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ABSTRACT  

General insurance protects individuals and organizations from financial losses due to damages or legal 
liabilities. It allows policyholders to exchange the risk of a large loss for the certainty of smaller periodic 
payments of premiums. Insurers allocate the premiums dollars into investment and claims payments. As it 
is for an insurer to manage its investment portfolio, it is equally important to manage its claims portfolio. 
Claim management is the analytics of insurance costs. It requires applying statistical techniques in the 
analysis and interpretation of the claims data. In the data-driven industry of general insurance, claim 
management provides useful insights for insurers to make better business decisions.  

The central piece of claim management is claims modeling. Two strategies are commonly used by 
insurers to analyze claims: the two-part approach that decomposes claims cost into frequency and 
severity components, and the pure premium approach that uses the Tweedie distribution. In this article 
we evaluate additional approach to claims analysis – time-event modeling. 

In this article, we provide a general framework to look into the process of modeling of claims using Cox 
hazard model. This model is a standard tool in survival analysis for studying the dependence of a hazard 
rate on covariates and time. Although the Cox hazard model is very popular in statistics, in practice data 
to be analyzed often fails to hold assumptions underlying this model. This article also is a case study 
intended to indicate a possible application of Cox hazard model to workers’ compensation insurance, 
particularly occurrence of claims (disregarding claims size).  

INTRODUCTION  

The term “survival data” has been used in a wide meaning for data involving time to a certain event. This 
event may be the appearance of a tumor, the development of some disease, cessation of smoking, etc. 
Applications of the statistical methods for survival data analysis have been extended beyond the 
biomedical field and used in areas of reliability engineering (lifetime of electronic devices, components or 
systems), criminology (felons’ time to parole), sociology (duration of first marriage), etc. Depending on the 
area of application, different terms are used: survival analysis – in biological science, reliability analysis – 
in engineering, duration analysis – in social science. Further, in the article, we will use term “time-to-event 
analysis” that is more suitable for insurance claims analysis. 

A central quantity in survival analysis (time-to-event analysis) is the hazard function or the survival (time-
to-event) function. The most common approach to model covariate effects on survival (time-to-event) is 
the Cox hazard model developed and introduced by Cox (1972), which takes into account the effect of 
censored observations. Although the Cox hazard model is very popular in statistics, in practice data to be 
analyzed often fails to hold assumptions. There are several important assumptions which need be 
assessed before the model results can be safely applied. First, the proportional hazards assumption 
means that hazard functions are proportional over time. Second, the explanatory variable acts directly on 
the baseline hazard function and not on the failure time, and remains constant over time. For example, 
when a cause of claims interacts with time, the proportional hazard assumption fails. Or, when the hazard 
ratio changes over time and survival curves are not “parallel”, the proportional hazard assumption is 
violated. We present application of Bayesian approach to survival analysis (time-to-event analysis) that 
allows dealing with violations of assumptions of Cox hazard model.  

This article is a case study intended to indicate possible applications to workers’ compensation 
insurance, particularly occurrence of claims. We studied workers’ compensation claims during the 2 years 
period from November 01, 2014 till October 31, 2016. Claims data was provided by a leading insurance 
company. The risk of occurrence of claims was studied for selected industries and locations (USA states). 
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MODEL 

THE COX MODEL FOR CLAIMS EVENTS ANALYSIS 

Time-to-event (or survival) function 𝑺(𝒕) describes the proportion of policies “surviving” without a claim to 
or beyond a given time (in days): 

𝑺(𝒕) =  𝑷(𝑻 > 𝒕)  

where:  

𝑻 – time to claim in a randomly selected policy 

𝒕 – a specific point in time 

Hazard function 𝒉(𝒕) describes instantaneous failure rate at time 𝒕: 

𝒉(𝒕) = 𝐥𝐢𝐦
∆𝒕→𝟎

𝑷(𝒕 ≤ 𝑻 < 𝒕 + ∆𝒕|𝑻 ≥ 𝒕)

∆𝒕
 

Cox (1972) proposed a model which doesn’t require assumption that events times follow certain 
probability distribution. As a consequence, Cox model is considerably robust. 

Cox hazard model can be written as: 

𝒉𝒊(𝒕) = 𝒉𝟎(𝒕)𝒆𝒙𝒑 ∑ 𝜷𝒋𝒙𝒊𝒋

𝒌

𝒋=𝟏

 

where: 

𝒉𝒊(𝒕) – the hazard function for subject 𝒊 at time 𝒕 

𝒙𝟏,  … , 𝒙𝒌 – the covariates  

𝒉𝟎(𝒕) – the baseline hazard function, that is the hazard function for the subject whose covariates 

𝒙𝟏,  … , 𝒙𝒌 all have values of 0 

𝜷𝟏, … , 𝜷𝒌 – the coefficients of Cox model. 

Cox hazard model is also called Proportional Hazard Model because the hazard for any subject is a fixed 
proportion (hazard ratio) to the hazard for any other subject: 

𝑯𝑹 =  𝒉𝒊(𝒕)/𝒉𝒑(𝒕) = (𝒉𝟎(𝒕)𝒆𝒙𝒑 ∑ 𝜷𝒋𝒙𝒊𝒋)/(𝒉𝟎(𝒕)𝒆𝒙𝒑 ∑ 𝜷𝒋𝒙𝒑𝒋)

𝒌

𝒋=𝟏

𝒌

𝒋=𝟏

 

Baseline hazard 𝒉𝟎(𝒕) cancels out, and 𝑯𝑹 is constant with respect to time: 

𝑯𝑹 =  𝒆𝒙𝒑 ∑ 𝜷𝒋(𝒙𝒊𝒋 − 𝒙𝒑𝒋) 

𝒌

𝒋=𝟏

 

Estimated survival (time-to-event) probability at time  𝒕 can be calculated using estimated baseline hazard 

function 𝒉𝟎(𝒕) and estimated 𝜷 coefficients: 

𝑺𝒊(𝒕) = 𝒆𝒙𝒑 {−𝒉𝟎(𝒕)𝒆𝒙𝒑 ∑ 𝜷𝒋𝒙𝒊𝒋

𝒌

𝒋=𝟏

} 

where: 

𝑺𝒊(𝒕) – the time-to-event function for subject 𝒊 at time 𝒕 

𝒙𝟏,  … , 𝒙𝒌 – the covariates  
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𝒉𝟎(𝒕) – the baseline hazard function, that is the hazard function for the subject whose covariates 

𝒙𝟏,  … , 𝒙𝒌 all have values of 0 

𝜷𝟏, … , 𝜷𝒌 – the coefficients of Cox model. 

APPLICATION OF THE COX MODEL FOR CLAIMS EVENTS ANALYSIS 

We identified 3 main goals of time-to-event analysis for workers’ compensation claims: 

1. Estimate time-to-event function 𝑺(𝒕)  

2. Estimate effects of industry covariate 

3. Compare time-to-event functions for different industries: 

𝑯𝟎: 𝑺𝒊(𝒕) = 𝑺𝒑(𝒕) 𝒗𝒔. 𝑯𝟏: 𝑺𝒊(𝒕) ≠ 𝑺𝒑(𝒕) 

In order to build an appropriate model, we had to address the nature of claims process. In contrast with 
biomedical applications where an event of interest, for example, is death and thus can happen only once, 
in workers’ compensation insurance claims happen multiple times, because for each policy there are 
possible multiple claims. There are many different approaches that one could use to model repeated 
events in a time-to-event analysis. The choice depends on the data to be analyzed and the research 
question to be answered. We considered each claim as a single event, and built models that didn’t 
account for claims dependence within the same policy. 

Below is a short review of different models. 

The counting process model 

In the counting process model, each event is assumed to be independent, and a subject contributes to 
the risk set for an event as long as the subject is under observation at the time the event occurs. The data 
for each subject with multiple events is described as data for multiple subjects where each has delayed 
entry and is followed until the next event. This model ignores the order of the events, leaving each subject 
to be at risk for any event as long as it is still under observation at the time of the event. This model 
doesn’t fit our application needs because the entry time is considered as a time of the previous event, and 
time-to-event is calculated as a time between consecutive events. 

The conditional model A 

This conditional model assumes that it is not possible to be at risk for a subsequent event without having 
experienced the previous event (i.e. you cannot be at risk for event 2 without having experienced event 
1). In this model, the time interval of a subsequent event starts at the end of the time interval for the 
previous event. This model doesn’t fit our application needs because it introduces dependence between 
consecutive claims. 

The conditional model B 

This model only differs from the previous model in the way the time intervals are structured. In this model 
each time interval starts at zero and ends at the length of time until the next event. This model doesn’t fit 
our application needs because it introduces dependence between claims within the same policy. 

The marginal model 

In the marginal model each event is considered as a separate process. The time for each event starts at 
the beginning of follow up time for each subject. Furthermore, each subject is considered to be at risk for 
all events, regardless of how many events each subject actually experienced. Thus, the marginal model 
considers each event separately and models all the available data for each event. This model fits our 
application needs and was used for the analysis. 
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DATA 

Our case study is based on claims data from one of leading insurance companies. For each policy, the 
following data was used: 

1. The start and the end date of the policy  

2. Industry in which policy was issued 

3. Date of claim occurrence 

4. Date of claim reported 

5. State where claim was reported 

In this study, we focused our analysis on claims that led to payments.  

DATA TRANSFORMATION 

We analyzed workers compensation claims data for the 2 years period. Each claim was associated with 
an industry of the policy and with a state (location) of the claim. To prepare this data for the marginal 
model, each claim event was considered as a separate process. The time to each event was calculated 
starting from the beginning of follow up time or from the beginning of the policy, whichever happened 
later. If there were no claim events for a policy during the observation period, the policy was censored at 
the end of the observation or at the end of the policy, whichever happened earlier. To note, a subject is 
said to be censored, if it is lost to follow up, or dropped out of the study, or if a claim event didn’t happen 
during the observation period. 

An example is presented in Figure 1: 

 Policy A started before January; there were 2 claims that happened in May and June; policy ended in 
August. 

 Policy B started in March; there was one claim in August; policy was cancelled in October. 

 Policy C started in April; there were no claims in the observed period of time. 

 

 

For this example, data is shown in Table 1. 

We separated US states into groups with statistically similar frequencies of claims in a month. This 
produced 4 groups of claims by states (41 states in total): 

 1
st
 group: CA 

Policy                 Claim 
                                 
                                1 
                               
A                              2 
                              
                                3 

                                
                                4 
B 
                                5  

 
C                              6 

Jan   Feb     Mar    Apr    May   Jun    Jul     Aug    Sep    Oct    Nov  Dec 

Figure 1. Example of Claims Data 
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 2
nd

 group: FL, GA, IL, NJ, NY, PA, TX 

 3
rd

 group: AL, AZ, CO, IA, IN, LA, MA, MD, MI, MO, NC, NV, OK, OR, SC, TN, VA, WI 

 4
th
 group: AR, CT, DC, DE, ID, KS, KY, MN, MS, NE, NH, NM, SD, VT, WV 

 

Policy Claim Time-to-event Event Censor 

A 1 5 1 1 

A 2 6 2 1 

A 3 8 3 0 

B 4 6 1 1 

B 5 8 2 0 

C 6 9 1 0 

Table 1. Example of Claims Data Set 

 

In this article we present case study of analysis and modeling performed on claims data of 3
rd

 group of 
US states.  

In our analysis we assumed that each claim event independent, and a policy within the same industry did 
not contribute to the risk set for an event as long as the policy is under observation at the time of the 
claim. The data for each policy with multiple claim events was described as data for multiple claims, 
where each claim has an entry time at the beginning of the policy or beginning of the observation period – 
whichever is later.  

Thus 𝑯𝑹 model looks like: 

𝑯𝑹 =  𝒆𝒙𝒑 ∑ 𝜷𝒋(𝒙𝒊𝒋 − 𝒙𝒑𝒋) 

𝒌

𝒋=𝟏

 

where: 

𝑯𝑹 – the hazard ratio of hazard function for industry 𝒊 related to the baseline hazard function for the 

industry 𝒑 . 

In most insurance risk papers, the authors take the proportional assumption for granted and make no 
attempts to check that it has not been violated in their data. However, it is a strong assumption indeed. In 
order to verify proportional hazard assumption, we used Kaplan-Meier empirical product-limit survival 
estimates, as well as ‘log-negative-log’ Kaplan-Meier estimated survival functions. Kaplan-Meier empirical 
plots allow to evaluate the assumption visually: if the proportional hazard assumption holds, the curves of 
the Kaplan-Meier empirical product-limit survival estimates should not intersect, and the curves of the 
‘log-negative-log’ plot should be parallel, with distance between them constant over time. The plots on   

Figure 2 and Figure 3 show that the proportional hazard model assumption doesn’t hold.  

We used industry as a categorical covariate assuming that time-to-event functions vary by industries. It 
would be wrong to assume that there was no time-dependent impact on the baseline hazard function for 
different values of this covariate variable. For example, hazard changes for Agriculture depending on 
seasons, or for Transportation – depending on weather, or for Hospitality – depending on school breaks 
schedule.  
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Figure 2. Kaplan-Meier Empirical Product-Limit Survival Estimates 

 

 

Figure 3. ‘Log-Negative-Log’ Kaplan-Meier Estimated Survival Functions 
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All these conditions are latently depend on time, which means that the impact of industry categorical 
variable does not remain constant over time. In order to account for season dependency we introduced 
time-dependent covariate for winter season and used extended Cox model: 

𝒉𝒊(𝒕) = 𝒉𝟎(𝒕)𝒆𝒙𝒑 (∑ 𝜷𝒋𝒙𝒊𝒋

𝒌

𝒋=𝟏

+ ∑ 𝜸𝒏𝒙𝒊𝒏𝒈𝒏(𝒕)

𝒎

𝒏=𝟏

) 

where: 

𝒉𝒊(𝒕) – the hazard function for subject 𝒊 at time 𝒕 

𝒙𝟏,  … , 𝒙𝒌 – the covariates  

𝒉𝟎(𝒕) – the baseline hazard function, that is the hazard function for the subject whose covariates 

𝒙𝟏,  … , 𝒙𝒌 all have values of 0 

𝒈𝒏(𝒕) – the function of time (time itself, log time, etc.)  

𝜷𝟏, … , 𝜷𝒌 – the coefficients of Cox model. 

Applying this approach, our model looks like: 

𝒉𝒊(𝒕) = 𝒉𝟎(𝒕)𝒆𝒙𝒑 (∑ 𝜷𝒋𝒙𝒋

𝒌

𝒋=𝟏

+ 𝜸 × 𝒔𝒆𝒂𝒔𝒐𝒏 × 𝒍𝒏(𝒕)) 

where: 

𝒉𝒊(𝒕) – the hazard function for industry 𝒊 at time 𝒕 

𝒉𝟎(𝒕) – the baseline hazard function, in our case - the hazard function for one selected industry  

𝒙𝒋 = {
𝟏, 𝑖𝑓 𝑖 = 𝑗
𝟎, 𝑖𝑓 𝑖 ≠ 𝑗 

 

𝒔𝒆𝒂𝒔𝒐𝒏 = {
𝟏, 𝑖𝑓 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 (𝑐𝑙𝑎𝑖𝑚) ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑤𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛 (𝑚𝑜𝑛𝑡ℎ𝑠 11, 12, 1, 2, 3)

𝟎, 𝑖𝑓 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 (𝑐𝑙𝑎𝑖𝑚) 𝑑𝑖𝑑𝑛′𝑡 ℎ𝑎𝑝𝑝𝑒𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑤𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛  (𝑚𝑜𝑛𝑡ℎ𝑠 4 − 10)
 

Calculation of survival functions when we have time-varying covariates is a little bit more complicated, 
because we need to specify a path or trajectory for each variable (Rodriguez G. 2007). For example, if a 
policy started on 1st of April, survival function should be calculated using hazard corresponding to 
𝒔𝒆𝒂𝒔𝒐𝒏 = 𝟎 for time-to-event 𝒕 <  𝟐𝟏𝟒 days (from 1

st
 of April till the 1

st
 of November), while for time-to-

event 𝒕 ≥  𝟐𝟏𝟒  – using hazard corresponding to 𝒐𝒏 = 𝟏 . For another example, if a policy started on 1st 

of August, survival function should be calculated using hazard corresponding to 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝟎 for time-to-
event 𝒕 <  𝟗𝟐 days (from 1

st
 of August till 1

st
 of November), and 𝒕 ≥  𝟐𝟒𝟑 days (from 1

st
 of August till 1

st
 of 

April), while for time-to-event 𝟗𝟐 ≤ 𝒕 <  𝟐𝟒𝟑  – using hazard corresponding to 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝟏. 

Unfortunately, the simplicity of calculation of 𝑺𝒊(𝒕) is lost: we can no longer simply raise the baseline 
survival function to a power.  

Yet additional challenge in our data was reliability of claims date. There were 2 dates available – the date 
of the event caused the claim, and the date when the claim was reported. Wide variability of time intervals 
between these 2 dates created additional challenge in application of Cox hazard model, as time-to-event 
became essentially random variable. We used dates of claims occurrence. 

Assumptions violation of the Cox hazard model should be taken into account. If possible, appropriate 
modification of the model should be used to enable more precise interpretation (Hosmer, Lemeshow, 
1999), however we had vast amount of unobserved data. Another possibility was to use Bayesian non-
parametric approach. 
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BAYESIAN APPROACH 

Bayesian approach is based on a solid theoretical framework. The validity and application of the Bayesian 
approach do not rely on the proportional hazards assumption of the Cox model, thus, generalizing the 
method to other time-to-event models and incorporating a variety of techniques in Bayesian inference and 
diagnostics are straightforward. In addition, inference doesn't rely on large sample approximation theory 
and can be used for small samples. Information from prior research studies, if available, can be readily 
incorporated into the analysis as prior probabilities. Although choosing prior distribution is difficult, the 
non-informative uniform prior probability is proved to lead to proper posterior probability (Gelfand, Mallick, 
1994). Instead of using partial Maximum Likelihood Estimation in Cox Hazard model, Bayesian method 
uses Markov Chain Monte Carlo method to generate posterior distribution by the Gibbs sampler: sample 
from a specified prior probability distribution so that the Markov chain converges to the desired proper 
posterior distribution. Only disadvantage of this method is that this process is computation intensive.  

DEPLOYMENT WITH SAS
®
 PROC PHREG 

The estimation of the Cox hazard model using Bayesian approach was implemented using the PHREG 
procedure: 

proc phreg data=claims_data_group_3 ; 

  by accident_state ; 

  class client_industry ; 

  model (zero_time time_to_event)*censor(0) = client_industry season_event; 

  season_event = season*log(time_to_event); 

  bayes seed = 1 outpost = post; 

run ; 

 

The data set claims_data_group_3 contained data ready for analysis, where: 

 season = 1 means that claim happened in the period from November to March, otherwise season = 0 

 censor =1 means presence of claim, and censor = 0 means no claims during the observed period 

A fragment of claims_data_group_3 data set presented in Table 2. 

 

accident_state policy client_industry zero_time time_to_event season sensor 

… … … … … … … 

MD 10 Construction 0 119 1 0 

MD 20 Construction 0 162 0 0 

CO 10 Consulting 0 220 0 1 

AL 10 Electronics 0 263 0 0 

AL 20 Electronics 0 365 1 0 

VA 10 Entertainment 0 237 1 1 

WI 10 Finance 0 95 0 1 

MA 10 Hospitality 0 108 0 1 

IN 10 Machinery 0 7 0 1 

… … … … … … … 

Table 2. Fragment from claims_data_group_3 Data Set 
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We obtained separate analyses on observations in US states using the statement BY accident_state. 

The variable client_industry was defined as a covariate in the analysis by the statement CLASS 
client_industry, and by effect variable in the MODEL statement. 

The time-dependent covariate season_event is defined in the MODEL statement. The separate statement 
defines how to calculate season_event. 

The BAYES statement requests a Bayesian analysis of the model by using Gibbs sampling.  

In the PROC PHREG above we specified a seed value as a constant to reproduce identical Markov 
chains for the same input data. However, during our analysis we didn’t specify seed value at all, and used 
this option as SEED= . It allowed us to use a random seed (derived from the time of day) and then 
compare multiple results to evaluate robustness of the model. We didn’t specify prior distribution, thus 
applying uniform non-informative prior.  

The result of estimation of Cox hazard models using Bayesian method is estimation of 𝜷 coefficients. 

PROC PHREG does not produce baseline survival function when time-dependent covariate is defined. To 
calculate the baseline survival function, we used the following work around: 

data ds ; 

  set claims_data_group_3  ; 

  season_event = season*log(time_to_event); 

run ; 

 

data industry; 

  client_industry = "Utilities" ; 

  season_event = 0; 

run ; 

 

proc phreg data=ds ; 

  by accident_state ; 

  class client_industry ; 

  model (zero_time time_to_event)*censor(0) = client_industry season_event; 

  bayes seed=1 ; 

  baseline out=baseline survival=s covariates=industry; 

run ; 

 

INTERPRETATION OF RESULTS 

Utilities industry was used as a baseline for hazard, meaning that hazard for all other industries were 
estimated relatively to Utilities industry. Below are results for several US states along with explanations. 

State of Colorado 

For Colorado, data represents claims for 8 industries. Estimations of  𝜷 coefficients of Cox model for each 
industry except Utilities, and for season_event covariate are presented in Table 3. As Utilities industry 
was used as baseline for hazard, 𝜷 coefficient for Utilities equal 0. 

Calculation of survival functions when we have time-varying covariates is not straightforward, because we 
need to specify exactly when a specific policy started, and when related to the start date of the policy the 
winter season occurred. For purposes to compare survival functions of different industries, we built time-
to-event functions for each industry and season=0. According to the time-to-event function for Consulting 
industry, for example, there is 84% chances that there will be no claims before 100

th
 day of a policy, and 

there is 16% chances that there will be no claims at all for one year policy (see Figure 4).  
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Parameter Mean estimate of 𝜷 Standard Deviation 95% HPD Interval 

Consulting 1.0589 0.9106 -0.6557 2.9269 

Energy 1.3495 0.8135 -0.1058 3.1137 

Entertainment 2.7912 0.9851 0.8430 4.7817 

Finance 1.2907 0.9998 -0.7032 3.2725 

Hospitality 1.9079 0.7654 0.4868 3.4654 

Manufacturing 2.0940 0.8167 0.4742 3.7191 

Retail 2.0322 0.7840 0.5722 3.6240 

Season_event 0.2476 0.0553 0.1384 0.3559 

Table 3. Mean estimate of β for Colorado 

 

The time-to-event functions allow to estimate and to compare chances of claims among industries. For 
example, for Entertainment industry there is 37% chances that there will be no claims before 100th day of 
a policy, and 0% chances that there will be no claims at all for a one year policy. In other words, 
Consulting industry in state of Colorado presents 16% higher chances to have no claims during a one 
year policy than Entertainment.  

Also, we can observe that Hospitality, Manufacturing and Retail have very similar risks of claims. 

 

Figure 4. Time-to-Event Function for Claims per Industry in Colorado 

 

Hazard function presented on Figure 5 shows that the hazard of claims reaches first high hazard around 
3 months from the beginning of the policy, and then starting from the second half of the policy year 
continuously increases, achieving highest risk at the end of the policy term. 



11 

Figure 5 was produced with the SMOOTH macro (Allison, 2012). 

 

Figure 5. Hazard Function for Claims per Industry in Colorado 

Time-dependent covariate is significant with 𝜷=0.2476. This means that hazard ratio during winter season 

in Colorado is 28% higher, controlling for the other covariates (𝒆𝒙𝒑(𝟎. 𝟐𝟒𝟕𝟔) − 𝟏 ≈ 𝟎. 𝟐𝟖). An estimation 
of time-to-event function for a specific policy should take into consideration when the policy started – and 
thus, when during this policy chances of claims will increase due to the winter season.  

State of Massachusetts 

For Massachusetts, data represents claims for 9 industries. Estimations of  𝜷 coefficients of Cox model 
for each industry except Utilities, and for season_event covariate are presented in the Table 4. As Utilities 
industry was used as baseline for hazard, 𝜷 coefficient for Utilities equal 0. 

The time-to-event function presented on Figure 6 demonstrates that Consulting industry has 85% 
chances that there will be no claims before 100th day of a policy, and only 12% chances that there will be 
no claims at all for a one year policy. 

The time-to-event functions also allow seeing that Manufacturing and Retail industries in Massachusetts 
have similar risks of claims. These industries have 77% chances that there will be no claims before 100th 
day of a policy, and 3% chances that there will be no claims at all for a one year policy for each of these 
industries. 

Another group of industries with similar risk of claims is Chemicals, Apparel and Entertainment industries. 
There are 74% chances that there will be no claims before 100th day of a policy, and 1.7% chances that 
there will be no claims at all for a one year policy for each industry. 
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Parameter Mean estimate of 𝜷 Standard Deviation 95% HPD Interval 

Apparel 3.3516 1.3602 0.8272 6.2793 

Chemicals 3.3323 1.3057 0.8944 6.0357 

Consulting 2.7005 1.2588 0.4473 5.3216 

Entertainment 3.3618 1.2291 1.2855 6.0712 

Hospitality 3.6521 1.2287 1.5277 6.2932 

Machinery 4.3370 1.3759 1.7317 7.1790 

Manufacturing 3.2123 1.2362 0.9801 5.7963 

Retail 3.2018 1.2407 1.0116 5.8300 

Season_event 0.2520 0.0479 0.1628 0.3511 

Table 4. Mean estimate of β for Massachusetts 

 

Figure 6. Time-to-Event Function for Claims per Industry in Massachusetts 

 

Hazard function presented on Figure 7 shows that the hazard of claims grows through the term of policies 
and reaches its highest risk at the end of the term. 

Time-dependent covariate is significant with 𝜷=0.2520. This means that hazard ratio during winter season 

in Massachusetts is 29% higher, controlling for the other covariates (𝒆𝒙𝒑(𝟎. 𝟐𝟓𝟐𝟎) − 𝟏 ≈ 𝟎. 𝟐𝟗).  
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Figure 7. Hazard Function for Claims per Industry in Massachusetts 

State of Maryland 

For Maryland, data represents claims for 6 industries. Estimations of  𝜷 coefficients of Cox model for each 
industry except Utilities, and for season_event covariate are presented in the Table 5. 

 

Parameter Mean estimate of 𝜷 Standard Deviation 95% HPD Interval 

Agriculture 2.4279 0.4945 1.4263 3.3414 

Consulting -1.6205 0.8543 -3.3536 -0.0350 

Entertainment 0.3380 0.5154 -0.6588 1.3387 

Hospitality 0.7939 0.4190 -0.0275 1.6244 

Retail 0.4811 0.3786 -0.2558 1.2183 

season_event 0.2669 0.0699 0.1298 0.4010 

Table 5. Mean estimate of β for Maryland 

 

The time-to-event function on Figure 8 demonstrates that in state of Maryland, Agriculture industry has 
only 25% chances that there will be no claims before 100th day of a policy, and practically 0% chances 
that there will be no claims at all for a one year policy. 

For comparison, Hospitality has 76% chance that there will be no claims before 100th day of a policy, and 
10% chances that there will be no claims at all for a one year policy. 

Hazard function presented on Figure 9 shows that the hazard of claims grows through the term of policies 
and reaches its highest risk at the end of the term. 
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Figure 8. Time-to-Event Function for Claims per Industry in Maryland 

 

Figure 9. Hazard Function for Claims per Industry in Maryland 
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Time-dependent covariate is significant with 𝜷=0.2669. This means that hazard ratio during winter season 

in Maryland is 31% higher, controlling for the other covariates (𝒆𝒙𝒑(𝟎. 𝟐𝟔𝟔𝟗) − 𝟏 ≈ 𝟎. 𝟑𝟏).  

State of Oklahoma 

For Oklahoma, data represents claims for 8 industries. Estimations of  𝜷 coefficients of Cox model for 
each industry except Utilities, and for season_event covariate are presented in the Table 5. 

 

Parameter Mean estimate of 𝜷 Standard Deviation 95% HPD Interval 

Agriculture 2.7484 0.8288 1.2316 4.4317 

Consulting 1.5334 0.9108 -0.2242 3.2846 

Energy 1.1123 0.8142 -0.3626 2.7749 

Finance 2.4426 0.7848 0.9997 4.0137 

Manufacturing 0.8842 0.8501 -0.7545 2.5391 

Retail 1.4189 0.9627 -0.4599 3.3081 

Transportation 1.3947 0.7950 -0.0437 3.0287 

season_event 0.2608 0.0628 0.1384 0.3814 

Table 6. Mean estimate of β for Oklahoma 

According to the time-to-event function for Oklahoma presented on Figure 10, Agriculture industry has 
only 40% chances that there will be no claims before 100th day of a policy, and practically 0% chances 
that there will be no claims at all for a one year policy. 

For comparison, Consulting has 76% chance that there will be no claims before 100th day of a policy, and 
20% chances that there will be no claims at all for a one year policy. 

Hazard function presented on Figure 11 shows that the hazard of claims increases around 60 days of the 
policy term, and then grows through the term of policies and reaches its highest risk approximately 30 
days before the end of the term. 

Time-dependent covariate is significant with 𝜷=0.2608. This means that hazard ratio during winter season 

in Oklahoma is 30% higher, controlling for the other covariates (𝒆𝒙𝒑(𝟎. 𝟐𝟔𝟎𝟖) − 𝟏 ≈ 𝟎. 𝟑𝟎).  

CONCLUSION 

An ultimate goal of insurance risk management is to create a profitable portfolio and to fit right price to 
right risk. This complex problem consists of multiple parts, including estimation of risk, estimation of price, 
monitoring of market changes, and more. In our article, we discussed one part of this complex problem – 
estimation of risk of workers’ compensation claims for different industries and states. Our approach to 
estimate hazard function using Bayesian approach allowed estimating risk of claims per industry and 
state, as well as ranking industries by risk within states. As a next step to build profitable portfolio, the 
severity of claims should be included in the analysis, which eventually will allow re-evaluating premiums 
and insurance products to increase profitability of portfolios.  
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Figure 10. Time-to-Event Function for Claims per Industry in Oklahoma 

 

Figure 11. Hazard Function for Claims per Industry in Oklahoma 
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