
1

MWSUG 2017 - Paper AA11

Dimensionality Reduction using Hadamard, Discrete Cosine and Discrete

Fourier Transforms in SAS®

Mohsen Asghari, CECS Department, University of Louisville, Louisville KY 40292;
Aliasghar Shahrjooihaghighi, CECS Department, University of Louisville, Louisville KY 40292;

Ahmed Desoky, CECS Department, University of Louisville, Louisville KY 40292

ABSTRACT

Dimensionality reduction studies various techniques to transform data in the most compact and efficient
manner that allows modeling, analyzing, and predicting information with insignificant errors. Principle
component analysis (PCA) is a method for reducing the dimensionality by decreasing the number of
variables and selecting a smaller subset of uncorrelated transformed variables called principal
components. PCA is data dependent and requires the computation of the correlation matrix of input data
as well as performs Singular Value Decomposition (SVD) of that matrix. Hadamard, Discrete Cosine
Transform (DCT), and Discrete Fourier Transform (DFT) are orthogonal transformations that are not data
dependent and reduce the dimensionality by decreasing the correlation of the transform components. In
this paper, we implemented Hadamard, DCT, and DFT in SAS on a standard dataset. Also, we compared
the results of these transformations and PCA technique.

INTRODUCTION

Reducing large number of variables in a dataset using an efficient and fast algorithm is a challenge. One
solution to face this challenge is reducing dimensionality of the data. (O'Rourke, 2013) Describes
dimensionality reduction methods developed through statistics and machine learning (Cunningham,
2015). In this paper, we have implemented some of the famous ones using SAS IML programming.

Principal component analysis is a method for reducing the dimensionality by decreasing the number of
variables and selecting a smaller subset of uncorrelated transformed variables called principal
components. PCA is data dependent and requires the computation of correlation matrix of input data as
well as the Singular Value Decomposition (SVD) matrix. Hadamard, Discrete Cosine Transform (DCT)
and Discrete Fourier Transform (DFT) are orthogonal transformations that are not data dependent (SAS,
2013) (Wicklin, 2013), they reduce the dimensionality by decreasing the correlation of the transform
components.

We gives a brief explanation of the 4 Algorithms in the first section, and describes the implementation of

SVD, Hadamard, DCT and DFT in SAS IML programming.

DEFINITIONS

SINGULAR VALUE DECOMPOSITION (SVD)

In principal component analysis the number of components that are generated is the same as the number
of variables of the original data. However, we should determine the number of the significant transform
components. One of the famous classification methods of the SVD transform components is eigenvalue
analysis, also known as Kaiser Criterion (Kaiser, 1991). Eigenvalues are divided into two groups, greater
than 1.0 and less than 1.0. Components with eigenvalues greater than 1.0 are accounting for greater
amount of variances and we can count them as significant components that have enough information.
The other method is Scree Test (Cattell, 1966) which relies on sorting the eigen values and determining
where they level off. Third way is to look at proportion of eigen values. Calculations of proportions exist in
PROC FACTOR. Based on SAS documentation the proportion of an eigen value is defined by:

𝑃 =
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
 (1)

One of the outputs of PROC FACTOR is a column named “Proportion” which represents the proportion of
each eigenvalue.

2

HADAMARD

Hadamard transform is one of the most well-known orthogonal transforms. It is a generalized class of
Fourier transforms. A Hadamard matrix is a square matrix whose entries are either +1 or -1 and the rows
and columns are mutually orthogonal (K. R. Rao, 1990). Hadamard matrix exists for every positive value
of N which is a power of 2.

𝐻1 = 1, 𝐻2𝑁 =
1

√2
(

𝐻𝑁 𝐻𝑁

𝐻𝑁 −𝐻𝑁
) (2)

; where N = 1, 2, 4, 8, ……

Hadamard function in SAS is used to generate the Hadamard matrix.

DISCRETE COSINE TRANSFORM

DCT has a significant impact in digital signal processing (K. R. Rao, 1990). It is used in several standards
such as jpg and mpg.

DCT of a data sequence X(m), m=0, 1,...,(N-1) is defined as:

𝐺𝑥(0) =
√2

𝑁
∑ 𝑋(𝑚) (3)

𝑁−1

𝑚=0

𝐺𝑥(𝑘) =
2

𝑁
∑ 𝑋(𝑚)

𝑁−1

𝑚=0

cos
(2𝑚 + 1)𝑘𝜋

2𝑁
, 𝑘 = 0, … , (𝑁 − 1) (4)

DISCRETE FOURIER TRANSFORM

Fast Fourier Transform (FFT) algorithm is the fast system to compute the Discrete Fourier Transform
(DFT) of a sequence. FFT reduces the number of computations needed to calculate DFT from O (𝑛^2) to
O (𝑛𝑙𝑜𝑔𝑛) (Jain, 1989).

Let [𝑥0, , 𝑥𝑁−1] be a vector of complex numbers. The DFT is defined by the formula

𝑋𝑘 = ∑ 𝑥𝑛𝑒−
𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 𝑘 = 0, … , 𝑁 − 1 (5)

INTRODUCTION TO SAS IML

PROC IMPORT

This procedure import external file as a SAS data set (SAS, 2013) (Wicklin, 2013).

proc import DATAFILE=”PATH”

DBMS= dlm | csv

Out = “SAS Data Set Name”

replace;

getnames = yes;

run;

READ OBSERVATION FROM SAS DATASET

READ statement (SAS, 2013) is used to create an SAS/IML matrix from an existing SAS dataset the
general form of the READ statement is as follows:

READ < range > <VAR operand> < WHERE(expression) > < INTO name > ;

3

Range Specifies the SAS datasets that we want to read

Operand Specifies the variables that exists in the SAS dataset and we want to bring them to the
matrix

Expression An expression that is evaluated as being true or false. It can be used as a filter for data
that we want to load in the matrix.

Name Names a target matrix for the data.

Table 1. READ statement Parameters

SAS/IML language allows the elimination of non-numerical variables. To do this, use READ statement
with reading all or part of the variables and specify numerical data by using the keyword _NUM_ in the
VAR clause.

GRAPHS IN SAS/IML

SAS/IML language supports several graphs to report the data such as BAR, HISTOGRAM, SERIES etc.
in this section, we want to show how you can call SAS procedure to create BAR charts and SERIES
charts. For more information, you can check SAS/IML guide book (SAS, 2013).

For creating SERIES chart you need to follow statement as follow:

CALL SERIES (x,y

GRID={“X” <,”Y”>}

LABEL={XLabel<,Ylabel>}

XVALUES=xValues

YVALUES=yValues);

X,Y Specify a vectors to draw the chart based on the X vector and y vector these
must be the same size

ORDER Specifies the order in which discrete tick values are to be placed on the
categorical axis.

GRID Specifies whether to display grid lines for the X or Y axis. This option
corresponds to the GRID option in the XAXIS and YAXIS statements. Valid
values follow:

GRID={X} displays grid lines for the X axis.

GRID={Y} displays grid lines for the Y axis.

GRID={X, Y} displays grid lines for both axes.

LABEL Specifies axis labels for the X or Y axis.

XVALUES Specifies a vector of values for ticks for the X axis.

YVALUES Specifies a vector of values for ticks for the Y axis.

Table 2. Series Parameters

4

DIMENSIONALITY REDUCTION IN SAS/IML

In this section, we discuss the implementation of statistical methods for dimensionality reduction. In
Figure 1, we can see the flowchart of the program that created for calculating the statistical methods.

We divide this section into three parts; First part is data preparation, in second part we discuss statistical
methods we used, and in the third part, we will show the results.

DATA PREPARATION

Data preparation has two parts.

Part 1

The following procedure loads the data into a SAS dataset named mydata. Procedure standard obtains
standard data set named STEX with mean =0 and std = 1.

proc import datafile="[Path]\Housing.csv"

out=mydata dbms=csv replace;

getnames=yes;

run;

proc standard data=mydata mean=0 std=1 out=STEX;

RUN;

Part 2

Pocedure iml creats data matrix A using SAS data set STEX

Proc iml;

use STEX; read all var _num_ into A[colname=names];

STATISTICAL METHODS

DISCRETE COSINE TRANSFORMATION

Discrete cosine transform (DCT) is a widely-used method for image compression. It can also be used in
dimensionality reduction in other data besides image. DCT can be performed by simple matrix
computations. SAS does not have a function to calculate the DCT matrix. Function dctmtx generates an
𝑛 × 𝑛 matrix using equations (3) and (4)

start dctmtx(n);

Data Set SAS
Datase

t

SAS/IML

Matrix

SVD DCT Hadamard DFT

Load
Data set
to SAS

Load SAS
dataset
as Matrix

Figure 1. Flowchart of SAS/IML program

5

 pi = constant("pi");

 cc = repeat(0:n-1,n,1);

 rr = cc`;

 c = sqrt(2 / n) * cos(pi * (2*cc+1) # rr / (2 * n));

 c[1,] = c[1,]/ sqrt(2);

return c;

finish;

DCTDR function computes the transform coefficients using matrix multiplication A*s; A is the data matrix
and s is the dctmtx with size NxN.

start DCTDR(A);

 size = ncol(A);

 s = dctmtx(size);

 w = A*s;

 variance = var(w);

 Factor = prepareresult(variance,ncol(A));

 return Factor;

finish;

Hadamard Transformation

SAS supports the Hadamard matrix. We can create this matrix by calling the “Hadamard(size)” . The
following code does Hadamard transformation:

start HCDR(A);

 size = ncol(A);

 h = hadamard(size);

 w = A*h;

 variance = var(w);

 Factor = prepareresult(variance,ncol(A));

 return Factor;

finish;

h contains the Hadamard matrix and A represents our data and w contains the transformed components .
Then we calculate the variance of each column and names the vector “variance”. Then prepare the result
by calling “prepareresult” and at the end return the principal components.

Discrete Fourier Transformation

Fast Fourier Transform (FFT) algorithm is the fast system to compute the Discrete Fourier Transform

(DFT) of a sequence. FFT reduces the number of computations needed to calculate DFT from O(𝑁2) to O
(𝑁𝑙𝑜𝑔𝑁) (Jain, 1989). The following code does the DFT transformation of data matrix A.

start DFTRD2(A);

 r = nrow(A);

 do i = 1 to r;

 x = fft(A[i,]);

 amplitude = x[,1]##2 + x[,2]##2;

 T = T // amplitude`;

 end;

 w = abs(T` * A);

 variance = var(w);

 Factor = prepareresult(variance,ncol(A));

 return Factor;

finish;

RESULT PREPARATION

The function “prepareresults” calculates these information and creates the results table.

6

start prepareresult(r,n);

 r = r`;

 ColVar = J(n,2);

 do i = 1 to n;ColVar[i,1] = i;ColVar[i,2] = r[i];end;

 Factor = J(n,5);

 Sumvariance = sum(ColVar[,2]);

 call sort(ColVar,2,2);

 lastproportion = 0;

 do i = 1 to nrow(ColVar);

 currentvar = ColVar[i,2];

 proportion = currentvar / Sumvariance;

 Cumulative = proportion + lastproportion;

 Factor[i,1] = i; /*ColVar[i,1];*/

 Factor[i,2] = currentvar;

 Factor[i,4] = proportion;

 Factor[i,5] = Cumulative;

 difference = 0;

 if i ^= nrow(ColVar)then do;

 nextcurrentvar = ColVar[i+1,2];

 difference = currentvar - nextcurrentvar;

 end;

 Factor[i,3] = difference ;

 lastproportion = Cumulative;

 end;

return Factor;

“PrintReport” prints the results table as well two graphs. The scree plot graphs the Normalized Variance
against the component number. The second graph includes the cumulative normalized variances which is
the used for the proper selection of the number of principal components.

start RrintReport(factor,names,reportlable);

 orderedname = J(nrow(factor),1," ");

 do i = 1 to nrow(factor);

 indexname = factor[i,1];

 orderedname[i,1] = names[1,indexname];

 end;

 Columname = {"Components" "Variance" "Difference" "Proportion"

"Cumulative"};

 print factor[colname = Columname label = reportlable];

 /*Scree plot*/

 call Series(factor[,1],factor[,4]) grid={X Y} option="markers"

label={"Principal Component","Varience"};

 /*Varience Explained*/

 g = repeat({"Cumulative","Proportion"}, 1, nrow(factor));

 g = g`;

 x = factor[,1] || factor[,1];

 y = factor[,5] || factor[,4];

 call Series(x,y) group=g grid={X Y} option="markers" label={"Principal

Component","Proportion"};

7

finish;

EXPERIMENTAL RESULT

DATA EXPLANATION

We have chosen Housing dataset which is provided by UCLA. This data set contains 16 features and 506
samples which they represent in order: CRIM per capita crime rate by town, ZN proportion of residential
land zoned for lots over 25,000 sq. INDUS proportion of non-retail business acres per town CHAS
Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) NOX nitric oxides concentration
(parts per 10 million) RM average number of rooms per dwelling AGE proportion of owner-occupied units
built prior to 1940 DIS weighted distances to five Boston employment centers RAD index of accessibility
to radial highways TAX full-value property-tax rate per $10,000 PTRATIO pupil-teacher ratio by town B
1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $1000's, entropy and STD of each row.

DISCRETE COSINE TRANSFORMATION

Results of DCT algorithm are obtained using the following instructions:

%let _timer_start_DCT = %sysfunc(datetime());

DCTFactor = DCTDR(A);

dur_DCT = (datetime() - &_timer_start_DCT)*1000;

call RrintReport(DCTFactor,names,"Discrete Cosines Result");

runningtimes = runningtimes || dur_DCT;

Components Variance Difference Proportion Cumulative

1 3.7240887 1.6821704 0.2327555 0.2327555

2 2.0419183 0.6916541 0.1276199 0.3603754

3 1.3502642 0.1426024 0.0843915 0.4447669

4 1.2076618 0.1175081 0.0754789 0.5202458

5 1.0901537 0.2586636 0.0681346 0.5883804

6 0.8314901 0.0234354 0.0519681 0.6403485

7 0.8080546 0.116778 0.0505034 0.690852

8 0.6912766 0.0533092 0.0432048 0.7340567

9 0.6379675 0.0205056 0.039873 0.7739297

10 0.6174618 0.0123333 0.0385914 0.8125211

11 0.6051286 0.0375029 0.0378205 0.8503416

12 0.5676257 0.0892401 0.0354766 0.8858182

13 0.4783856 0.0146019 0.0298991 0.9157173

14 0.4637837 0.0203005 0.0289865 0.9447038

15 0.4434831 0.0022272 0.0277177 0.9724215

16 0.441256 0 0.0275785 1

Table 3. Discrete Cosines Variances

8

Figure 2. Scree Plot

Figure 3. Proportion/Cumulative Plot

HADAMARD TRANSFORMATION

Results of Hadamard algorithm are obtained using the following instructions:

%let _timer_start_Hadamard = %sysfunc(datetime());

HFactor = HCDR(A);

dur_H = (datetime() - &_timer_start_Hadamard)*1000;

call RrintReport(HFactor,names,"Hadamard Matrices Result");

runningtimes = runningtimes || dur_H;

Components Variance Difference Proportion Cumulative

1 47.392746 23.810112 0.1851279 0.1851279

2 23.582634 0.193269 0.0921197 0.2772476

3 23.389365 3.1560017 0.0913647 0.3686123

4 20.233364 2.8008854 0.0790366 0.4476489

5 17.432478 1.4075239 0.0680956 0.5157445

6 16.024954 0.5025595 0.0625975 0.578342

7 15.522395 1.3735879 0.0606344 0.6389763

8 14.148807 2.4965995 0.0552688 0.6942451

9 11.652208 0.6224841 0.0455164 0.7397615

10 11.029723 0.0525698 0.0430849 0.7828464

11 10.977154 0.3972271 0.0428795 0.8257259

12 10.579927 1.6097697 0.0413278 0.8670537

13 8.9701569 0.3074983 0.0350397 0.9020934

14 8.6626586 0.4151443 0.0338385 0.9359319

15 8.2475143 0.0935995 0.0322169 0.9681488

16 8.1539148 0 0.0318512 1

Table 4. Hadamard Transformation Variance Explanation

9

Figure 4. Scree Plot

Figure 5. Proportion/Cumulative Plot

DISCRETE FOURIER TRANSFORMATION

Results of DFT algorithm are obtained using the following instructions:

%let _timer_start_DFT = %sysfunc(datetime());

DFTFactor = DFTDR(A);

dur_DFT = (datetime() - &_timer_start_DFT)*1000;

call RrintReport(DFTFactor,names,"Discrete Furier Transformation Result");

runningtimes = runningtimes || dur_DFT;

Components Variance Difference Proportion Cumulative

1 37578632 21774714 0.3916618 0.3916618

2 15803917 7199368.8 0.1647157 0.5563775

3 8604548.6 652082.92 0.0896806 0.6460581

4 7952465.7 1646834.7 0.0828843 0.7289424

5 6305631 3291208.5 0.0657202 0.7946626

6 3014422.5 50766.232 0.0314177 0.8260803

7 2963656.3 193433.83 0.0308886 0.8569689

8 2770222.4 288973.16 0.0288725 0.8858414

9 2481249.3 518311.95 0.0258607 0.9117021

10 1962937.3 223842.24 0.0204586 0.9321608

11 1739095.1 220869.19 0.0181257 0.9502864

12 1518225.9 500150.61 0.0158237 0.9661101

13 1018075.3 154719.81 0.0106109 0.9767209

14 863355.48 58984.237 0.0089983 0.9857192

15 804371.24 238549.53 0.0083835 0.9941027

16 565821.71 0 0.0058973 1

Table 5. Discrete Fourier Transformation Variances

10

Figure 6. Scree Plot

Figure 7. Proportion/Cumulative Plot

SVD TRANFORMATION

Results of SVD algorithm are obtained using the following instructions:

Proc princomp data = mydata out=compdata;

run;

proc print data=compdata;

run;

Components Variance Difference Proportion Cumulative

1 7.22016824 5.29890704 0.4513 0.4513

2 1.92126120 0.40455643 0.1201 0.5713

3 1.51670477 0.48687365 0.0948 0.6661

4 1.02983112 0.01440416 0.0644 0.7305

5 1.01542696 0.25375416 0.0635 0.7940

6 0.76167280 0.14112541 0.0476 0.8416

7 0.62054739 0.06944963 0.0388 0.8804

8 0.55109776 0.25061100 0.0344 0.9148

9 0.30048676 0.03557002 0.0188 0.9336

10 0.26491675 0.03472680 0.0166 0.9501

11 0.23018995 0.04029659 0.0144 0.9645

12 0.18989336 0.00650873 0.0119 0.9764

13 0.18338464 0.06013110 0.0115 0.9878

14 0.12325354 0.06706640 0.0077 0.9956

15 0.05618714 0.04120952 0.0035 0.9991

16 0.01497762 0 0.0009 1.0000

Table 6 SVD Variances

11

Figure 8. Scree Plot

Figure 9. Proportion/Cumulative Plot

CONCLUSION

To compare these techniques, we plotted all the scree plots and cumulative plots together. Based on the
Cumulative plot in Figure 11, we can see that DFT and SAS principal component (SVD) act very similar,
also DCT and Hadamard are close. However, based on the Scree plot in the Figure 10, we can see that
the first two components of DFT and SVD contains approximately 60% of total energy while in other two
algorithms, it is around 30%. Based on that, we can conclude that first two components of DFT and SVD
can represent the data in a more efficient way. Therefore, reducing dimensionality of data using DFT and
Principal Component (SVD) is more efficient than DCT and Hadamard.

Figure 10. Scree Plot of all the methods

Figure 11. Cumulative Plot of all the methods

“SYSFUNC” macro calculates the running time of the algorithm. Table 7 lists the running time of each
algorithm in milliseconds. Hadamard algorithm is the fastest, second position belongs to DCT, third
position belongs to DFT and at the end SVD is the slowest.

SVD DCT Had DFT

3.9999485 1.0001659 0.9999275 2.9997826

Table 7 Running Times

12

REFERENCES

Cattell, R. B. (1966). The Scree Test For The Number Of Factors. Multivariate Behavioral Research , 1(2), 245-276.

Cunningham, J. P. (2015). Linear dimensionality reduction: survey, insights, and generalizations. Journal of Machine
Learning Research, 16(1), 2859--2900.

Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall.

K. R. Rao, P. Y. (1990). Discrete cosine transform: algorithms, advantages, applications. San Diego, CA: Academic

Press Professional.

Kaiser, H. F. (1991). Coefficient Alpha for a Principal Component and the Kaiser-Guttman Rule . Psychological
Reports, 68(3), 855-858.

O'Rourke, N. a. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modeling.

SAS. (2013). SAS/IML 13.1 User's Guid. Carolina: SAS institute.

Wicklin, R. (2013). Getting Started with the SAS/IML® Language. SAS Global Forum (p. 21). SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mohsen Asghari
mohsen.asghari@louisville.edu

Aliasghar Shahrjooihaghighi
a0shah07@louisville.edu

Ahmed Desoky
ahmed.desoky@louisville.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:mohsen.asghari@louisville.edu
mailto:ahmed.desoky@louisville.edu

