
1 

MWSUG 2017 - Paper BF02 

Computing Risk Measures for Loan Facilities with Multiple Lines of Draws 

Chaoxian Cai, BMO Harris Bank, Chicago, IL 
 

ABSTRACT 

In commercial lending, a commitment facility may have multiple lines of draws with hierarchical loan 
structures. The risk measures for main, limit, and sublimit commitments are usually aggregated and 
reported at the main obligation level. Thus finding all hierarchical loan structures in loan and commitment 
tables is required in order to aggregate the risk measures. In this paper, I will give a brief introduction of 
commercial loans from simple standalone loans to revolving and non-revolving commitments with 
complex loan structures. I will present a SAS® macro program, which can be used to identify main 
obligations and loan structures of future commitments from loan and commitment relational tables using 
Base SAS DATA steps. Risk measures, such as exposure at default (EAD) and credit conversion factor 
(CCF), are computed for these complicated loans and illustrated by examples.  

INTRODUCTION 

In business intelligence, a measure is an aggregable numerical value that an organization is using to 
monitor its business. A measure needs to be computed from the data element level, and can be either 
rolled up or sliced regarding to observation dimensions. In the risk management for retail and commercial 
loans, the risk measures include outstanding loan balance, unused commitment amount, probability of 
default (PD), loss give default (LGD), exposure at default (EAD), or any other risk drivers which are of 
interest and importance to the  business. For retail loans with simple loan structures, most risk measures 
could be computed straightforwardly. However, for commercial loans, the loans may have complicated 
deal structures that need to be identified first before any meaningful calculations. A commitment facility 
may have multiple lines of draws with hierarchical loan structures. The risk measures for main, limit, and 
sublimit commitments are usually aggregated and reported at the main obligation level. Tree data 
structures are commonly used to model data with hierarchical information. However, SAS data sets are 
relational tables with rows and columns and cannot store tree data structures directly; the hierarchical 
connections between two objects have to be stored as column attributes in a SAS data set. Therefore, the 
hierarchical data structures are often hidden and embedded in a SAS data set. Finding all hierarchical 
loan structures in loan and commitment tables is required in order to compute the risk measures.  

In this paper, I will give a brief introduction of commercial loans from simple standalone loans to revolving 
and non-revolving commitments with complex loan structures. I will present a SAS macro program, which 
can be used to identify main obligations and loan structures of future commitments from loan and 
commitment relational tables using only Base SAS DATA steps. Risk measures, such as exposure at 
default (EAD) and credit conversion factor (CCF), are computed for these complicated loans and 
illustrated by examples. 

BASIC LOAN STRUCTURES 

In order to compute risk measures correctly, we better to have some basic knowledge about common 
loan structures. While most people are familiar with mortgage and credit card, which are common retail 
banking loans, there are fewer people specialized in commercial lending or having life experience with 
commercial loans. Figure 1 shows four basic types of loan structures that a borrower may experience 
when the borrower obtains a loan from a lender.  

Case 1 is the type of standalone loans, such as mortgages, vehicle loans, small business term loans, 
small business demand loans, which are very common in retail banking. This type of loans is close end 
loans, and does not have commitment set up for the borrower. Cases 2, 3, and 4 are the types of loans 
having future commitments set up for the borrower. Case 2 is the type of revolving single line of credit, 
such as personal credit card, home equity line of credit, small business line of credit, and this type of 
loans is also common in retail banking. In this case, usually the same account is set up for both 
commitment and drawn loan. Case 3 is non-revolving single letter of credit, such as executive letter of 



2 

credit and financial standby letter of credit. In this case, the commitment account may be same or 
different from the drawn account depending on how the lender set up the accounts. If the same account is 
set up for both the commitment and the drawn loan, it appears that a commitment facility has been 
converted to a loan after the drawn loan is taken. If different accounts are set up for the commitment and 
the drawn loan, Case 3 is a simple scenario in Case 4 with only a single draw and one level of 
commitment. Case 4 is the type of loans with multiple lines of drawn loans or takedown loans. 
Commercial lines of credit and commercial term loans are usually structured with hierarchical 
main/limit/sublimit commitment accounts, and the loans are drawn from the commitment account along 
the lines. 

 

Figure 1. Basic types of loan structures. 

The borrowers’ authorized commitment amount and unused commitment amount need to be computed 
from the main commitment level. The future unused commitment amount is a bank’s exposure off the 
balance sheet while standalone loans and takedown loans are current and realized on the balance sheet. 
Accordingly, in risk modeling, PD/LGD models are based on data sets from current loans (standalone and 
drawn loans) while EAD model is only applied to future commitment accounts. For example, the credit 
conversion factor (CCF) is not applicable to the standalone loans in Case 1, CCF is either 0 or 1 in Case 
3 which the commitment is non-revolving and only has a single draw, and CCF is between 0 and 1 in 
Case 2 and  Case 4 which have either revolving commitments or multiple lines of draws. 

In commercial lending, the loans may have been structured in any of the above forms. In addition, for 
large commercial loans, there are scenarios that a large commercial commitment or loan may be shared 
or financed by several lenders which involve in loan sales, participations, and/or syndications, resulting in 
more complicated lending deal structures.  

EXAMPLE 

Standalone loans and single line of credit loans (Cases 1 to 3 in Figure 1) are simple loan structures, and 
we can compute risk measures for these loans without much of difficulty. However, in commercial lending, 
lending facilities include often current loans and future commitments with several levels of hierarchies. 
Figure 2 shows some examples of expanded loan structures of Case 4. In Case (4a), there is only a 
single takedown loan from a main commitment; in Case (4b), there are two takedown loans withdrawing 
from a limit commitment which is a line of credit from a main commitment; in Case (4c), both limit and 
sublimit lines of commitments have been set up by the lender. Each line can finance takedown loans not 
exceeding its line limit. In such cases, risk measures such as unused commitment amount and 
outstanding balance are aggregated and reported at the highest advised level (main commitment) while 
commitment fees may need to be percolated down and proportionally applied to current drawn loans.  



3 

 

Figure 2. Loan structures with future commitments and drawn loans. 

These loan structures are stored in the banks’ loan and commitment tables with each obligation having a 
row entry. In such a table, let AccountID identify the child obligation which is either a loan (Loan_ID) or a 
commitment (Commitment_ID), and let parentAccountID be a self-referenced AccoutID that identify the 
parent obligation from which the child obligation draws loans. Table 1 shows a conceived example that 
represents the drawn loans L01 to L06 and the future commitments C01 to C08 in Figure 2. Some 
variables of interest, such as credit limit, outstanding balance, and disbursed amount, are included in the 
table to illustrate how to calculate the actual exposure at default and the credit conversion factor for this 
example in the next section. 

Obs 
Account 
ID 

Parent 
Account 
ID 

Credit 
Limit 

Disbursed 
Amount ($, at 
start time t0) 

Disbursed 
Amount ($, at 
end time t1) 

Outstanding 
Balance ($, at 
start time t0) 

Outstanding 
Balance ($, at 
end time t1) 

1 L01 C01 0 0 0 20 10 

2 L02 C04 0 0 0 15 10 

3 L03 C04 0 0 0   25 

4 L04 C07 0 0 0 40 35 

5 L05 C08 0 0 0   290 

6 L06 C06 0 0 0 35 30 

7 C01   100 30 30 0 0 

8 C02   100 20 50 0 0 

9 C03   500 100 400 0 0 

10 C04 C02 80 20 50 0 0 

11 C05 C03 500 50 350 0 0 

12 C06 C03 300 50 50 0 0 

13 C07 C05 300 50 50 0 0 

14 C08 C05 400 0 300 0 0 

Table 1. An example of child-parent hierarchy (child: AccountID, parent: parentAccountID). 

The hierarchical loan structures can be read into a SAS data set. The following code is used to import the 
example in Table 1 into a SAS data set: 

data loantable; 

input AccountID $1-3 parentAccountID $5-7 Credit_Limit 9-11 

Disbursed_Amount_t0 13-15  

      Disbursed_Amount_t1 17-19 Outstanding_Balance_t0 21-22 

Outstanding_Balance_t1   



4 

      24-26; 

datalines; 

L01 C01   0   0   0 20  10   

L02 C04   0   0   0 15  10 

L03 C04   0   0   0     25 

L04 C07   0   0   0 40  35 

L05 C08   0   0   0    290 

L06 C06   0   0   0 35  30 

C01     100  30  30  0   0 

C02     100  20  50  0   0 

C03     500 100 400  0   0 

C04 C02  80  20  50  0   0 

C05 C03 500  50 350  0   0 

C06 C03 300  50  50  0   0 

C07 C05 300  50  50  0   0 

C08 C05 400   0 300  0   0 

; 

 

The SAS data set loantable includes a few columns that we will use to illustrate the calculations of 
exposures at default and credit conversion factors at the loan account level. In a bank’s loan portfolio, 
there will be thousands or millions of such rows in the loan and commitment table.  

To calculate risk exposures at the highest level of future commitment, we need to find all hierarchical loan 
structures from the loan/commitment table and identify the highest level of future commitment. A 
hierarchical structure is a special type of graph with a unidirectional connection. Several methods can be 
used to find the hierarchical structure in Table 1. One method is just to apply a brute force tracking up 
along the parent path and create data set for each parent level commitment account. This method is 
feasible since, in practice, the hierarchical levels are no more than 5 levels above the drawn loans. A 
second approach is to perform a SQL query on a tree data structure by writing recursive SQL procedures. 
SAS PROC SQL supports recursive joins that can be programmed to query hierarchies in a SAS data set. 
In this paper, I will present a modified Union-Find algorithm to find all these hierarchical structures from a 
SAS data set. This method is good for drawn loans with any levels of future commitments. 

The Union-Find algorithm is a classic graph algorithm used to join disjoined sets and find connected 
components of a graph from a given set of vertices and edges (Weiss, 1994; Cormen, 1997). The 
algorithm requires tree data structures to store connected components. Since SAS does not have tree-
type data structures, the implementation of Union-Find algorithm requires an implicit set up of tree 
structures using one-dimensional array. Previously, I had presented a paper on the title of “Implementing 
Union-Find Algorithm with Base SAS DATA Steps and Macro Functions”, where I gave a detailed 
explanation of the algorithm, how the algorithm works, and the programming techniques used to 
implement the algorithm (Cai, 2015). In this paper, I have wrapped the implementation of Union-Find 
algorithm in a macro function named %group_connected_components. The complete macro program is 
listed in APPENDIX A. Following are the macro parameters and major steps inside the macro function:  

%macro group_connected_components(edgelist=, vx=, vy=, elistout=elistout, 

vlistout=vlistout, hierarchy=TRUE); 

 

/* Step 1: a) Create vertex list from the input edge list; 

           b) Label each vertex sequentially from 1 to N; 

           c) Crete new edge list with each vertex labeled. 

*/ 

 

/* Step 2: a) Process edge list with Union-Find algorithm;  

           b) Output connected components. 

*/ 

 

/* Step 3: a) Output updated vertex list with connected components IDs; 

           b) Output updated edge list with connected components IDs;  



5 

*/ 

 

%mend group_connected_components; 

 
The input data is an edge list data set (&edgelist) which has vertices defined by two columns (&vx and 
&vy); the data set &elistout is the output edge list with unique ConcompID assigned for each connected 
component, and the data set &vlistout is a vertex list with each vertex (object) identified by ObjectID and 
has row entries of NodeID and ConcompID. The data set can be set up as a hash table to find the 
connect component ConcompID for each vertex NodeID. The macro function includes the following steps: 
1) create new vertex list (vlist) and edge list (elist) and label each vertex with a unique sequential number 
(NodeID), 2) process the edge list (elist) and apply the Union-Find algorithm to build connect 
components, and 3) output the resulted vertex list (&vlistout) and edge list (&elistout). There are three 
basic set operations in the Union-Find algorithm: making disjoint sets, finding disjoint sets, and merging 
disjoint sets. Initially, each vertex is treated as a disjoint set, and N disjoint sets are set up at the 
beginning for N numbers of vertices. In each DATA step iteration, an edge that links two vertices (&vx and 
&vy) is read, and the disjoined sets that contain the vertices &vx and &vy are found and merged. The 
DATA step loop continues until all edges have been processed.  

The Union-Find algorithm is for undirected graph. In APPENDIX A, the macro function provides an option 
to employ union-by-depth optimization to improve the run time efficiency. However, if the connected 
components have hierarchical structures, the union-by-depth operations will break the hierarchical 
relation between a child node and its parent node. Since we need to preserve the hierarchical structures, 
we will not apply the union-by-depth optimization when two disjoint sets are joined. In this case, we will 
modify the algorithm to let the child node always point to the parent node when two subtrees are merged 
together. In the macro function, hierarchy=TRUE is set as default, which will skip the union-by-depth 

operations. Setting hierarchy=TRUE will use the union operations without union-by-depth optimization 

and preserve tree hierarchies of all connected components.  

Now we can use the macro function %group_connected_components() to solve the problem in the 
example. We first create the edge list linkednodelist from the loan/commitment table, and then using 
linkednodelist as the input, we invoke the macro function %group_connected_components().  

data linkednodelist; 

    set loantable (keep=AccountID parentAccountID); 

    where parentAccountID is not missing; 

run; 

 

%group_connected_components(edgelist=linkednodelist, vx=AccountID, 

vy=parentAccountID, hierarchy=TRUE) 

proc print data=vlistout; run; 

Table 2 is the resulted vertex list output, where each vertex (object) is identified by an ObjectID, and each 
ObjectID is uniquely identified by a NodeID. The ConcompID is the NodeID of the root of each loan 
structure. Note that three hierarchical loan structures are discovered:  {C01, L01}, {C02, C04, L02, L03}, 
and {C03, C05, C06, C07, C08, L04, L05, L06}. These disjoint sets are identified by ConcompID 1, 2, and 
3, respectively. 

Obs ObjectID NodeID ConcompID 

1 C01 1 1 

2 C02 2 2 

3 C03 3 3 

4 C04 4 2 

5 C05 5 3 

6 C06 6 3 

7 C07 7 3 

8 C08 8 3 



6 

9 L01 9 1 

10 L02 10 2 

11 L03 11 2 

12 L04 12 3 

13 L05 13 3 

14 L06 14 3 

Table 2. The vertex list output. 

Assuming all commitments in the data set loantable are in default status and the data have been 
collected within a data collection window, typically a 12-month period, starting at time t0 and ending at the 
default time t1. For a main obligation, the actual/realized exposure at default (EAD) is the sum of 
outstanding balances of all takedown loans under the main obligation at the default time: 

EAD = sum(Outstanding_Balance_t1). 

The credit conversion factor (CCF) can be computed with the following formula: 

CCF = [EAD – sum(Outstanding_Balance_t0)]/Unused_Commitment_Amount_t0,  

where Unused_Commitment_Amount_t0 = Credit_Limit – Disbursed_Amount_t0, and 
Disbursed_Amount_t0 is the disbursed amount at the start of data collection window and Credit_Limit is 
the advised credit limit of a commitment at the start of data collection window (Brown, 2014; Yang and 
Tkachenko, 2014). After all main obligations and their loan structures have been identified, the 
computations of EAD and CCF for a future commitment are straightforward. The following SAS code is 
used to accomplish the task. The results are listed in Table 3. 

proc sql noprint; 

create table loantable2 as 

select a.*, 

       sum(a.Outstanding_Balance_t1) as groupOS_t1, 

       sum(a.Outstanding_Balance_t0) as groupOS_t0, 

       b.ConcompID 

from loantable as a 

left join vlistout as b 

on a.AccountID=b.ObjectID 

group by ConcompID; 

quit; 

 

data loantable3; 

   set loantable2; 

   if parentAccountID=' ' or substr(AccountID, 1, 1)='L'; 

   if substr(AccountID, 1, 1)='L' then do; 

    EAD=Outstanding_Balance_t1; 

    CCF=0; 

   end; 

   else do; 

          EAD=groupOS_t1; 

    CCF=(EAD-groupOS_t0)/(Credit_Limit-Disbursed_Amount_t0); 

   end; 

   if CCF ne . and CCF<0 then CCF=0; 

   if CCF ne . and CCF>1 then CCF=1; 

   drop ConcompID; 

run; 

 

proc sort data=loantable3;  

by AccountID;  

run; 

 



7 

proc print data=loantable3;  

run; 

 

Obs AccountID Parent 
AccountID 

Credit_ 
Limit 

Disbursed_ 
Amount_t0 

Disbursed_ 
Amount_t1 

Outstanding_ 
Balance_t0 

Outstanding_ 
Balance_t1 

EAD CCF 

1 C01   100 30 30 0 0 10 0.00 

2 C02   100 20 50 0 0 35 0.25 

3 C03   500 100 400 0 0 355 0.70 

4 L01 C01 0 0 0 20 10 10 0.00 

5 L02 C04 0 0 0 15 10 10 0.00 

6 L03 C04 0 0 0 . 25 25 0.00 

7 L04 C07 0 0 0 40 35 35 0.00 

8 L05 C08 0 0 0 . 290 290 0.00 

9 L06 C06 0 0 0 35 30 30 0.00 

Table 3. Loan/Commitment table with actual EAD and CCF.  

CONCLUSION 

In summary, I have introduced some basic concepts in loan structures and a SAS macro program that 
can be used to identify the hierarchical loan structures from a SAS data set. I have used a simple 
example to demonstrate how to apply the macro program to find these complicated loan structures. The 
computations of exposure at default and credit conversion factor have been illustrated with example. The 
algorithm and the macro program presented in this paper are well scalable. It can be used to find loan 
structures in a relational table with thousands to millions of rows with practically linear processing time. 
The application of this macro program is not just limited to the problem discussed herein. It may be 
extended to solve other problems that involve hierarchies, trees, networks, and connected components. 

REFERENCES 

1. Weiss, M. A. (1994). Data Structures and Algorithm Analysis in C++. Menlo Park, CA: Addison-
Wesley Publishing Company. 

2. Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1997). Introduction to Algorithms. Cambridge, MA: 
The MIT Press. 

3. Cai, C. (2015). “Implementing Union-Find Algorithm with BASE SAS DATA Steps and Macro 
Functions”. PharmaSUG 2015 Conference proceedings. Available at 
http://www.pharmasug.org/proceedings/2015/BB/PharmaSUG-2015-BB06.pdf. 

4. Brown, I. L. J. (2014). Developing Credit Risk Models Using SAS
®
 Enterprise Miner

TM
 and 

SAS/STAT
®
: Theory and Applications. Cary, NC: SAS Institute Inc. 

5. Yang, B. H., Tkachenko, M. (2014). “Modeling of EAD and LGD: Empirical Approaches and Technical 
Implementation”. Available at http://mpra.ub.uni-muenchen.de/57298/. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Name: Chaoxian Cai, Ph.D. 
Enterprise: BMO Harris Bank. 
Address: 111 West Monroe Street 
City, State ZIP: Chicago, IL 60603 
E-mail: cai.charles.x@gmail.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  



8 

Other brand and product names are trademarks of their respective companies.  

The content presented in this paper is solely for presenting programming concepts and the content herein 
is not a representation of the opinion and practice of the author’s associated employer. 

APPENDIX A 

The following is the SAS macro program discussed in the context: 

%macro group_connected_components(edgelist=, vx=, vy=, elistout=elistout, 

vlistout=vlistout, hierarchy=TRUE); 

/**************************************************************************** 

Program: group_connected_components.sas 

Purpose: For a given undirected graph G(V, E), find all connected components 

Author: Chaoxian Cai, 5/15/2016 

 

Parameters:  

edgelist: The input edge list data set with edges defined by vx and vy 

vx: Left vertex of an edge; for hierarchical tree structure, the child node 

vy: Right vertex of an edge; for hierarchical tree structure, the parent node 

hierarchy: Whether to preserve hierarchical structures in the connected    

    components, TRUE or FALSE. Default is set to TRUE. 

elistout: The output edge list data set with each connected component labeled  

by a unique identification number (ConcompID). Default name: elistout. 

vlistout: The output vertex list data set with each vertex (object)  

    identified by ObjectID, NodeID, and ConcompID. Default name: vlistout. 

 

Notes:  

Union-Find algorithm is implemented to find the connected components. By 

default, union by depth optimization is applied to shorten tree depth. As a 

result, the connected components do not preserve hierarchical tree 

structures; If hierarchy=TRUE is set, then union by depth is not applied. The 

union of two disjoint sets preserves child-parent hierarchy, and the resulted 

connected components have hierarchical tree structures. The connected 

components are identified by their root node IDs.  

***************************************************************************/ 

 

/* create vertex list from given edge list */ 

proc sql noprint; 

create table vlist as 

select &vx as ObjectID 

from &edgelist 

union 

select &vy as ObjectID 

from &edgelist 

order by ObjectID; 

quit; 

 

/* label each vertex sequentially from 1 to N */ 

data vlist; 

    set vlist end=last; 

 NodeID + 1; 

 if last then call symputx('nNode', NodeID); 

run; 

 

%put nNode=&nNode; 

 

/* attach labels to each node in the edge list */ 



9 

proc sql noprint; 

create table elist as  

select a.*, 

       b.NodeID as leftnode, 

    c.NodeID as rightnode 

from &edgelist as a 

left join vlist as b 

on a.&vx=b.ObjectID 

left join vlist as c 

on a.&vy=c.ObjectID; 

quit; 

 

/* apply Union-Find algorithm */ 

data ConcompID (keep=NodeID ConcompID); 

array p[&nNode] _temporary_; 

set elist (keep=leftnode rightnode 

           rename=(leftnode=x rightnode=y)) end=last; 

if _n_=1 then do; 

    do i=1 to &nNode; 

     p[i]=0; 

 end; 

end; 

 

/* find current root of node x */ 

do while (p[x]>0); 

    x=p[x]; 

end; 

 

/* find current root of node y */ 

do while (p[y]>0); 

    y=p[y]; 

end; 

 

/* union subtrees of x and y */ 

%if %upcase(&hierarchy)=TRUE %then %do; 

if (x ne y) then p[x]=y; 

%end; 

%else %do; 

if (x ne y) then do; 

    if (p[y]<p[x]) then p[x]=y; 

 else do; 

     if (p[y]=p[x]) then p[x]=p[x]-1; 

  p[y]=x; 

    end; 

end; 

%end; 

 

/* output connected components */ 

if last then do; 

    do i=1 to &nNode; 

     NodeID=i; 

  root=i; 

  do while (p[root]>0); 

      root=p[root]; 

  end; 

  ConcompID=root; 

  output ConcompID; 



10 

 end; 

end; 

run; 

 

/* create vertex list output data set */ 

data &vlistout (keep=ObjectID NodeID ConcompID); 

merge vlist (in=a) ConcompID; 

by NodeID; 

if a; 

run; 

 

/* create edge list output data set */ 

data &elistout; 

    if 0 then set &vlistout (keep=ObjectID ConcompID); 

 if _N_=1 then do; 

     declare hash gidhash (dataset: "&vlistout"); 

     gidhash.definekey("ObjectID"); 

     gidhash.definedata("ConcompID"); 

     gidhash.definedone(); 

 end; 

 

 set &edgelist; 

 if gidhash.find(key: &vx)=0 then do; 

 end; 

 

 drop ObjectID; 

run; 

 

%mend group_connected_components; 

 

 

 

 

 


