MWSUG 2017 - Paper AA17

Tornado Inflicted Damages Pattern

Vasudev Sharma, Oklahoma State University, Stillwater, OK

ABSTRACT

On average, about a thousand tornadoes hit the United States every year. Three out of every four tornadoes in the world, occur in the United States. They damage life and property in their path and they often hit with very little, sometimes no warning. Tornadoes cause approximately 70 fatalities and 1,500 injuries in US every year. The interest of this study is to find a whether the fatalities and injuries caused by the tornadoes based on the weekday, magnitude are significantly different among the different levels. The idea behind this paper is to find patterns in the damages dealt by the tornadoes and find an insight whether the safety measures are applied correctly.

INTRODUCTION

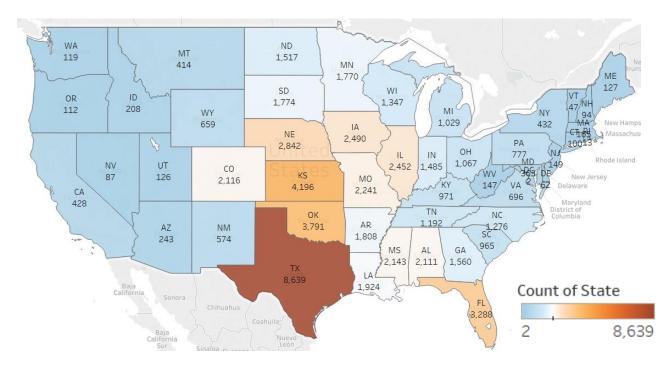
The idea of this paper started as a small question after a tornado warning. "Can we predict the tornado occurrences in advance?" The idea was to collect data from various sources and try to build a model that can help in predicting the tornadoes based on the changes in the past years. This paper starts on that idea and describes the effect of various variables on the damages caused by the tornadoes.

The preliminary data analysis was surprising and looking at the summary statistics it was hypothesized that there might be uncommon patterns involved in the tornado hits which can be used to better counter the damages inflicted by the tornadoes. Some of the more direct observations were easily recognizable. For example, tornadoes being more in number in the group of states known as tornado alley. But there are more insights like if there are more fatalities on a particular weekday or which magnitude of tornado will cause more damage are the idea for this research paper. The term tornado alley refers to a group of states in United States where the occurrences of tornadoes is higher compared to other states. States which constitute the Tornado Alley are Texas, Oklahoma, Kansas, South Dakota, Iowa, Illinois, Missouri, Nebraska, Colorado, North Dakota and Minnesota. The term will be used for the states mentioned as a group.

PROJECT DATA AND CONSIDERATIONS

The patterns are found by the statistical analysis of the data acquired from National Oceanic and Atmospheric Administration's National Weather Service. Their Storm Prediction Center contains tornado data from 1950 to 2016 with 29 variables like day, month and year of the tornado hit, state affected, magnitude, fatalities and injuries etc. The total number of observations are 62,208. There are categorical and continuous variables which are used for two-Sample T-tests and ANOVA to find out if there are patterns observed in the tornado data.

The data was analyzed and cleaned prior to analysis. Some new variables were created. Variable 'weekday' was created from the variable 'date' (yyyy/mm/dd). Two binary variables 'alley_flag' and 'weekday_flag' were created. 'weekday_flag' denoted whether the day was a weekday or a weekend. 0 denotes a weekend and 1 denotes a weekday. Similarly, alley_flag was created to divide the data based on whether the tornado occurred in a state from tornado alley or not. 0 denotes a non-tornado alley state and 1 denotes a tornado alley state. The start latitude and start longitude were used to plot the tornado hits on the map.


Data Description

The variables which were used for the analysis are as follows Weekday, weekday_flag, alley_flag, fat, inj, mag, slat and slong.

Variable	Description
Weekday	Day of the week (categorical)
Weekday_flag	Whether the day is weekday or not
Alley_flag	Whether the state is in tornado alley
Fat	Fatalities
Inj	Injuries
Mag	Magnitude of the tornado
Slat	Starting latitude of the tornado
Slong	Starting longitude of the tornado

DATA ANALYSIS

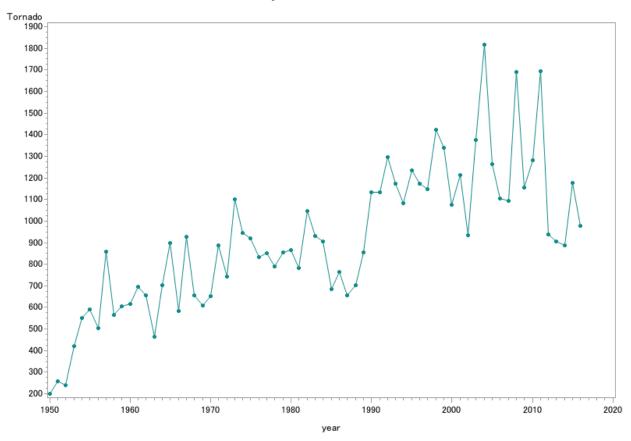

First summary of the data showed the general trends of the tornado occurrences. Texas being the state with highest number of the tornado hits. The map was generated using Tableau desktop 10.2 using 'slat' and 'slong' variables. It is to be noted that variable 'mag' has observation of -9 which means that magnitude is unknown for that tornado. The number of such tornadoes is very small (30) so it is decided to keep it in the data since they won't affect the analysis.

Figure 1. Total number of tornadoes per state in United States

As the map shows, Florida receives a larger number of tornadoes apart from the tornado alley states. Texas has the highest number of tornadoes in all United States.

Yearly Trend of Tornadoes

Figure 2. Number of tornadoes per year.

The plot above shows the yearly trend of the tornadoes. It shows the average tornado for every year from 1950 to 2016. It is observed that the overall trend of tornadoes is rising in years.

ANALYSIS OF VARIABLES

The variables were selected and hypothesis was stated for different groups of variables. Analysis of Variance was run for the categorical predictors and the continuous dependent variable. Similarly a twosample T-test was run for the binary predictor and continuous dependent variable. For all the tests in this paper, normality and independence is checked and data is found to be normal and independent. So, for all the tests done ahead, assumptions of normality and independence are satisfied.

Weekday vs Fatalities

The hypothesis with level of significance, $\alpha = 0.05$ states,

 H_0 = mean fatalities on all days of the week is same

H₁ = at least one of the weekdays have different mean of fatalities.

			[Dependen	t Varia	ble: fat				
Sourc	e:	D	DF Sum of Sq			Mean	Square	F١	Value	Pr > F
Mode	I		6	100	6.3601	17.7267			6.33	<.0001
Error		6220)1	174212	2.1657		2.8008			
Corre	cted Total	6220)7	17431	8.5258	258				
				R-Square Coeff Va 0.000610 1515.63				at Mean .110420		
	Source	DF	Т	ype I SS	Mean	Square	F Valu	Je	Pr > F	
	Weekday	6	6 106.360102		17.	7266837	6.	33	<.0001	
	Source	DF	Type III SS		Mean	Square	F Valu	Je	Pr > F	:
	Weekday	6	106	6.3601025	17.7266837 6		6.	33	<.0001	

Figure 3. Testing fatality means with weekdays with PROC GLM

Since the p-value is less than α , we reject the null hypothesis and the model is significant. So next step is to check assumptions of ANOVA. The normality and independence is checked and data is found to be normal and independent.

 $H_0 = variances are equal$

H₁ = variances are not equal

Level of significance, $\alpha = 0.05$

А		e's Test for Homog of Squared Deviat			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Weekday	6	194016	32336.0	1.55	0.1578
Error	62201	1.2986E9	20877.4		

Figure 4. ANOVA Diagnosis for testing Assumptions with PROC GLM

Since the p-value is more than α , we don't reject the null hypothesis. The variances are equal and assumptions are satisfied.

So we run a Tukey test to check which weekdays have a significantly different fatality number.

Multiple Comparisons - All posssible Pairs via Tukey Test Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer						
	Weekday	fat LSMEAN	LSMEAN Number			
	Friday	0.11024931	1			
	Monday	0.08534473	2			
	Saturday	0.08149698	3			
	Sunday	0.15857385	4			
	Thursday	0.06302886	5			
	Tuesday	0.08775420	6			
	Wednesday	0.18247312	7			

Figure 5. Multiple comparisons – All possible pairs via Tukey test

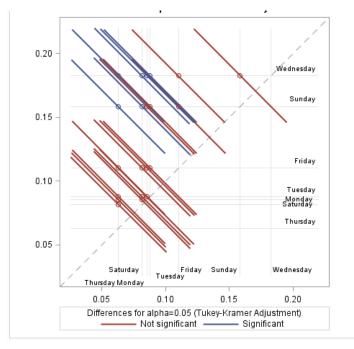


Figure 6. Fatality comparisons for weekdays

Findings show that fatalities on Monday and Wednesday, Tuesday and Wednesday, Wednesday and Thursday, Saturday and Sunday, Saturday and Wednesday, Sunday and Thursday are significantly different from each other.

Weekday vs Injuries

The hypothesis with level of significance, α = 0.05 states

 H_0 = mean injuries on all days of the week is same

 H_1 = at least one of the weekdays have different mean of injuries.

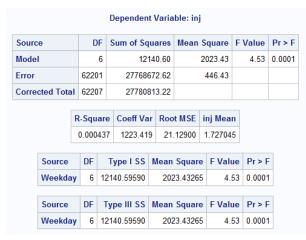


Figure 7. Testing injury means with weekdays with PROC GLM

Since the p-value is less than α , we reject the null hypothesis and the model is significant. So next step is to check assumptions of ANOVA.

H₀ = variances are equal

H₁ = variances are not equal

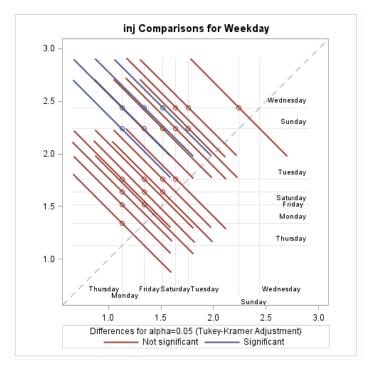
Level of significance, $\alpha = 0.05$

ANOVA Diagnostics for testing Assumptions with PROC GLM

Levene's Test for Homogeneity of inj Variance ANOVA of Squared Deviations from Group Means								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Weekday	6	5.6585E9	9.4308E8	1.82	0.0916			
Error	62201	3.229E13	5.1916E8					

ANOVA Diagnostics for testing Assumptions with PROC GLM

Level of		i	nj
Weekday	Ν	Mean	Std Dev
Friday	9025	1.51401662	13.1395119
Monday	8659	1.33930015	17.1918003
Saturday	8123	1.64138865	14.5251286
Sunday	8835	2.24040747	24.3134421
Thursday	9218	1.12898677	11.1951707
Tuesday	9048	1.76226790	31.0460667
Wednesday	9300	2.44043011	27.1228937


Figure 8. ANOVA Diagnosis for testing Assumptions with PROC GLM

Since the p-value is more than α , we don't reject the null hypothesis. The variances are equal and assumptions are satisfied.

So we run a Tukey test to check which weekdays have a significantly different injury count.

Multiple Comparisons - All posssible Pairs via Tukey Test							
Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer							
	Weekday	inj LSMEAN	LSMEAN Number				
	Friday	1.51401662	1				
	Monday	1.33930015	2				
	Saturday	1.64138865	3				
	Sunday	2.24040747	4				
	Thursday	1.12898677	5				
	Tuesday	1.76226790	6				
	Wednesday	2.44043011	7				

Figure 9. Multiple comparisons – All possible pairs via Tukey test

Figure 10. Fatality comparisons for weekdays

Monday and Wednesday, Wednesday and Thursday, Wednesday and Friday, Thursday and Sunday are significantly different from one another in terms of injuries caused by tornadoes.

Magnitude vs Fatalities

					A	nalysis	Va	riable	: y	ear			
	N Obs			Ν		Mean	St	d Dev	Mi	nimum	Ma	aximum	
	62	208	62	208	1988.445		1	18.031	1	950.000	2	2016.000	
_													
					A	nalysis	Va	riable	: y	ear			
ma	ag	NO	bs		Ν	Mea	an	Std D	ev	Minimu	ım	Maximu	In
	-9		30		30	2016.0	00	0.0	00	2016.0	00	2016.0	0
	0	286	19	286	19	1994.1	47	15.5	28	1950.0	00	2016.0	0
	1	208	17	208	17	7 1986.14		18.2	01	1950.0	00	2016.0	0
	2	92	69	92	69	1979.1	82	18.3	02	1950.0	00	2016.0	0
	3	26	74	26	74	1980.1	20	18.5	87	1950.0	00	2016.0	0
	4	7	11	7	11	1978.7	82	18.6	60	1950.0	00	2016.0	0
	5		88		88	1976.0	45	18.1	33	1953.0	00	2013.0	0

Descriptive Statistics of Number of Tornadoes by magnitude

Figure 11. Descriptive statistics of magnitude of tornados

Here we see that most of the tornadoes have magnitude of 0 or 1. Next we run ANOVA

The hypothesis with level of significance, $\alpha = 0.05$ states

H₀ = mean fatalities by all magnitude tornadoes is same

 H_1 = at least one of the magnitude tornadoes have different fatalities.

Т	Testing for means fatalities with mag with PROC GLM									
			I	Depende	nt \	Varia	ble: fat	t		
Source)		DF S	Sum of Squares		Mean	Square	F Value	Pr > F	
Model			6	47109.7317		7317	7851.6219		3839.19	<.0001
Error		622	201	127208.7941		2.0451				
Corrected Total 6			207	174318		18.5258				
	1		uare 0251				ot MSE	fat Mea 0 11042	_	
	0								-	1
	Source mag						51.62195 3839.1			
	Source	DF	Тур	e III SS	Me	ean S	Square	F Value	e Pr > F	
	mag	6	4710	9.73169		7851	1.62195	3839.1	9 <.0001	

Figure 12. Testing fatality means with magnitude with PROC GLM

Since the p-value is less than α , we reject the null hypothesis and the model is significant. So next step is to check assumptions of ANOVA.

H₀ = variances are equal

H₁ = variances are not equal

Level of significance, $\alpha = 0.05$

ANOVA Diagnostics for testing Assumptions with PROC GLM

		e's Test for Homo of Squared Devia			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
mag	6	58490906	9748484	966.86	<.0001
Error	62201	6.2715E8	10082.6		

Figure 13. ANOVA Diagnosis for testing Assumptions with PROC GLM

Since p-value is less than 0.05, variances are not equal and assumptions are violated. So Welch Anova is tested against level of significance of 0.05

Welch ANOVA when homogenity of Variance Assumption is violated

Welch's ANOVA for fat							
Source	DF	F Value	Pr > F				
mag	5.0000	161.82	<.0001				
Error	868.7						

Figure 14. Welch ANOVA testing

Since p-value is less than 0.05, Welch test result is significant. Which means that at least one mean is different than the other.

Multiple Comparisons - All posssible Pairs via Tukey Test

Adjustr	Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer							
	mag	fat LSMEAN	LSMEAN Number					
	0	0.0008386	1					
	1	0.0111928	2					
	2	0.0660265	3					
	3	0.5415108	4					
	4	3.8888889	5					
	5	20.3068182	6					
	-9	-0.0000000	7					

		Pr > t f	or H0: L	Means fo SMean(i nt Variat)=LSMea		
i/j	1	2	3	4	5	6	7
1		0.9855	0.0026	<.0001	<.0001	<.0001	1.0000
2	0.9855		0.0348	<.0001	<.0001	<.0001	1.0000
3	0.0026	0.0348		<.0001	<.0001	<.0001	1.0000
4	<.0001	<.0001	<.0001		<.0001	<.0001	0.3753
5	<.0001	<.0001	<.0001	<.0001		<.0001	<.0001
6	<.0001	<.0001	<.0001	<.0001	<.0001		<.0001
7	1.0000	1.0000	1.0000	0.3753	<.0001	<.0001	

Figure 15. Multiple comparisons – All possible pairs via Tukey test

We see from the results that magnitude of 2 or more on Enhanced Fujita Scale causes much different fatalities than a magnitude of less than 2 on Enhanced Fujita Scale. We can deduce that fatalities are significantly different when the magnitude of the tornado is 0 or 1 than when it is 2 or more.

TWO-SAMPLE T-TESTS FOR BINARY VARIABLES

Two-Sample T-tests are done when the categorical variable is a binary variable. A dummy variable was created for tornado alley states and weekdays. Two-sample T-test code was run in SAS® 9.4 and the following results were generated.

Tornado Alley flag vs Fatalities

The hypothesis with level of significance, $\alpha = 0.05$ states,

 H_0 = variances are equal across both groups

 H_1 = variances are different across both groups.

					Tw	/o s	amp	ole	t-te	st							
						Va	riabl	e: f	at								
	alley_	flag	N Me		ean	Sto	l Dev	5	Std Err		Minimum			Maximum			
	0		28380	0.1586		1.8706			0.0111		0			116.0		16.0	
	1		33828	0.0	700		1.4880		0.00809		0		15		58.0		
	Diff (1-2)			0.0	887	1	.6734		0.0135								
alley_flag		Met	thod		Me	Mean		95% CL M		an	an Std		ev	95%	6 CL	Std	De
0					0.1586		0.136	69	0.1804		1.	1.8706		1.8554		1.886	
1				0.0700		0.054	11	1 0.0858		1.4880		80	1.4768		1.499		
Diff	(1-2)	Poo	oled	0.0887		0.062	623 0.		1151		1.6734		1.6642		1.	682	
Diff	(1-2)	Sat	tterthwaite		0.0887		0.0617		0.1156								
		M	Method			ariances			DF	t١	/alu	ie Pr		> t]		
		Po	Pooled			Equal		62	62206		6.5	8	<.0	001			
		Sa	Satterthwaite			Unequal		5378		6.45		5 <.00		001			
			Equality of Variances														
			Method		Num	DF	Den	DF	F	Va	lue	Р	r >	F			
			Folded	F	2837		33	821	827		1.58 <.000		000	1			

Figure 16. Two-sample t-test for fatalities vs. tornado alley flag

Since p-value for equality of variances is less than α , null is rejected and variances are unequal. For unequal variances, we use Satterthwaite method. The fatalities are found to be 0.0887 more in states which don't fall in tornado alley.

Tornado Alley flag vs Injuries

The hypothesis with level of significance, $\alpha = 0.05$ states,

H₀ = variances are equal across both groups

 H_1 = variances are different across both groups.

					Tw	0 9	samp	le t	-te	st						
						Va	ariable	e: ir	ij							
	alley	alley_flag		Mean		n Std De		S	dE	rr	Minin	inimum		Maxim		
	0		28380	2.4	751 23		8.7245	0	0.1408		0			150	0.0	
	1		33828	1.0	994	18	18.6600		.101	15		0		174		
	Diff (1	Diff (1-2)		1.3	8757	21	1.1217	0	.170	00						
											1					
alley	alley_flag M		nod	od		Mean		95% CL N		in	Std [Dev 959		% CL Std		Dev
0					2.47	51	2.199	1 2.751		12	23.7245		23.5309		23.	921
1				1.0994		0.9006		.29	2983 18		18.6600		18.5205		18.801	
Diff	(1-2)	Poo	led		1.3757		1.042	4 1	1.7089		21.1217		21.0049		21.	239
Diff	(1-2)	Satt	erthwai	te	1.37	57 1.035		5 1	5 1.7159							
		Me	ethod	Va	ria	nces		DF		/alue	Pr	> t				
		Po	oled		Eq	Equal		622	206		8.09	<.0	0001			
Sa			tterthw	aite	Un	nequal		534	53411		7.93	<.0001				
		[Equ	ali	ty of \	/ari	anc	es						
			Method	1	Num	m DF Den			F	Va	alue Pr>		F			
			Folded	F	283	379	33	827	1.		.62 <	52 <.000				

Figure 17. Two-sample t-test for injuries vs. tornado alley flag

Since p-value for equality of variances is less than α , null is rejected and variances are unequal. For unequal variances, we use Satterthwaite method. The injuries are found to be 1.3757 more in states which don't fall in tornado alley.

Tornado Alley flag vs Magnitude

					Tw	io s	samp	le	t-te	st							
						Vai	iable	: m	ag								
	alley_	flag	N			Ste	d Dev	S	Std Err		Minimum		Maxim		um]	
	0		28380			076 0.		9409 0.0		59	-9.000			5.0	000		
	1		33828	0.7	7282		.9654	0.	005	0525		-9.0000		5.0		0000	
	Diff (1	Diff (1-2)		0.1	1795 (.9543	8 0.00		68							
alley_flag Me			hod	Me		an 95%		CL Mean		an	Std Dev		95% CL		Std	De	
0				0.90		76	76 0.896		7 0.9186		0.9409		0.9332		0.9487		
1				0.72		82	0.717	'9	9 0.7384		0.9654		0.9581		0.972		
Diff	(1-2)	Poc	oled		0.1795		0.164	4	4 0.194		0.9543		0.9490		0.9	959	
Diff	(1-2)	Sat	terthwa	waite		0.1795		5	5 0.1945								
M		M	ethod		Varian		nces		DF		/alue	Pr	> t				
Po			ooled		Ec	Equal			62206		23.37	<.0001					
	Satterthwa				aite Unequa			I 608			23.42	2 <.00					
Equality of Variances																	
			Method	1	Num	DF	Den	n DF F		Val	ue F	Pr > F					
			Folded	F	33	827	28	28379		1.05		<.0001					

Figure 17. Two-sample t-test for magnitude vs. tornado alley flag

Since p-value for equality of variances is less than α , null is rejected and variances are unequal. For unequal variances, we use Satterthwaite method. The magnitude is found to be 0.1795 more in states which don't fall in tornado alley.

CONCLUSION

The analyses show that

- The trend is rising for the number of tornadoes that occur every year.
- Weekdays have a significant effect on the fatalities and injuries incurred from the tornadoes.
- Tornadoes having a magnitude greater than or equal to 2 on Enhanced Fujita Scale cause significantly higher number of fatalities even though number of tornadoes with magnitude less than 2 is very high.
- States which do not fall in the tornado alley, have tornadoes with higher magnitudes and cause more fatalities and injuries.

FUTURE WORK

This research generated results which are surprising. The states which have higher number of tornadoes are not the one with higher average of tornado magnitude, fatalities and injuries. Research can be continued to find more insights and inconspicuous results using more variables. The goal is to include variables such as elevation, vegetation and other geographic properties of the various states to find out factors that affect the tornado occurrences. One more factor that may have a significance on fatalities and injuries is early warning systems in a state.

REFERENCES

http://www.spc.noaa.gov/wcm/

ACKNOWLEDGMENTS

I would like to thank Dr. Miriam McGaugh, Clinical Professor, Business Analytics, Oklahoma State University and Koteswara Rao Sriram for their continuous support and guidance.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Vasudev Sharma Master's Business Analytics Oklahoma State University Phone- 405-762-6021 Email: <u>vasudev.sharma@okstate.edu</u>

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.