
1

MWSUG 2017 – Paper BB042

Demystifying Intervals
Derek Morgan, PAREXEL International, Billerica, MA

ABSTRACT
Intervals have been a feature of base SAS® for a long time, allowing SAS users to work with commonly
(and not-so-commonly) defined periods of time such as years, months, and quarters. With the release of
SAS 9, there are more options and capabilities for intervals and their functions. This paper will first
discuss the basics of intervals in detail, and then we will discuss several of the enhancements to the
interval feature, such as the ability to select how the INTCK() function defines interval boundaries and the
ability to create your own custom intervals beyond multipliers and shift operators.

BASICS OF SAS INTERVALS
Intervals are a way that we track periods of time that may or may not vary in duration, such as quarters,
months, or years. The SAS System has had the capacity to work with dates and times in these terms, and
it is useful when you cannot just substitute a given number of days. As an example, most of the time, 30
days isn't a calendar month, so adding 30 days to a date will give you a date 30 days in the future, but not
necessarily a date (or the desired date) in the next calendar month. When this distinction is important to
your results, SAS intervals are there to help, saving you the cumbersome task of programming the
distinction yourself. Manipulating data with intervals differs from the simple math you can employ with
date data; instead of mathematical operations, you manipulate date and time data with a series of built-in
SAS functions that operate on dates, times, and datetimes using the intervals that you specify. The SAS
System has several intervals already defined to correspond to these standard definitions, and a host of
functions designed to be used with them. A complete list of the built-in SAS intervals, the shift points for
each, and the default starting point for each interval, is in Appendix 1 at the end of the paper.

Two of the most powerful capabilities of SAS intervals are the ability to alter their starting points easily,
and to create custom intervals based on multiples of these standard intervals. For example, if you want
your year to start on July 1 instead of January 1 (as in a fiscal year), you can do that without extensive
programming. If you need an interval of 10 years (corresponding to a decade), again, there is little
programming required. You create an interval based on multiples of existing SAS intervals by using an
interval multiplier. You move the starting point of an interval by using a shift index. You can use one or
both to customize SAS intervals to suit your needs. "YEAR100" is an example of an interval with a
multiplier: this example created a 100-year interval, or a century. "YEAR.7" is an example of an interval
with a shift index. This moves the start of the YEAR interval to the seventh month, July 1 instead of
January 1. For the purposes of this paper, when the term "interval" is used in a function definition, it
means a SAS interval name, plus an optional multiplier and/or shift index.

The mainstays of the SAS interval facility have been, and continue to be, the two interval functions:
INTCK() and INTNX(). The INTCK() function counts the number of times that an interval boundary is
crossed between two given dates. We will discuss the concept of "interval boundary" in more detail in a
moment. Essentially, you would use this function to determine how many calendar months, or some other
interval has elapsed between two dates. The INTNX() function will take a date that you give it and move it
the number of intervals you specify. This is useful to project future (or past) dates from a given reference
point. Version 9 has seen some enhancements to these functions. In particular, the INTCK() function has
a brand new parameter which can alter the way that it works, which will affect the results it gives.

WHEN IS A YEAR NOT A YEAR?
This brings us to the first enhancement in intervals. The syntax for the INTCK() function has changed in
version 9. It is now: INTCK(interval,start-of-period,end-of-period,method); interval must be in quotes.
This function still calculates the number of intervals between the dates represented by start-of-period
and end-of-period. However, the method argument has been added. SAS can now count interval
boundaries in two ways: CONTINUOUS (C) or DISCRETE (D). The method argument must be enclosed
in quotes. If you do not specify method, DISCRETE (or D) is the default, and is the way that the INTCK()

2

function has calculated intervals since its inclusion in SAS. One simple way of thinking about the
CONTINUOUS method is that it counts intervals the way we intuitively think of periods of time such as
months or years. However, a great deal of existing code relies on the DISCRETE method, and I strongly
advise against running through all of it and changing it to the more intuitive method.

To illustrate the potential for problems with SAS intervals, consider the following program and result in
bold:

DATA _NULL_;
 v1 = INTCK('YEAR','01jan2016'd,'01jan2017'd);
 v2 = INTCK('YEAR','31dec2016'd,'01jan2017'd);
 PUT v1= +3 v2=;
RUN;
v1=1 v2=1

Wait a minute. We know that a year from December 31, 2016, is not January 1, 2017. What happened?
SAS intervals are not a shortcut to doing the math. When the DISCRETE method is used (either explicitly
or by default,) the INTCK() function counts the number of times that the period interval begins between
start-of-period and end-of-period. It does not count the number of complete intervals between start-of-
period and end-of-period. Therefore, for any date in 2016, the first year period starts on January 1, 2016.
Therefore, given any starting date in 2016, the number of YEAR intervals that INTCK() counts will be one
for any given ending date in 2017. There is an enormous potential for bad results if you misunderstand
how INTCK() calculates using the DISCRETE method. The important thing to remember about the default
with intervals is that they are based on the starting point of the interval for the start-of-period date given
to the function, and not the start-of-period date itself.

Let's try that same program with the CONTINUOUS method using the alias "C" in the program below:

DATA _NULL_;
 v1 = INTCK('YEAR','01jan2016'd,'01jan2017'd,'C');
 v2 = INTCK('YEAR','31dec2016'd,'01jan2017'd,'C');
 PUT v1= +3 v2=;
RUN;

v1=1 v2=0

This looks much more as you would expect. One year elapsed from January 1, 2016 to January 1, 2017,
but not between December 31, 2016 and January 1, 2017. The CONTINUOUS method calculates
continuous time from the start-of-period date itself. If you want to know how many full calendar months it
has been since your start-of-period and end-of-period dates, then you would use the CONTINUOUS
method. You could get different answers for the same number of days between your start-of-period and
end-of-period dates because the calendar isn't evenly spaced. 28 days will be equal to one month when
start-of-period is in the month of February, and it isn't a leap year. However, 28 days will not be
considered one month when it is a leap year, or start-of-period is in any month other than February. The
INTCK() function will not count a month between January 1 and January 31, which is 30 days, but it will
count the 30 days between April 1 and May 1 as one month.

The CONTINUOUS method is useful for calculating anniversaries and milestones tied to dates, times and
datetimes. While the CONTINUOUS method may seem more intuitive than the traditional, and still default,
way in which the INTCK() function handles intervals, you will have to be cautious in choosing which of the
two methods you select. Again, it is not recommended that you start going through your legacy code that
uses the INTCK() function and changing the method just because the CONTINUOUS method makes
more sense in the way that the INTCK() function counts. That legacy code was written to take advantage
of the DISCRETE method, and as seen above, the two are not equivalent.

With that in mind, Example 1 provides a good look at the INTCK() function using its default setting. The
"D" argument shown for method is optional in the following examples.

3

Function Call Result
INTCK('DAY', '31dec2016'd, '06jan2017'd, 'D') 6
INTCK('WEEK', '31dec2016'd, '06jan2017'd, 'D') 1
INTCK('MONTH', '31dec2016'd, '06jan2017'd, 'D') 1
INTCK('YEAR', '31dec2016'd, '06jan2017'd, 'D') 1

Example 1: Sample INTCK() Function Calls Using DISCRETE Method

Although 7 days have elapsed, only six DAY interval boundaries have been crossed since December 31,
2016 (01/01/2017, 01/02, 01/03, 01/04, 01/05, and 01/06.) The start of the WEEK interval for January 6,
2017 is January 4 (weeks start on Sunday by default, although you can change this with a shift index.)
The MONTH, and YEAR intervals for January 6, 2017 start on January 1, 2017, so one boundary has
been crossed in each of these cases. The INTCK() function can also count backwards: when end-of-
period is a date prior to start-of-period, the INTCK() function will return a negative number. One thing
that the INTCK() function will not do is return a non-integer value, because there is no such thing as a
partial interval boundary. Intervals cannot be subdivided, although you can create the equivalent by using
a multiplier of a shorter base interval.

To summarize, you use the INTCK() function to count the number of interval boundaries between two
dates, times, or datetimes. As of SAS 9, there are two different methods of counting them, CONTINUOUS
and DISCRETE. DISCRETE is the default, and it is the way that SAS has counted intervals since the
inception of the function. The CONTINUOUS method is good for counting anniversaries and milestones,
and can be thought of as the way most people think of elapsed time. The methods are NOT
interchangeable, and it is a very bad idea to change existing code to use the new method without careful
consideration.

PROJECTING DATES BASED ON INTERVALS
The INTNX() function advances a given date, time or datetime by a specified number of intervals. The
syntax for this function is INTNX(interval,start-date,number-of-increments,alignment);, where interval
is one of the SAS intervals from Appendix 1 (again in quotes), start-date is the starting date, and
number-of-increments is how many intervals you want to add or subtract. number-of-increments
should be an integer, but if it is not, the function will only use the integer portion of a decimal argument,
because there is no such thing as a partial interval. alignment will adjust the result of INTNX() relative to
the interval given. It can be 'B', 'M', or 'E' (quotes necessary) for the beginning, middle, or end of the
interval, respectively. There is also the 'S' alignment value, which will adjust the result to the same day as
given in the start-date argument. To illustrate how INTNX() and alignment works, Example 2 provides a
sample program that adds six months to March 20, 2017, with varying alignment values. The result is in
bold.

4

DATA _NULL_;
a = INTNX('MONTH','20MAR2017'd,6);
b = INTNX('MONTH','20MAR2017'd,6,'B');
c = INTNX('MONTH','20MAR2017'd,6,'M');
d = INTNX('MONTH','20MAR/2017'd,6,'E');
e = INTNX('MONTH','20MAR/2017'd,6,'S');
PUT "A) 6 months from 3/20/2017 with default alignment = " a mmddyy10.;
PUT "B) 6 months from 3/20/2017 aligned with beginning of MONTH interval= " b
mmddyy10.;
PUT "C) 6 months from 3/20/2017 aligned with middle of MONTH interval= " c
mmddyy10.;
PUT "D) 6 months from 3/20/2017 aligned with end of MONTH interval= " d mmddyy10.;
PUT "E) 6 months from 3/20/2017 aligned with same day in MONTH interval= " e
mmddyy10.;
RUN;

A) 6 months from 3/20/2017 with default alignment = 09/01/2017
B) 6 months from 3/20/2017 aligned with beginning of MONTH interval= 09/01/2017
C) 6 months from 3/20/2017 aligned with middle of MONTH interval= 09/15/2017
D) 6 months from 3/20/2017 aligned with end of MONTH interval= 09/30/2017
E) 6 months from 3/20/2017 aligned with same day in MONTH interval= 09/20/2017

Example 2: INTNX() Function with Different Alignments

A) and B) set the result to the first day of the month, because that is the beginning of the MONTH interval.
This is the basic calculation that the INTNX() function performs every time that it is called. From here, the
alignment operators kick in. C) moves the date from 09/01/2017 to the middle of the month (14th for
February in non-leap years, 15th for months with 29 or 30 days, and the 16th for months with 31 days.) D)
shows that the result is now the last calendar day of the month, and E) takes the day used in the original
argument. Even though the results may in some cases look as if the function just calculated those dates
directly by using partial intervals, it is important to remember that the INTNX() function first advances the
date supplied by the number of interval boundaries given, and then it adjusts the result based on the
alignment argument. Once again, there is no such thing as a partial interval boundary.

BUT I DON'T WANT MY YEAR TO START ON JANUARY 1
Since the default starting point of an interval is at the beginning of it, SAS seems to have a blind spot
when it comes to figuring out intervals that do not coincide with the standard definition. There is a way to
shift the starting point of any given interval by creating your own interval definition. For example, what if
you wanted to know the number of YEAR intervals between two dates, but instead of calculating calendar
years, you wanted to calculate it using your company's fiscal year, which starts on July 1? You tell SAS
how many periods to shift. Each interval has a shift unit. For years, the shift unit is months, so you will tell
SAS to shift the starting point of the year in terms of months. A shifted interval is the interval name,
followed by a period, and the number of periods to shift. To shift the start of the YEAR interval to July 1,
you would use the interval "YEAR.7".

It is important to remember that when you count the number of periods to shift, you need to include the
beginning of the period. We are not shifting the start of the year interval by six months to move to July; we
are moving the start of the year to the seventh month. If you do not account for this, you will be off by one
unit. Another handy way to think of it is that the YEAR.1 interval is the same as the YEAR interval. You
can shift an interval by the maximum number of sub-intervals it contains. For example, you cannot shift a
DAY interval, because the boundary is a DAY. However, you can shift a WEEK because the boundary is
also a DAY. You can shift a WEEK by up to 7 days, which would start the week on Saturday. Refer to
Appendix 1 at the end of the paper for the shift point associated with each type of interval.

I NEED AN INTERVAL THAT IS NOT IN SAS. WHAT CAN I DO?
SAS will allow you to define non-standard intervals in two different ways. One has always been available
to you with intervals, and that is with interval multipliers. An interval multiplier essentially allows you to
create an interval that is an integer multiple of the existing SAS interval definitions. For example, if you

5

want an interval where the boundaries occur every 10 years, use 'YEAR10' as the interval name. A
'MONTH4' interval would provide you with trimesters. Any interval you create using a multiplier functions
the same as those that are already defined in SAS. The interval boundaries are set at the beginning of
these intervals and you can shift the starting point of the interval using a shift index that is based on the
shift point of the original SAS interval. Let's take the MONTH4 interval as an example. Instead of having
the interval boundary occur on January 1 of each year, we want to set the interval so that the annual
boundary falls on July 1 of each year. First, we need to figure out where the default boundaries for our
interval lay. Handy trick: if you ever want to determine where an interval boundary starts relative to any
date, use the INTNX() function with zero as the number of increments. Here, we're going to show all
interval boundaries for 4 trimesters relative to January 1, 2016.

Function Call Date
INTNX('MONTH4','01jan2016'd,0,'B') Wednesday, January 1, 2016
INTNX('MONTH4','01jan2016'd,1,'B') Thursday, May 1, 2016
INTNX('MONTH4','01jan2016'd,2,'B') Monday, September 1, 2016
INTNX('MONTH4','01jan2016'd,3,'B') Thursday, January 1, 2017

Example 3: Interval Boundaries for Custom Intervals

It looks as if our MONTH4 starts on January 1 of the year. How does SAS figure out what point in time it
should start calculating our intervals? Our old friend, January 1, 1960. This is an important point to be
aware of for more esoteric intervals, but for intervals that easily fit into other SAS intervals, it won't be
perceived as making a difference. So how do we move our interval so that one of the trimesters will
always start on July 1? We can't shift the interval that starts in January by 7 months, as we would for the
YEAR interval to move the start of it to July 1. You can only move an interval the number of shift-points
that are contained in it. There are three shift points in our MONTH4 interval before we move on to the
next MONTH4 interval. Given that, it makes sense to shift from May to July. Remember that a shift index
of one has no effect on the starting point of an interval; therefore, we need to shift the start of the
MONTH4 interval by 3 months (May, June, July). That results in our interval being MONTH4.3. as shown
in Example 4:

Function Call Date
INTNX('MONTH4.3','01jan2017'd,0,'B') Friday, November 1, 2016
INTNX('MONTH4.3','01jan2017'd,1,'B') Saturday, March 1, 2017
INTNX('MONTH4.3','01jan2017'd,2,'B') Tuesday, July 1, 2017
INTNX('MONTH4.3','01jan2017'd,3,'B') Saturday, November 1, 2017

Example 4: Using the SHIFT Index to Customize Interval Boundaries

Now, July 1 will always be an interval boundary for our MONTH4 interval. If you are wondering about the
starting date of the interval, bear in mind that SAS is calculating intervals from the first interval boundary
AFTER January 1, 1960. The first complete MONTH4.3 interval ending in 1960 ends in March of 1960.
Move the date back by 4 months and you get November 1, 1959. Therefore, trimesters based on our
MONTH4.3 interval will always start in the months of November, March, and July. This has allowed SAS
programmers to create contiguous periods of time that are not already defined by SAS, and has
historically been the only way to modify interval definitions.

The enhancement to customizing intervals is now you have the ability to create your own intervals using a
SAS dataset. User-defined intervals now allow you to create intervals that do not correspond to shifted
and/or multiplied standard SAS intervals. Intervals with irregular boundaries, or intervals that do not
encompass an entire pre-defined SAS interval, or intervals that may be specific to your industry or
company. As an example, you can create an HOUR8 interval to account for three eight-hour working
shifts; furthermore, you can use HOUR8.7 to create intervals that correspond with shift start times of 6
a.m., 2 p.m., and 10 p.m. It's an easy way to count shifts. What happens if your working shifts are 10
hours long, with a mandatory 4-hour break while the machinery goes through an automated cleaning

6

cycle and reset? Although this may be an extreme example, try accommodating this with standard SAS
intervals using multipliers and a shift index.

Another possibility is to create a user-defined interval that changes the shift point of an existing standard
SAS interval. Consider that the shift point for a DAY is DAY, which starts at 12 midnight. If you want your
"day" to start at 6 a.m. instead of midnight, it is not easy to do. You could use a DTHOUR24.7 interval, but
that will only work with datetime values, and you would have to convert all of your date data to datetimes.

THE MECHANICS OF USER-DEFINED INTERVALS
Defining an interval requires a SAS dataset that has at least one variable named begin. It may also have
two additional variables, end and season. If end is not included in the dataset, the end of one period in
your interval is considered to be one less than the begin value of the next period in that interval. In
general terms, if your user-defined interval is based on days, the endpoint of one period would be the day
before the begin date of the next period. The optional season variable is for the concept of seasonality
used in time-series analyses. The final requirement is that the begin (and end, if present) variables must
be associated with an appropriate date, time, or datetime format in the dataset when it is created.

Once you have created your interval dataset, you need to tell SAS to use it as a user-defined interval as
follows:

OPTIONS INTERVALDS(semester,custom.semester,proddays,custom.anyname);

This tells SAS that an interval named SEMESTER is created from the dataset CUSTOM.SEMESTER,
and the interval PRODDAYS is created from the dataset CUSTOM.ANYNAME. I would strongly
recommend naming your interval definition dataset the same as the interval it defines. If you need more
user-defined intervals, just add more arguments to the INTERVALDS option statement. The rules for
naming your intervals are standard: it must adhere to standard SAS naming conventions (32 characters
or less, must start with a letter, etc.), and it cannot be a SAS reserved word—including names of standard
SAS intervals. This prevents you from changing the definition of the DAY interval. You can create your
own parallel interval, but it cannot be named DAY.

While this may be cause for much rejoicing in some quarters, as always, care must be taken when it
comes to defining and using your own intervals, because unexpected results are lurking just around the
corner. To demonstrate, let's take the example of a small, family-owned manufacturing plant. They are in
production 5 days a week, not including weekends or the standard holidays. In addition, the generous
owners give their employees the following additional days off: Christmas Eve, the day after Thanksgiving,
the Friday before Easter, and the company's anniversary, which is August 6 of each year. In the event
that this date (or Christmas Eve, Christmas, or New Year’s Day) falls on a Saturday or Sunday, the day
off is moved to Friday or Monday as appropriate. They also do not have production days the week before
July 1 while they do inventory. Got all that?

Why such a complicated scenario? The company is known for high quality components and their ability to
deliver just-in-time sourcing to clients at a very good price (with a 25% discount if they do not meet the
stated delivery date.) Therefore, it is crucial the company knows how long production takes to the exact
day. Appendix 2 holds the annotated code to build the dataset used to create the PRODDAYS interval.

First, let's look at the actual days, number of weekdays, and the number of production days for the
calendar year 2017.

start stop Actual Days Weekdays Production Days
01JAN2017 01JAN2018 365 261 243

You can see the slight difference in the number of weekdays vs. the number of days that the production
lines are working. To build and deliver each of the company's six product lines requires a different number
of production days. A new customer comes in with an order on Friday, June 23,, 2017, and wants to know
what the delivery date would be for each type of product. The company determines how many production
days it will take to fill the order, and then adds it to the order date. Since the contract calls for a
substantial discount if the delivery date is not met, the company must be precise in its calculations. An

7

approximate delivery date is calculated with the INTNX() function, using the WEEKDAY interval, but the
exact one will use our PRODDAYS interval.

Product

Days to
Produce

Customer
Order

Approximated Delivery Date
Using WEEKDAY Interval

Actual Delivery Date Using
PRODDAYS Interval

Std Product 1 23 Wednesday, July 26, 2017 Thursday, August 3, 2017
Std Product 2 32 Tuesday, August 8, 2017 Thursday, August 17, 2017
Std Product 3 35 Friday, August 11, 2017 Tuesday, August 22, 2017
Custom Product 1 33 Wednesday, August 9, 2017 Friday, August 18, 2017
Custom Product 2 42 Tuesday, August 22, 2017 Thursday, August 31, 2017
Custom Product 3 56 Monday, September 11, 2017 Thursday, September 21, 2017

Example 5: Delivery Dates using User-Defined Intervals

This is an example of what you can do with user-defined intervals. However, there is one specific problem
when you define your own intervals. If there is no record for a specific date, time, or datetime in the
interval dataset, and an interval function makes a calculation that results in a value you have not defined,
you will get an unexpected result. This unexpected result may be a missing value, or, worse, it may not.
Continuing with our small, family-owned company, and their PRODDAYS interval, what happens when
the interval is defined through the end of 2015, but not beyond? Here is an example of using the INTCK()
function to count the number of PRODDAYS from December 22, 2017:

Obs startDate endDate result
1 Thursday, December 21, 2017 Friday, December 22, 2017 0
2 Thursday, December 21, 2017 Saturday, December 23, 2017 0
3 Thursday, December 21, 2017 Sunday, December 24, 2017 0
4 Thursday, December 21, 2017 Monday, December 25, 2017 0
5 Thursday, December 21, 2017 Tuesday, December 26, 2017 1
6 Thursday, December 21, 2017 Wednesday, December 27, 2017 2
7 Thursday, December 21, 2017 Thursday, December 28, 2017 3
8 Thursday, December 21, 2017 Friday, December 29, 2017 4
9 Thursday, December 21, 2017 Saturday, December 30, 2017 4
10 Thursday, December 21, 2017 Sunday, December 31, 2017 4
11 Thursday, December 21, 2017 Monday, January 1, 2018 4
12 Thursday, December 21, 2017 Tuesday, January 2, 2018 4
13 Thursday, December 21, 2017 Wednesday, January 3, 2018 4
14 Thursday, December 21, 2017 Thursday, January 4, 2018 4
15 Thursday, December 21, 2017 Friday, January 5, 2018 4

Example 6: Result of Undefined Days in a User-Defined Interval

From this, we can see that the first four days after December 21 are not production days. This makes
sense; the company is closed on Christmas Eve (holiday moved to Friday from Sunday), over the
weekend, and Christmas Day. The remainder of the following week counts as you would expect until the
weekend, followed by January 1, 2018, another company holiday. The following days aren’t counted as
production days. Shouldn't they be? Yes, but the dataset we used to create the interval only provides
dates through December 31, 2017. Since those dates in 2018 aren't in the dataset, they aren't counted.
This makes sense, after all, how did we remove days from the interval in the first place? We did not put
them in the interval dataset, so they were not counted as a part of the PRODDAYS interval.

8

Of course, there are limitations with user-defined intervals: you cannot use a multiplier and/or a shift
index, and their functionality is limited to the domain of interval functions. You can't use your user-defined
interval to define axes for graphics, for example. Nonetheless, this is a new weapon in the arsenal of SAS
intervals. It fills the gap of what to do when the standard SAS intervals along with multipliers and a shift
index can't get you the results you need with intervals.

MORE ENHANCEMENTS
With version 9, SAS has added several more functions that work with, on, or provide information about,
intervals. Many of these are going to be of particular interest to those who work with time series analysis,
and some are of particular note for application developers. I will provide a brief compendium in this paper,
but for more in-depth discussion, go to support.sas.com and look at the examples they provide to fuel
your imagination as to how these new functions can benefit you.

INTERVAL FUNCTIONS ABOUT INTERVALS
INTFIT(argument-1,argument-2,type) This function will take two date, datetime, or observation
numbers as the first two arguments and return the interval between them deemed to be "the best fit." This
function assumes that the alignment is "SAME", so that the exact values are matched between the two
arguments. type depends on the arguments. When the arguments are SAS date values, type should be
"D". If the arguments are SAS datetime values, type should be "DT". If you are looking for the interval
between two observations by providing observation numbers, function will return an interval with the base
name of "OBS". You can use this function to give you the interval between two points in time. The
intervals returned contain multipliers and a shift index, so the result returned may not be exactly what you
were looking for. As you can see in the table below, some of the intervals are not as you might anticipate.

 start end result
 A Tuesday, April 1, 2014 Wednesday, April 2, 2014 DAY
 B Tuesday, April 1, 2014 Thursday, April 3, 2014 DAY2
 C Tuesday, April 1, 2014 Friday, April 4, 2014 DAY3.3
 D Tuesday, April 1, 2014 Sunday, April 6, 2014 DAY5.5
 E 5/1/2014 9:00 AM 5/1/2014 2:00 PM DTHOUR5
 F 5/1/2014 9:00 AM 5/1/2014 8:45 PM DTMINUTE705.136
 G 5/1/2014 9:00 AM 5/2/2014 3:30 AM DTMINUTE1110.61

Example 7: The INTFIT() Function

The italicized rows show examples of intervals that may be puzzling. Remember that the function
provides the exact intervals between the pair of dates or datetimes, and the lowest common denominator
will be used for base interval. In addition, the dates are measured using the SAMEDAY alignment, which
means that the interval is measured from the beginning of the interval, and then adjusted. At first glance,
the DAY5.5 result in row D doesn't seem to be right; Tuesday is only the third day of the week, so
shouldn't the shift be 3 as it is for the DAY3 and DAY4 intervals? The start of DAY 5 intervals are Sunday,
then Friday. If you want to measure a DAY5 interval to a Sunday from a Tuesday, then you will have to
measure from the Friday, which gives you a shift of 5. Rows F and G demonstrate that it may become
even more confusing with times and/or datetimes. The base interval shift points are now minutes and/or
seconds, so the resulting shift index and multipliers may be large enough that you lose the context of the
original reference point.

The following table shows a sample result of using the INTFIT() function with the 'OBS' type. The records
are from a sequential dataset with Wednesday, April 2, 2014 as the first date. Since the dates are keyed
by observation, the result of the INTFIX() function shows the interval as the relationship between
observations, not the actual date values themselves.

9

Sample Function Call Date Result
INTFIT(1,1,'OBS') Wednesday, April 2, 2014
INTFIT(1,4,'OBS') Saturday, April 5, 2014 OBS3.2
INTFIT(1,5,'OBS') Sunday, April 6, 2014 OBS4.2
INTFIT(1,10,'OBS') Friday, April 11, 2014 OBS9.2
INTFIT(1,14,'OBS') Tuesday, April 15, 2014 OBS13.2
INTFIT(1,16,'OBS') Thursday, April 17, 2014 OBS15.2

Example 8: The INTFIT() Function with the OBS Argument

INTFMT('interval', 'size') This function will take the interval you give and return a suggested format for
date, time, or datetime values using this interval. interval can be any standard SAS interval (with
multipliers and/or a shift index if desired), or a user-defined interval that you have created. size refers to
whether the format it returns will have a two-digit year ('short'/'s') or a four-digit year ('long'/'l'). This
function is most useful when you use the INTFIT() or INTGET() functions to determine the interval
dynamically, so that you will always display a result in the proper context. As of version 9.4, there is one
important usage note about the size argument. If you do not use lower case, the function may return an
unpredictable result (see Row A) in the example table below:

 Sample Function Call Result Comment
A INTFMT('WEEK','LONG') size argument is in upper case
B INTFMT('WEEK','short') WEEKDATX15.
C INTFMT('MONTH','long') MONYY7.

Example 9: The INTFMT() Function

INTGET(argument1,argument2,argument3) This function will determine an interval from three date or
datetime values you provide. The arguments can be variables or date/datetime literals, but they must be
of the same type; you cannot mix dates and datetimes as arguments. The function calculates all intervals
between the first two arguments, and then between the second and third arguments. If the intervals are
the same, it will return that interval. If the intervals are not the same, then the function will test the interval
between the second and third arguments to see if it is a multiple of the interval between the first two
arguments. If this is true, then the function will return the smaller of the two intervals. If neither of these
cases are true, then the INTGET() function will return a missing value.

 Sample Function Call Result
A INTGET('05SEP2013'd,20SEP2013'd,05OCT2013'd) SEMIMONTH
B INTGET('15JAN2014'd,15APR2014'd,15OCT2015'd) QTR
C INTGET('15JAN2014'd,15APR2015'd,15OCT2015'd)

Example 10: The INTGET() Function

In row A, the period between the dates is 15 days, which corresponds to the SEMIMONTH interval. Row
B demonstrates that the dates do not have to have the same interval. The gap between January and April
is one quarter, but the gap between April and October of the following year is five quarters. Since the
interval for the second pair of arguments would be 'QTR5', since it is a multiple of the QTR interval, the
function returns the interval without a multiplier. What happened in row C? Simply, the interval between
January 2014 and April 2015 is now QTR5, but the interval between April and October of 2015 is QTR2.
Since QTR2 is not a multiple of QTR5, the result is missing.

INTSHIFT('interval') This function will take the interval you give and return the shift point for that interval.
interval can be any standard SAS interval (with multipliers and/or a shift index if desired.) If interval is
represented by a character string, then it must be enclosed in quotes, but you may use a character
variable containing the name of an interval instead. If you try to use this function with a user-defined
interval you have created, the function will return a missing value.

10

INTTEST('interval') This function will take the interval you give and return a 1 if it is a valid interval
name, or 0 if it is not. You can use this to determine if you have created a valid interval with multipliers
and/or a shift index. interval can be any standard SAS interval (with multipliers and/or a shift index if
desired.) If interval is represented by a character string, then it must be enclosed in quotes, but you may
use a character variable containing the name of an interval instead. If you try to use this function with a
user-defined interval you have created, the function will return a missing value.

Sample Function
Call Result Comment

INTTEST('WEEK') 1

INTTEST('QTR.1') 1 You can shift a quarter by up to 3 months (counting the initial
starting point as .1).

INTTEST('QTR3.13') 0 The shift point for quarters is months, so the maximum number of
months you can shift in a 3-quarter period would be 9.

INTTEST('YEAR.7') 1
Example 11: The INTTEST() Function

RETAIL CALENDAR INTERVALS
SAS has added intervals that are specifically designed for the retail industry. These intervals are ISO
8601-compliant, and can be used with any of the interval functions. They facilitate comparisons across
years, because the weeks remain consistent between years. In order to facilitate this, some years will
have leap weeks. Year definitions are based on the ISO 8601 definition of a week, which is the first
Monday preceding January 4, which in some cases may place the beginning of the week in December.
These intervals allow you to define the structure of your 52-week year, expecting that for the first 13-week
period of your interval, there will be one month that has 5 weeks in it. This means that you can set the
month pattern to 5-4-4, 4-5-4, or 4-4-5. You can work with years, months, or quarters in this fashion. The
full list of retail intervals is in Appendix 3.

SEASONALITY FUNCTIONS
Seasonality is used in time-series analysis, and can be used in SAS/ETS®. It helps to account for normal
seasonal variations in patterns inside of an analysis. While it is not strictly a date and time matter, it does
use intervals; therefore, the seasonality functions are documented here, but without context. For more
information on seasonality and its application, you can refer to the SAS/ETS documentation, and
support.sas.com is a great place to find more help on this topic.

INTCINDEX('interval',argument) This function returns the index of the seasonal cycle based on interval
for argument, where argument is a SAS date, time or datetime value. interval can be any standard SAS
interval (with multipliers and/or a shift index if desired.
INTCYCLE('interval',seasonality) This function returns the interval of the seasonal cycle. interval can be
any standard SAS interval (with multipliers and/or a shift index if desired. seasonality is an optional
argument that allows you to define seasonal cycles, and it can be a number or a cycle (such as 'YEAR'.).
For example, you can use the seasonality argument to specify your year as having 53 weeks instead of
52.

INTINDEX('interval',argument,seasonality) This function returns the seasonal index when given an
interval, a SAS date, time, or datetime. interval can be any standard SAS interval (with multipliers and/or
a shift index if desired. argument is a SAS date, time, or datetime value. Note that the interval specified
must be appropriate for the argument. seasonality is an optional argument that allows you to define
seasonal cycles, and it can be a number or a cycle (such as 'YEAR'.) The INTINDEX function returns the
seasonal index, while the INTCINDEX function returns the cycle index.

INTSEAS('interval',seasonality) This function returns the number of intervals in a seasonal cycle.
interval can be any standard SAS interval (with multipliers and/or a shift index if desired.) seasonality is
an optional argument that allows you to define seasonal cycles. This is a good function to be aware of if

11

you are new to concepts of seasonality, because the number of intervals in a seasonal cycle may not be
intuitive. As an example, while you might expect the number of intervals for the QTR interval to be 4
(because there are 4 quarters in a year), the number of intervals for a DAY interval is 7, for the number of
days in the week. This can help you check your expectations.

SUMMARY
Version 9 of SAS has seen some significant additions to its interval capacity. The addition of a
CONTINUOUS method to the INTCK function allows you to count elapsed time in a more intuitive way,
although the default DISCRETE still has its place, and you shouldn't be too quick to adopt the new
method for all situations. The upgrade to the INTNX function has been the addition of the SAMEDAY
adjustment, which lets you calculate to a date (or datetime), and find the same day as in the original
argument within that interval. One of the biggest enhancements to intervals is the ability to define your
own interval, which expands your control over the interval you need by expanding well beyond the
previous boundaries of creating multiples of existing intervals and shifting starting points.

Automation has been considered as well, with a series of functions about intervals themselves. Now you
can find an interval between two or three points, and get a format for a value based on the interval you're
using. A function now exists to test if your interval is valid, allowing you to take graceful action to handle
an exception within an application rather than crashing the process because of an invalid interval name.
You can also determine whether a shift-index is valid or not, so a user can't try to shift the YEAR interval
by 14 months.

For those of you in retail, SAS has added intervals just for your industry to help with those analyses and
projections, and for the SAS/ETS user, there are now a group of functions to help with the concept of
seasonality, which may also be accounted for in any user-defined intervals you create. While these
enhancements may not be a major tidal change in the way many of us deal with intervals on a day-to-day
basis, I'm sure that some of us have already taken advantage of them, and many more will do so in the
near future.

REFERENCES
Morgan, Derek P. 2014, The Essential Guide to SAS® Dates and Times Second Edition. Cary, NC: SAS
Institute Inc.

CONTACT INFORMATION:
Further inquiries are welcome to:

Derek Morgan
E-mail: mrdatesandtimes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

12

APPENDIX 1: SAS INTERVALS AND THEIR STARTING POINTS

Interval Name Definition

Default
Starting

Point

DAY Daily intervals Each day

WEEK Weekly intervals of seven days Each Sunday

WEEKDAYdaysW

Daily intervals with Friday-Saturday-Sunday counted as the same day (five-day work
week with a Saturday-Sunday weekend). days identifies the individual numbers of the
weekend day(s) by number (1=Sunday ... 7=Saturday). By default, days="17", so the
default interval is WEEKDAY17W.

Each day

TENDAY Ten-day intervals (a U.S. automobile industry convention)
1st, 11th, and
21st of each
month

SEMIMONTH Half-month intervals 1st and 16th of
each month

MONTH Monthly intervals 1st of each
month

QTR Quarterly (three-month) intervals

1-Jan
1-Apr
1-Jul
1-Oct

SEMIYEAR Semi-annual (six-month) intervals 1-Jan
1-Jul

YEAR Yearly intervals 1-Jan

DTDAY Daily intervals used with datetime values Each day

DTWEEK Weekly intervals of seven days used with datetime values Each Sunday

DTWEEKDAYdaysW

Daily intervals with Friday-Saturday-Sunday counted as the same day (five-day work
week with a Saturday-Sunday weekend.) days identifies the individual weekend days
by number (1=Sunday ... 7=Saturday.) By default, days="17", so the default interval is
DTWEEKDAY17W. This interval is only used with datetime values.

Each day

DTTENDAY Ten-day intervals (a U.S. automobile industry convention) used with datetime values
1st, 11th, and
21st of each
month

DTSEMIMONTH Half-month intervals used with datetime values 1st and 16th of
each month

DTMONTH Monthly intervals used with datetime values 1st of each
month

DTQTR Quarterly (three-month) intervals used with datetime values

1-Jan
1-Apr
1-Jul
1-Oct

DTSEMIYEAR Semiannual (six-month) intervals used with datetime values 1-Jan
1-Jul

DTYEAR Yearly intervals used with datetime values 1-Jan

DTSECOND Second intervals used with datetime values Seconds

DTMINUTE Minute intervals used with datetime values Minutes

DTHOUR Hour intervals used with datetime values Hours

SECOND Second intervals used with time values Seconds

MINUTE Minute intervals used with time values Minutes

HOUR Hourly intervals used with time values Hours

13

APPENDIX 2: CREATING THE DATASET TO MAKE THE PRODDAYS INTERVAL
1 OPTIONS INTERVALDS=(proddays=proddays);
2 DATA proddays (KEEP=begin);

3 /* Only need BEGIN variable, assume end-of-day as same day */
4 start = '01JAN2017'D;
5 stop = '31DEC2017'D;
6 nweekdays = INTCK('WEEKDAY',start,stop);
7 DO i = 0 TO nweekdays;
8 begin = INTNX('WEEKDAY',start,i); /* weekdays between start/stop */
9 year = YEAR(begin);

10 /* Calculate inventory days */
11 invend = MDY(6,30,year);
12 IF 1 < WEEKDAY(invend) < 7 THEN
13 invstrt = INTNX('WEEKDAY',invend,-4);
14 ELSE
15 invstrt = INTNX('WEEKDAY',invend,-5);

16 /* Company-specific holidays */
17 nye = HOLIDAY('NEWYEAR',year);
18 xthanks = HOLIDAY("THANKSGIVING",year) + 1; /* Thanksgiving Friday*/
19 xmas = HOLIDAY('CHRISTMAS',year); /* Christmas */
20 xmaseve = xmas - 1; /* Christmas Eve */
21 sprng = HOLIDAY("EASTER",year) - 2; /* Friday before Easter */

22 /* Founders Day - If on weekend, move forward/back as appropriate */
23 founders = MDY(8,6,year);
24 SELECT(WEEKDAY(founders));
25 WHEN(7) founders = founders - 1;
26 WHEN(1) founders = founders + 1;
27 OTHERWISE founders = founders;
28 END;

29 /* Also need to adjust New Year, Christmas, and Christmas Eve if */
30 /* they fall on weekend days
31 SELECT(WEEKDAY(xmaseve)); /* Move Christmas Eve to preceding Fri */
32 WHEN(7) xmaseve = xmaseve - 1;
33 WHEN(1) xmaseve = xmaseve - 2;
34 OTHERWISE xmaseve = xmaseve;
35 END;
36 SELECT(WEEKDAY(xmas)); /* Move to following Mon */
37 WHEN(7) xmas = xmas + 2;
38 WHEN(1) xmas = xmas + 1;
39 OTHERWISE xmas = xmas;
40 END;
41 SELECT(WEEKDAY(nye)); /* Move to following Mon */
42 WHEN(7) nye = nye + 2;
43 WHEN(1) nye = nye + 1;
44 OTHERWISE nye = nye;
45 END;
46

14

47 /* Exclude "normal" holidays, company-added holidays and inventory time */
48 IF begin NE nye AND
49 begin NE HOLIDAY("MLK",year) AND
50 begin NE HOLIDAY("USPRESIDENTS",year) AND
51 begin NE HOLIDAY("MEMORIAL",year) AND
52 begin NE HOLIDAY("USINDEPENDENCE",year) AND
53 begin NE HOLIDAY("LABOR",year) AND
54 begin NE HOLIDAY("VETERANS",year) AND
55 begin NE HOLIDAY("THANKSGIVING",year) AND
56 begin NE xmas AND
57 begin NE xmaseve AND
58 begin NE xthanks AND
59 begin NE sprng AND
60 begin NE founders AND
61 (begin < invstrt or begin > invend) THEN OUTPUT;
62 END;

63 /* MUST associate begin and end with a date, time or datetime format */
64 /* as appropriate, otherwise user-defined interval will not work */
65 FORMAT begin WEEKDATE.;
66 RUN;

15

APPENDIX 3: RETAIL INDUSTRY INTERVALS

YEARV specifies ISO 8601 yearly intervals. The ISO 8601 year begins on the Monday on or
immediately preceding January 4. Note that it is possible for the ISO 8601 year to begin
in December of the preceding year. Also, some ISO 8601 years contain a leap week. The
beginning subperiod s is written in ISO 8601 weeks (WEEKV).

R445YR is the same as YEARV except that in the retail industry the beginning subperiod s is 4-4-5
months (R445MON).

R454YR is the same as YEARV except that in the retail industry the beginning subperiod s is 4-5-4
months (R454MON).

R544YR is the same as YEARV except that in the retail industry the beginning subperiod s is 5-4-4
months (R544MON).

R445QTR specifies retail 4-4-5 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters
contain a leap week. The beginning subperiod s is 4-4-5 months (R445MON).

R454QTR specifies retail 4-5-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters
contain a leap week. The beginning subperiod s is 4-5-4 months (R454MON).

R544QTR specifies retail 5-4-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters
contain a leap week. The beginning subperiod s is 5-4-4 months (R544MON).

R445MON specifies retail 4-4-5 monthly intervals. The 3rd, 6th, 9th, and 12th months are five ISO
8601 weeks long with the exception that some 12th months contain leap weeks. All other
months are four ISO 8601 weeks long. R445MON intervals begin with the 1st, 5th, 9th,
14th, 18th, 22nd, 27th, 31st, 35th, 40th, 44th, and 48th weeks of the ISO year. The
beginning subperiod s is 4-4-5 months (R445MON).

R454MON specifies retail 4-5-4 monthly intervals. The 2nd, 5th, 8th, and 11th months are five ISO
8601 weeks long with the exception that some 12th months contain leap weeks.
R454MON intervals begin with the 1st, 5th, 10th, 14th, 18th, 23rd, 27th, 31st, 36th, 40th,
44th, and 49th weeks of the ISO year. The beginning subperiod s is 4-5-4 months
(R454MON).

R544MON specifies retail 5-4-4 monthly intervals. The 1st, 4th, 7th, and 10th months are five ISO
8601 weeks long. All other months are four ISO 8601 weeks long with the exception that
some 12th months contain leap weeks. R544MON intervals begin with the 1st, 6th, 10th,
14th, 19th, 23rd, 27th, 32nd, 36th, 40th, 45th, and 49th weeks of the ISO year. The
beginning subperiod s is 5-4-4 months (R544MON).

WEEKV specifies ISO 8601 weekly intervals of seven days. Each week begins on Monday. The
beginning subperiod s is calculated in days (DAY). Note that WEEKV differs from WEEK
in that WEEKV.1 begins on Monday, WEEKV.2 begins on Tuesday, and so on.

