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ABSTRACT  

Dimensionality reduction studies various techniques to transform data in the most compact and efficient 
manner that allows modeling, analyzing, and predicting information with insignificant errors. Principle 
component analysis (PCA) is a method for reducing the dimensionality by decreasing the number of 
variables and selecting a smaller subset of uncorrelated transformed variables called principal 
components. PCA is data dependent and requires the computation of the correlation matrix of input data 
as well as performs Singular Value Decomposition (SVD) of that matrix. Hadamard, Discrete Cosine 
Transform (DCT), and Discrete Fourier Transform (DFT) are orthogonal transformations that are not data 
dependent and reduce the dimensionality by decreasing the correlation of the transform components. In 
this paper, we implemented Hadamard, DCT, and DFT in SAS on a standard dataset. Also, we compared 
the results of these transformations and PCA technique. 

INTRODUCTION  

Reducing large number of variables in a dataset using an efficient and fast algorithm is a challenge. One 
solution to face this challenge is reducing dimensionality of the data.  (O'Rourke, 2013) Describes 
dimensionality reduction methods developed through statistics and machine learning (Cunningham, 
2015). In this paper, we have implemented some of the famous ones using SAS IML programming.  

Principal component analysis is a method for reducing the dimensionality by decreasing the number of 
variables and selecting a smaller subset of uncorrelated transformed variables called principal 
components. PCA is data dependent and requires the computation of correlation matrix of input data as 
well as the Singular Value Decomposition (SVD) matrix. Hadamard, Discrete Cosine Transform (DCT) 
and Discrete Fourier Transform (DFT) are orthogonal transformations that are not data dependent (SAS, 
2013) (Wicklin, 2013), they reduce the dimensionality by decreasing the correlation of the transform 
components.  

We gives a brief explanation of the 4 Algorithms in the first section, and describes the implementation of 

SVD, Hadamard, DCT and DFT in SAS IML programming. 

DEFINITIONS 

SINGULAR VALUE DECOMPOSITION (SVD) 

In principal component analysis the number of components that are generated is the same as the number 
of variables of the original data. However, we should determine the number of the significant transform 
components.  One of the famous classification methods of the SVD transform components is eigenvalue 
analysis, also known as Kaiser Criterion (Kaiser, 1991). Eigenvalues are divided into two groups, greater 
than 1.0 and less than 1.0. Components with eigenvalues greater than 1.0 are accounting for greater 
amount of variances and we can count them as significant components that have enough information. 
The other method is Scree Test (Cattell, 1966) which relies on sorting the eigen values and determining 
where they level off. Third way is to look at proportion of eigen values.  Calculations of proportions exist in 
PROC FACTOR. Based on SAS documentation the proportion of an eigen value is defined by: 

𝑃 =
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
                    (1) 

One of the outputs of PROC FACTOR is a column named “Proportion” which represents the proportion of 
each eigenvalue. 
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HADAMARD 

Hadamard transform is one of the most well-known orthogonal transforms. It is a generalized class of 
Fourier transforms. A Hadamard matrix is a square matrix whose entries are either +1 or -1 and the rows 
and columns are mutually orthogonal (K. R. Rao, 1990). Hadamard matrix exists for every positive value 
of N which is a power of 2. 

𝐻1 = 1, 𝐻2𝑁 =
1

√2
(

𝐻𝑁 𝐻𝑁

𝐻𝑁 −𝐻𝑁
)                                                    (2) 

; where N = 1, 2, 4, 8, …… 

Hadamard function in SAS is used to generate the Hadamard matrix. 

DISCRETE COSINE TRANSFORM 

DCT has a significant impact in digital signal processing (K. R. Rao, 1990). It is used in several standards 
such as jpg and mpg. 

DCT of a data sequence X(m), m=0, 1,...,(N-1) is defined as:  

𝐺𝑥(0) =
√2

𝑁
∑ 𝑋(𝑚)                                                                                (3)

𝑁−1

𝑚=0

 

𝐺𝑥(𝑘) =
2

𝑁
∑ 𝑋(𝑚)

𝑁−1

𝑚=0

cos
(2𝑚 + 1)𝑘𝜋

2𝑁
,        𝑘 = 0, … , (𝑁 − 1)       (4) 

DISCRETE FOURIER TRANSFORM 

Fast Fourier Transform (FFT) algorithm is the fast system to compute the Discrete Fourier Transform 
(DFT) of a sequence. FFT reduces the number of computations needed to calculate DFT from O (𝑛^2) to 
O (𝑛𝑙𝑜𝑔𝑛) (Jain, 1989). 

Let [𝑥0, . . . . , 𝑥𝑁−1] be a vector of complex numbers. The DFT is defined by the formula 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−
𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

         𝑘 = 0, … , 𝑁 − 1                (5) 

INTRODUCTION TO SAS IML 

PROC IMPORT 

This procedure import external file as a SAS data set (SAS, 2013) (Wicklin, 2013). 

proc import DATAFILE=”PATH” 

DBMS= dlm | csv 

Out = “SAS Data Set Name” 

replace; 

getnames = yes; 

run; 

  

READ OBSERVATION FROM SAS DATASET 

READ statement (SAS, 2013) is used to create an SAS/IML matrix from an existing SAS dataset the 
general form of the READ statement is as follows:  

READ < range > <VAR operand> < WHERE(expression) > < INTO name > ;  
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Range Specifies the SAS datasets that we want to read 

Operand Specifies the variables that exists in the SAS dataset and we want to bring them to the 
matrix 

Expression An expression that is evaluated as being true or false. It can be used as a filter for data 
that we want to load in the matrix. 

Name Names a target matrix for the data. 

Table 1. READ statement Parameters 

SAS/IML language allows the elimination of non-numerical variables. To do this, use READ statement 
with reading all or part of the variables and specify numerical data by using the keyword _NUM_ in the 
VAR clause.  

GRAPHS IN SAS/IML 

SAS/IML language supports several graphs to report the data such as BAR, HISTOGRAM, SERIES etc. 
in this section, we want to show how you can call SAS procedure to create BAR charts and SERIES 
charts. For more information, you can check SAS/IML guide book (SAS, 2013). 

For creating SERIES chart you need to follow statement as follow: 

CALL SERIES (x,y  

GRID={“X” <,”Y”>} 

LABEL={XLabel<,Ylabel>} 

XVALUES=xValues 

YVALUES=yValues); 

 

X,Y Specify a vectors to draw the chart based on the X vector and y vector these 
must be the same size 

ORDER Specifies the order in which discrete tick values are to be placed on the 
categorical axis. 

GRID Specifies whether to display grid lines for the X or Y axis. This option 
corresponds to the GRID option in the XAXIS and YAXIS statements. Valid 
values follow: 

GRID={X} displays grid lines for the X axis. 

GRID={Y} displays grid lines for the Y axis. 

GRID={X, Y} displays grid lines for both axes. 

 

LABEL Specifies axis labels for the X or Y axis. 

XVALUES Specifies a vector of values for ticks for the X axis. 

YVALUES Specifies a vector of values for ticks for the Y axis. 

Table 2. Series Parameters 
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DIMENSIONALITY REDUCTION IN SAS/IML 

In this section, we discuss the implementation of statistical methods for dimensionality reduction. In 
Figure 1, we can see the flowchart of the program that created for calculating the statistical methods. 

 

 

 

 

 

 

 

 

 

 

 

 
 

We divide this section into three parts; First part is data preparation, in second part we discuss statistical 
methods we used, and in the third part, we will show the results. 

DATA PREPARATION 

Data preparation has two parts. 

Part 1 

The following procedure loads the data into a SAS dataset named mydata. Procedure standard obtains 
standard data set named STEX with mean =0 and std = 1.  

proc import datafile="[Path]\Housing.csv"  

out=mydata dbms=csv replace;  

getnames=yes;  

run; 

 

proc standard data=mydata mean=0 std=1 out=STEX; 

RUN;  

Part 2 

Pocedure iml creats data matrix A using SAS data set STEX 

Proc iml; 

use STEX; read all var _num_ into A[colname=names]; 

STATISTICAL METHODS 

DISCRETE COSINE TRANSFORMATION 

Discrete cosine transform (DCT) is a widely-used method for image compression. It can also be used in 
dimensionality reduction in other data besides image. DCT can be performed by simple matrix 
computations. SAS does not have a function to calculate the DCT matrix. Function dctmtx generates an 
𝑛 × 𝑛 matrix using equations (3) and (4) 

start dctmtx(n); 

 

Data Set SAS 
Datase

t 

SAS/IML  

Matrix 

SVD  DCT Hadamard DFT 

Load 
Data set 
to SAS 

Load SAS 
dataset 
as Matrix 

Figure 1. Flowchart of SAS/IML program 
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 pi = constant("pi"); 

 cc = repeat(0:n-1,n,1); 

 rr = cc`; 

    c = sqrt(2 / n) * cos(pi * (2*cc+1) # rr / (2 * n)); 

 c[1,] = c[1,]/ sqrt(2); 

return c; 

finish; 

 

DCTDR function computes the transform coefficients using matrix multiplication A*s; A is the data matrix 
and s is the dctmtx with size NxN. 

start DCTDR(A); 

 size = ncol(A); 

 s = dctmtx(size); 

 w = A*s; 

 variance = var(w); 

 Factor = prepareresult(variance,ncol(A)); 

 return Factor; 

finish; 

Hadamard Transformation 

SAS supports the Hadamard matrix. We can create this matrix by calling the “Hadamard(size)” . The 
following code does Hadamard transformation: 

start HCDR(A); 

 size = ncol(A); 

 h = hadamard(size); 

 w = A*h; 

 variance = var(w); 

 Factor = prepareresult(variance,ncol(A)); 

 return Factor; 

finish; 

 

h contains the Hadamard matrix and A represents our data and w contains the transformed components . 
Then we calculate the variance of each column and names the vector “variance”. Then prepare the result 
by calling “prepareresult” and at the end return the principal components. 

Discrete Fourier Transformation 

Fast Fourier Transform (FFT) algorithm is the fast system to compute the Discrete Fourier Transform 

(DFT) of a sequence. FFT reduces the number of computations needed to calculate DFT from O(𝑁2) to O 
(𝑁𝑙𝑜𝑔𝑁) (Jain, 1989). The following code does the DFT transformation of data matrix A. 

start DFTRD2(A); 

 r = nrow(A); 

 do i = 1 to r; 

  x = fft(A[i,]); 

  amplitude = x[,1]##2 + x[,2]##2; 

  T = T // amplitude`; 

 end; 

 w = abs( T` * A); 

 variance = var(w); 

 Factor = prepareresult(variance,ncol(A)); 

 return Factor; 

finish; 

RESULT PREPARATION 

The function “prepareresults” calculates these information and creates the results table. 
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start prepareresult(r,n); 

 r = r`; 

 ColVar = J(n,2); 

 do i = 1 to n;ColVar[i,1] = i;ColVar[i,2] = r[i];end; 

 Factor = J(n,5); 

 Sumvariance = sum(ColVar[,2]); 

 call sort(ColVar,2,2); 

 lastproportion = 0; 

 do i = 1 to nrow(ColVar); 

  currentvar = ColVar[i,2]; 

  proportion = currentvar / Sumvariance; 

  Cumulative = proportion + lastproportion; 

  Factor[i,1] = i; /*ColVar[i,1];*/ 

  Factor[i,2] = currentvar; 

  Factor[i,4] = proportion;  

  Factor[i,5] = Cumulative; 

  difference  = 0; 

  if i ^= nrow(ColVar)then do;   

   nextcurrentvar = ColVar[i+1,2];  

   difference = currentvar  - nextcurrentvar;  

  end;  

  Factor[i,3] = difference ;  

  lastproportion  = Cumulative; 

 end; 

return Factor; 

 

“PrintReport” prints the results table as well two graphs. The scree plot graphs the Normalized Variance 
against the component number. The second graph includes the cumulative normalized variances which is 
the used for the proper selection of the number of principal components. 

start RrintReport(factor,names,reportlable); 

 orderedname = J(nrow(factor),1,"                    ");  

 do i = 1 to nrow(factor); 

  indexname =  factor[i,1]; 

  orderedname[i,1] = names[1,indexname]; 

 end; 

 Columname = {"Components" "Variance" "Difference" "Proportion" 

"Cumulative"}; 

 print factor[colname = Columname label = reportlable]; 

 /*Scree plot*/ 

 call Series(factor[,1],factor[,4])  grid={X Y} option="markers" 

label={"Principal Component","Varience"}; 

 /*Varience Explained*/ 

 g = repeat({"Cumulative","Proportion"}, 1, nrow(factor)); 

 g = g`; 

 x = factor[,1] || factor[,1]; 

 y = factor[,5] || factor[,4]; 

 call Series(x,y) group=g  grid={X Y} option="markers" label={"Principal 

Component","Proportion"}; 
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finish; 

EXPERIMENTAL RESULT 

DATA EXPLANATION 

We have chosen Housing dataset which is provided by UCLA. This data set contains 16 features and 506 
samples which they represent in order: CRIM per capita crime rate by town, ZN proportion of residential 
land zoned for lots over 25,000 sq. INDUS proportion of non-retail business acres per town CHAS 
Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) NOX nitric oxides concentration 
(parts per 10 million) RM average number of rooms per dwelling AGE proportion of owner-occupied units 
built prior to 1940 DIS weighted distances to five Boston employment centers RAD index of accessibility 
to radial highways TAX full-value property-tax rate per $10,000 PTRATIO pupil-teacher ratio by town B 
1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town LSTAT % lower status of the population 
MEDV Median value of owner-occupied homes in $1000's, entropy and STD of each row. 

DISCRETE COSINE TRANSFORMATION 

Results of DCT algorithm are obtained using the following instructions: 

%let _timer_start_DCT = %sysfunc(datetime()); 

DCTFactor = DCTDR(A); 

dur_DCT = (datetime() - &_timer_start_DCT)*1000; 

call RrintReport(DCTFactor,names,"Discrete Cosines Result"); 

runningtimes = runningtimes  || dur_DCT;  

 

 

Components Variance Difference Proportion Cumulative 

1 3.7240887 1.6821704 0.2327555 0.2327555 

2 2.0419183 0.6916541 0.1276199 0.3603754 

3 1.3502642 0.1426024 0.0843915 0.4447669 

4 1.2076618 0.1175081 0.0754789 0.5202458 

5 1.0901537 0.2586636 0.0681346 0.5883804 

6 0.8314901 0.0234354 0.0519681 0.6403485 

7 0.8080546 0.116778 0.0505034 0.690852 

8 0.6912766 0.0533092 0.0432048 0.7340567 

9 0.6379675 0.0205056 0.039873 0.7739297 

10 0.6174618 0.0123333 0.0385914 0.8125211 

11 0.6051286 0.0375029 0.0378205 0.8503416 

12 0.5676257 0.0892401 0.0354766 0.8858182 

13 0.4783856 0.0146019 0.0298991 0.9157173 

14 0.4637837 0.0203005 0.0289865 0.9447038 

15 0.4434831 0.0022272 0.0277177 0.9724215 

16 0.441256 0 0.0275785 1 

Table 3.  Discrete Cosines Variances 
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Figure 2. Scree Plot 

 

Figure 3. Proportion/Cumulative Plot 

HADAMARD TRANSFORMATION 

Results of Hadamard algorithm are obtained using the following instructions: 

%let _timer_start_Hadamard = %sysfunc(datetime()); 

HFactor = HCDR(A); 

dur_H = (datetime() - &_timer_start_Hadamard)*1000; 

call RrintReport(HFactor,names,"Hadamard Matrices Result"); 

runningtimes = runningtimes  || dur_H; 

 

Components Variance Difference Proportion Cumulative 

1 47.392746 23.810112 0.1851279 0.1851279 

2 23.582634 0.193269 0.0921197 0.2772476 

3 23.389365 3.1560017 0.0913647 0.3686123 

4 20.233364 2.8008854 0.0790366 0.4476489 

5 17.432478 1.4075239 0.0680956 0.5157445 

6 16.024954 0.5025595 0.0625975 0.578342 

7 15.522395 1.3735879 0.0606344 0.6389763 

8 14.148807 2.4965995 0.0552688 0.6942451 

9 11.652208 0.6224841 0.0455164 0.7397615 

10 11.029723 0.0525698 0.0430849 0.7828464 

11 10.977154 0.3972271 0.0428795 0.8257259 

12 10.579927 1.6097697 0.0413278 0.8670537 

13 8.9701569 0.3074983 0.0350397 0.9020934 

14 8.6626586 0.4151443 0.0338385 0.9359319 

15 8.2475143 0.0935995 0.0322169 0.9681488 

16 8.1539148 0 0.0318512 1 

Table 4. Hadamard Transformation Variance Explanation 
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Figure 4. Scree Plot 

 

Figure 5. Proportion/Cumulative Plot 

DISCRETE FOURIER TRANSFORMATION 

Results of DFT algorithm are obtained using the following instructions: 

%let _timer_start_DFT = %sysfunc(datetime()); 

DFTFactor = DFTDR(A); 

dur_DFT = (datetime() - &_timer_start_DFT)*1000; 

call RrintReport(DFTFactor,names,"Discrete Furier Transformation Result"); 

runningtimes = runningtimes  || dur_DFT; 

 

Components Variance Difference Proportion Cumulative 

1 37578632 21774714 0.3916618 0.3916618 

2 15803917 7199368.8 0.1647157 0.5563775 

3 8604548.6 652082.92 0.0896806 0.6460581 

4 7952465.7 1646834.7 0.0828843 0.7289424 

5 6305631 3291208.5 0.0657202 0.7946626 

6 3014422.5 50766.232 0.0314177 0.8260803 

7 2963656.3 193433.83 0.0308886 0.8569689 

8 2770222.4 288973.16 0.0288725 0.8858414 

9 2481249.3 518311.95 0.0258607 0.9117021 

10 1962937.3 223842.24 0.0204586 0.9321608 

11 1739095.1 220869.19 0.0181257 0.9502864 

12 1518225.9 500150.61 0.0158237 0.9661101 

13 1018075.3 154719.81 0.0106109 0.9767209 

14 863355.48 58984.237 0.0089983 0.9857192 

15 804371.24 238549.53 0.0083835 0.9941027 

16 565821.71 0 0.0058973 1 

Table 5. Discrete Fourier Transformation Variances 
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Figure 6. Scree Plot 

 

Figure 7. Proportion/Cumulative Plot 

 

SVD TRANFORMATION 

Results of SVD algorithm are obtained using the following instructions: 

Proc princomp data = mydata out=compdata; 

run; 

proc print data=compdata; 

run; 

 

Components Variance Difference Proportion Cumulative 

1 7.22016824 5.29890704 0.4513 0.4513 

2 1.92126120 0.40455643 0.1201 0.5713 

3 1.51670477 0.48687365 0.0948 0.6661 

4 1.02983112 0.01440416 0.0644 0.7305 

5 1.01542696 0.25375416 0.0635 0.7940 

6 0.76167280 0.14112541 0.0476 0.8416 

7 0.62054739 0.06944963 0.0388 0.8804 

8 0.55109776 0.25061100 0.0344 0.9148 

9 0.30048676 0.03557002 0.0188 0.9336 

10 0.26491675 0.03472680 0.0166 0.9501 

11 0.23018995 0.04029659 0.0144 0.9645 

12 0.18989336 0.00650873 0.0119 0.9764 

13 0.18338464 0.06013110 0.0115 0.9878 

14 0.12325354 0.06706640 0.0077 0.9956 

15 0.05618714 0.04120952 0.0035 0.9991 

16 0.01497762 0  0.0009 1.0000 

Table 6 SVD Variances 
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Figure 8. Scree Plot 

 

Figure 9. Proportion/Cumulative Plot 

 

CONCLUSION 

To compare these techniques, we plotted all the scree plots and cumulative plots together. Based on the 
Cumulative plot in Figure 11, we can see that DFT and SAS principal component (SVD) act very similar, 
also DCT and Hadamard are close. However, based on the Scree plot in the Figure 10, we can see that 
the first two components of DFT and SVD contains approximately 60% of total energy while in other two 
algorithms, it is around 30%. Based on that, we can conclude that first two components of DFT and SVD 
can represent the data in a more efficient way. Therefore, reducing dimensionality of data using DFT and 
Principal Component (SVD) is more efficient than DCT and Hadamard. 

 

Figure 10. Scree Plot of all the methods 

 

Figure 11. Cumulative Plot of all the methods 

 

“SYSFUNC” macro calculates the running time of the algorithm. Table 7 lists the running time of each 
algorithm in milliseconds. Hadamard algorithm is the fastest, second position belongs to DCT, third 
position belongs to DFT and at the end SVD is the slowest. 

SVD DCT Had DFT 

3.9999485 1.0001659 0.9999275 2.9997826 

Table 7 Running Times 
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