax of this function is:

compress (source <characters > <, modifier(s) >)

where

source

characters

modifier

specifies a character constant, variable, or expression from which specified characters
will be removed.

specifies a character constant, variable, or expression that initializes a list of characters.

by default, the characters in this list are removed from the source argument. If you
specify the K modifier in the third argument, then only the characters in this list are kept in
the result. Specifies a character constant, variable, or expression in which each

non-blank character modifies the action of the COMPRESS function. Blanks are ignored.
You can use the COMPRESS function to perform a fuzzy merge. To illustrate how the COMPRESS function
works, the DATA steps below shows how to remove periods, spaces, and vowels from the first argument.

data names;

input name 1-16;
check = compress(name, '. aesiou’];
cards;

LL Beane
L.L.Bean
L.L. Bean
LL. Bena
LL Baene
proc print;
Fuin ;

Figure 17.

The output looks like this...

Obs name check
1 LL Beane LLBn
Z2 L.L.Bean LLBn
3 L.L. Bean LLBn
4 LL. Bena LLBn
5 LL Baene LLBn
Figure 18.

As the output illustrates, no matter how NAME is spelled, the COMPRESS function creates CHECK with the
same spelling across all observations.

CONCLUSION
Functions are very powerful routines that can be used to do a number of things in SAS... including cleaning
data.

Many more examples will be given during the presentation of this paper.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The author can be reached at:
Ben Cochran

The Bedford Group

3224 Bedford Avenue
Raleigh, NC 27607

(919) 741-0370
bencochran@nc.rr.com

SdS.

SAS Alliance
Silver Member

