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ABSTRACT 

In marketing or credit risk a model with binary target is often fitted by logistic regression. In this setting the 
sample size is large and the model includes many predictors. For these models this paper discusses the 
variable selection procedures that are offered by PROC LOGISTIC, PROC HPLOGISTIC, and PROC 
HPGENSELECT. These selection procedures include the best subsets approach of PROC LOGISTIC, 
selection by best SBC of PROC HPLOGISTIC, and selection by LASSO of PROC HPGENSELECT. The 
use of classification variables in connection with these selection procedures is discussed. Simulations are 
run to compare these methods. 

INTRODUCTION 

This paper focuses on fitting of binary logistic regression models for direct marketing, customer 
relationship management, credit scoring, or other applications where (i) samples for modeling are large, 
(ii) there are many predictors, and (iii) many of these predictors are classification variables. 

The automated selection of predictor variables for fitting logistic regression models is discussed. Four 
SAS procedures are compared: 

1. PROC LOGISTIC with SELECTION = SCORE 

2. PROC HPLOGISTIC with SELECTION METHOD = FORWARD (SELECT=SBC CHOOSE=SBC) 

3. PROC HPGENSELECT with SELECTION METHOD = LASSO (CHOOSE=SBC) 

4. PROC GLMSELECT with SELECTION = LASSO (CHOOSE=SBC) 

The use of PROC GLMSELECT (method #4) may seem inappropriate when discussing logistic 
regression. PROC GLMSELECT fits an ordinary regression model. But, as discussed by Robert Cohen 
(2009), a selection of good predictors for a logistic model may be identified by PROC GLMSELECT when 
fitting a binary target. Then these predictors can be refit in a logistic model by PROC LOGISTIC. 
Potentially, the many features of PROC GLMSELECT can be leveraged to produce a selection of good 
predictors. 

All four methods listed above can utilize the notion that optimal models are those with the lowest Schwarz 
Bayes criterion (SBC).1  

ASSUMPTIONS:  

It is assumed there is an abundant population from which to sample and that large sub-samples have 
been selected for the training and validation data sets. It is also assumed that a large set of potential 
predictor variables X1 - XK have been identified for modeling against a binary target variable Y.  

SCHWARZ BAYES CRITERION 

In model building where there are large training data sets and many candidate predictors, it is easy and 
tempting to over fit a logistic regression model. It is natural to want to use all the information in the fitting 
of models that has been uncovered through data discovery. But the impact of using “all the data” in fitting 
a logistic model may be the creation of data management overhead with either minimal or no benefit for 
out-of-sample prediction by the model.  

                                                           
1 But for Method #1 the ranking is done by using a proxy for SBC. In this paper this proxy is called ScoreP. See the 
discussion of the Schwarz Bayes Criterion in the paper, and see the Appendix for discussion of the connection of 
ScoreP and SBC. 
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A widely used penalized measure of fit for logistic regression models is the Schwarz Bayes criterion 
(SBC). The formula is given below: 

SBC = - 2 * LL + log(n)* K 

where LL is log likelihood of the logistic model, K is degrees of freedom in the model (including the 
intercept) and n is the sample size.  

The theory supporting the Schwarz Bayes criterion is complex, both conceptually and mathematically. For 
a logistic regression modeling practitioner, the primary practical consequence of the theory is that a 
model with smaller SBC value is preferred over a model with a larger SBC value.2 The use of SBC favors 
the selection of a parsimonious model and can help the modeler to avoid over fitting.3 

PRE-MODELING BINNING 

In direct marketing, customer relationship management, or credit scoring, the predictors in a logistic 
model often have only a few levels. Some predictors are nominal and others are ordered, including 
ordinal (not numeric) and discrete (numeric with a few levels, such as a count). These predictors will be 
referred to as NOD (nominal, ordinal, discrete). 

It is common practice to “bin” the NOD predictors before model fitting. Binning is the process of reducing 
the number of levels of a predictor to a smaller number of bins (i.e. consolidations of levels). The goals of 
binning are to achieve parsimony and to find a relationship between the bins and the event rate (or, 
alternatively, the odds) that satisfies business expectations and common sense. 

Binning can also be applied to continuous predictors 4 or nominal predictors with a large number of 
levels.5 For a continuous predictor PROC HPBIN can be utilized to prepare the predictor for binning by 
consolidating the many levels into a manageable number of intervals.6  

BINNING ALGORITHMS 

If a predictor X is nominal (no ordering), there are two approaches to binning. They are: (1) collapsing of 
levels where each level is initially in a separate bin, and (2) splitting where all levels are initially in one bin. 
An algorithm called NOD_BIN for collapsing is given in Lund (2017). 7 The splitting algorithm is usually 
based on a decision tree.8 SAS Enterprise Miner implements splitting in the Interactive Grouping Node. 

If the predictor is ordered, then an optimal collapsing process is given in Lund (2017). The best k-bin 
ordered solution, based on either information value or entropy, is guaranteed to be found. 

FINAL BINNING IS FINAL 

If a binned predictor is selected for a final logistic model, then all levels (bins) should appear in the 
model.9  

In summary, “final binning is final”. 

  

                                                           
2 See Hastie, Tibshirani, Friedman (2008), Elements of Statistical Learning, pages 233-235 
3 An introductory discussion of “Information Criteria” (SBC, AIC, and more) is given by Dziak, et al. (2012). 
4 A continuous (or interval) predictor is numeric with many levels. Examples include measures of time, distance, 
money, etc. 
5 Examples of a nominal predictor with a large number of levels include SIC codes, county of residence, job 
classification, etc. 
6 Binning of continuous predictors may be preferred to looking for a transformation (such as log(X) or X2) because the 
sample sizes for training and validation data sets in marketing or credit risk are often very large and binning makes 
full use of the data. 
7 For a different approach to collapsing, see Manahan (2006, in Appendix 1) for a program to collapse levels based 

on PROC CLUSTER.  
8 See SAS documentation about PROC HPSPLIT for a decision tree procedure. 
9 Two approaches of how to use binned X in a model are: (1) As a classification variable (via a CLASS statement), 
or (2) As a weight of evidence coded variable. The pros and cons of (1) and (2) are not discussed in this paper. 
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PROC LOGISTIC WITH SELECTION = SCORE 

The score chi-square for a logistic model is reported by PROC LOGISTIC in the report “Testing Global 
Null Hypothesis: BETA = 0”. The score chi-square closely approximates the likelihood ratio chi-square. 
But in contrast to the likelihood ratio chi-square, the score chi-square can be computed without actually 
finding the maximum likelihood solution for the logistic model.10 The computational efficiency provided by 
using score chi-square is the key idea behind the Best Subsets approach to finding good multiple 
candidate models.  

Best Subsets explained below 

Best Subsets is implemented by PROC LOGISTIC with SELECTION=SCORE. The syntax is shown here: 

PROC LOGISTIC; MODEL Y = <X’s> / SELECTION=SCORE START=s1 STOP=s2 BEST=b; 

The SELECTION statements “START” and “STOP” restrict the models to be considered to those where 
the number of predictors is between s1 and s2. Then for each k in [s1, s2] the option “BEST” will produce 
the b “best” models having k predictors. These b “best” models are the ones with highest score chi-
square.11 

With SELECTION=SCORE the model coefficients are not found and log likelihood (LL) and related 
statistics are not computed. Notably, this includes SBC which is derived from log likelihood. 

Penalized Score Chi-Square 

A “best” model is best only within a set of models with the same number of predictors. For example, {X1} 
might have the largest score chi-square among 1 variable models but {X1, X2} will have a larger score 
chi-square simply because a predictor was added to the model.  

To make the models comparable, a penalty term is needed to reflect the number of degrees of freedom in 
the model and the sample size. In the absence of SBC, a substitute is “ScoreP”, a penalized score 
chi-square defined by: 

ScoreP  =  -Score Chi-Sq + log(n) * K  12 

where K is the degrees of freedom in the model (counting the intercept) and n is the sample size. 

If all possible models are ranked by ScoreP and also by SBC, there is no guarantee that the rankings will 
be the same but the rankings will be very similar. 

A Problem 

The SELECTION=SCORE option does not support the CLASS statement. A solution is to convert a 
classification variable into a set of dummy variables. But with even a modest number of classification 
variables the conversion to dummies could bring the total number of predictors to 100 or more. Run time 
for PROC LOGISTIC increases exponentially as the number of predictors for SELECTION=SCORE 
becomes 75 and greater. This makes large scale dummy variable conversion not practical when using 
SELECTON=SCORE. 

One work-around is to run a preliminary PROC LOGISTIC with SELECTION=BACKWARD FAST to 
reduce the count of predictors to the point where SELECTION=SCORE can be run.13 But BACKWARD 

                                                           
10 See Appendix for code to compute score chi-squares in the setting of Best Subsets. 
11 Example of START, STOP, BEST: Assume there are 4 predictors, X1 - X4 and START=1, STOP=4, and BEST=3. 
Then a total of 10 models are selected: 
− From the four 1 variable models: {X1}, {X2}, {X3}, {X4}, the 3 with highest score chi-square are found 
− From the six 2 variable models: {X1 X2}, {X1 X3}, {X1 X4}, {X2 X3}, {X2 X4}, {X3 X4}, the 3 with highest score 

chi-square are found 
− From the four 3 variable models: {X1 X2 X3}, {X1 X2 X4}, {X1 X3 X4}, {X2 X3 X4}, the 3 with highest score chi-

square are found 
− From the one 4 variable model: {X1 X2 X3 X4}, the 1 and only model is found 
12 See Appendix for connection between ScoreP and SBC 
13 SAS Institute (2012, chapter 3, page 78).  
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FAST is unlikely to select all the dummies associated with a classification variable. This distorts the 
results of final binning of classification variables.  
 

Another work-around is to convert all classification variables to weight of evidence (WOE) coding. This 
work around is described in Lund (2016). But, as described in the paper, this approach also has issues. 

In summary, the applicability of Best Subsets approach is limited to models with numeric predictors or to 
models with a modest number of classification predictors (which would be converted to dummies). 

PROC HPLOGISTIC 

PROC HPLOGISTIC is one of the SAS high performance procedures. The performance of these 
procedures is discussed by Nguyen, et al. (2016). However, only the model fitting functionality of 
HPLOGISTIC is of interest for this paper. HPLOGISTIC provides predictor variable selection using the 
following methods: FORWARD (including FAST), BACKWARD, STEPWISE.14 These methods are also 
provided by PROC LOGISTIC. But HPLOGISTIC adds new methods of selecting predictor variables 
beyond the selection by best significance level, as used by PROC LOGISTIC. 

FORWARD SELECTION 

In FORWARD selection, PROC LOGISTIC adds the predictor at each step with the most significant score 
chi-square, assuming that this significance level satisfies the threshold which the user sets via SLENTRY. 
When a CLASS variable is selected for entry, L-1 degrees of freedom (where L gives the number of 
levels) is utilized in computing the significance level. 

Importantly, PROC HPLOGISTIC adds new criteria for entering predictor variables. One criterion is 
SELECT=SBC which causes the predictor to be entered which gives the lowest (best) SBC for the new 
model among all predictors currently available for entry. The syntax is given below: 

PROC HPLOGISTIC DATA = <dataset>; 

MODEL Y (descending) = <predictors>;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=SBC STOP=NONE); 

The CHOOSE=SBC finds the model, along the FORWARD selection path, which gives the smallest SBC. 
The coefficients and model statistics from HPLOGISTIC are for this chosen model. The STOP=NONE 
directs HPLOGISTIC to continue the FORWARD selection until all predictors have been entered. 

The syntax for the alternative of fitting a model by significance testing is given below: 

PROC HPLOGISTIC DATA = <dataset>; 

MODEL Y (descending) = <predictors>;  

SELECTION METHOD=FORWARD (SELECT=SL SLENTRY = <a>); 

If no predictor has score chi-square with significance below SLENTRY, the FORWARD selection stops.  

The need to specify SLENTRY requires the modeler to make an arbitrary guess as to the relationship of 
the data to the predictors. Criticisms of FORWARD (also BACKWARD and STEPWISE), based on 
significance testing, in the case of ordinary linear regression are given in Flom and Cassell (2007). Their 
criticisms in the case of linear regression have analogues to logistic regression. Hosmer, et al. (2013) are 
supportive of using FORWARD, BACKWARD, STEPWISE in logistic regression as a data exploration 
tool. 

In contrast, SELECT=SBC follows the strategy of looking for the best SBC model. Of course, the 
FORWARD path may fail to include the best overall SBC model. But for a large number of predictors the 
alternative of computing SBC for all models is not practical.  

See Lund (2016) for a discussion of collecting all models selected by FORWARD and BACKWARD as 
well as candidate (i.e. not selected) models in order to generate a large number of models with their 
associated SBC’s. If there are K predictors, this approach generates approximately K2 models. The 
modeler can then undertake further analyses of these (approximately) K2 models. 

                                                           
14 HPLOGISTIC does not provide SELECTION=SCORE 
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The degrees of freedom of a CLASS predictor is incorporated in the calculation of SBC by HPLOGISTIC. 

PARTITION and CHOOSE=VALIDATE  

Instead of using the CHOOSE=SBC an alternative CHOOSE criterion is based on having a validation 
sample. The PARTITION statement allows the user to designate a variable (called PART in the example 
below) that indicates which observations are to be used for training and which for validation. 
(Alternatively, the user may generate the training and validation data sets within the processing of PROC 
HPLOGISTIC. See the FRACTION option within PARTITION.) 

PROC HPLOGISTIC DATA = <dataset>; 

PARTITION ROLEVAR=PART(TRAIN="1" VALIDATE="0");  

MODEL Y (descending) = <predictors>;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=VALIDATE STOP=NONE); 

With CHOOSE=VALIDATE the chosen model is the model with smallest ASE (average squared error) 
that results from scoring the validation data set at each step. Although SELECT=SBC will favor 
parsimonious predictor selection, CHOOSE=SBC cannot fully protect against over optimizing the model 
that is fit on the training data. The CHOOSE=VALIDATE insures that the model can generalize. When 
large samples are available the use of PARTITION and CHOOSE=VALIDATE is a preferred approach.  

The validation sample, as part of <dataset>, need not consist of a random split of observations from a 
master file. Instead the validation observations could come from an out-of-time data set. However, it is 
probably best to reserve an out-of-time data set for a final model performance test. 

The SELECT=SBC is especially effective at reducing multicollinearity among the predictors available for a 
model. This is seen from an analysis of the impact on SBC when adding a collinear predictor. Since the 
predictor is collinear, the increase in -2*LL would be small. But meanwhile the penalty term would be 
increased by log(n). SBC may be increased for a highly collinear predictor. 

The discussion above has focused on FORWARD but much the same discussion applies to BACKWARD 
and STEPWISE. The focus was on FORWARD because it has similarities to selection by LASSO, to be 
discussed next.  

PROC HPGENSELECT  

PROC HPLOGISTIC in version 14.2 does not support selection by LASSO (least absolute shrinkage and 
selection operator) as a SELECTION method but LASSO is available in HPGENSELECT. 

Here is an outline of the LASSO process for a logistic regression by HPGENSELECT: 

LASSO fits a logistic model, once a positive value of λ is given, by solving for the coefficients in the 
objective function shown here:  

F(β0,β,λ) = min(β0, β) { -LL(β0,  β)  +  λ * ∑ |β𝑘
𝐾
𝑘=1 | } 

 
where LL denotes log likelihood, β0 is the intercept, and β = β1, … βK are the coefficients. 

Each λ gives rise to a model. Different λ’s may be associated with models with the same predictors but 
with different values for the coefficients. 

Let “maxλ” be the smallest λ where F(β0,β, λ) = -LL(β0, 0, …, 0). As λ decreases from maxλ and 
approaches 0, predictors enter or exit the model 1-at-a-time or in small groups. At λ = 0 the LASSO model 
is the usual maximum likelihood estimation (MLE) model which would be found by HPLOGISTIC.  

If the same predictors are in LASSO model and MLE model, then β's and LL are not the same since 
different objective functions are being solved. 
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A sequence of λ’s must be specified where the objective function will be evaluated. LASSORHO is an 
HPGENSELECT parameter (between 0 and 1) that starts this generation of λ values. The default for 
LASSORHO is 0.8. The first λ in the sequence is: 

LASSORHO * (maxλ) 

The jth λ in the sequence is:  

LASSORHO j * (maxλ) 

The number of lambda steps is given by LASSOSTEPS with default = 20 … λ1, λ2, …, λ20 

In order to simplify this outline of the LASSO algorithm, the preceding formulation does not include the 
case of classification variables.15 The LASSO implementation in HPGENSELECT is actually “group lasso” 
which has a more general objective function than given above. In group lasso an entire classification 
variable enters or exits the model. Individual levels of the classification variable cannot enter or exit. 

However, a classification variable can be converted to dummy variables in HPGENSELECT by the use of 
SPLIT in connection with the CLASS statement. SPLIT applies to any SELECTION METHOD. More 
discussion of SPLIT is given in a later section. 

Logistic models from HPLOGISTIC and HPGENSELECT compared on data set TEST 

Data set TEST has 10,000 observations, a binary target Y, and predictors for logistic regression.  

DATA TEST; 

do ID = 1 to 10000; 

 cumLogit = ranuni(2); 

 e = 1*log( cumLogit/(1-cumLogit )); 

 X1 = rannor(9); /* in model as quadratic */ 

 X2 = rannor(9); /* in model as log */ 

 X3 = rannor(9); /* only weakly in model */ 

 X4 = rannor(9); /* not in model */ 

 X5 = rannor(9); /* in model as a factor in interaction X7 */ 

 X6 = rannor(9); /* in model as a factor in interaction X7 */ 

 X7 = X6*X5;     /* in model */ 

 B1 = (ranuni(1) < .4); /* in model */ 

 B2 = (ranuni(1) < .6); /* in model */ 

 B3 = (ranuni(1) < .5); /* in model */ 

 B4 = (ranuni(1) < .5); /* in model */ 

 C12 = B1 + B2; /* indirectly in model */ 

 C34 = B3 + B4; /* indirectly in model */ 

xbeta = X1**2 + log(X2+8) + .01*X3 + 2*X7 + 0.1*B1 + B2 + B3 + B4 + e; 

 P_1 = exp(xbeta) / (1 + exp(xbeta)); 

 Y = (P_1 > 0.95); 

 /* To create a PARTITION role variable, add this line */ 

 IF ID <= 5000 then PART = 1; ELSE PART = 0; 

 output; 

 end; 

In the following model fitting, we will assume that the predictors which are available for modeling are 
restricted to numeric X1-X7 and to classification variables C12 and C34.  

The Wald chi-squares and p-values for these predictors are shown in Table 1. 

From this group the four strongest predictors for a one-variable model are X7, C34, C12, X2. A weaker 5th 
strongest is X5. 

  

                                                           
15 SAS documentation: 
https://support.sas.com/documentation/cdl/en/stathpug/68163/HTML/default/viewer.htm#stathpug_hpgenselect_details29.htm 
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TABLE 1. Strength of One-Variables Predictors for Logistic Model  

Effect DF Wald Chi-Sq Pr > ChiSq Strength 

X1 1 0.01 0.9053 
 

X2 1 6.16 0.0130 4th 

X3 1 0.06 0.8108 
 

X4 1 0.44 0.5066 
 

X5 1 4.96 0.0259 5th 

X6 1 0.02 0.8823 
 

X7 1 1365.52 <.0001 1st 

C12 2 88.42 <.0001 3rd 

C34 2 329.70 <.0001 2nd 

The predictors X1-X6 are very weakly correlated, but X7 is the product of X5 and X6. There is only weak 
association between C12 and C34 and the numeric predictors X1-X7. The best model should include 
predictors X7, C12, C34, probably X2, and possibly X5.  

Here is the syntax for running a LASSO logistic model on data set TEST. The statement 
DISTRIBUTION=BINARY is needed to specify a logistic model. 

PROC HPGENSELECT Data=TEST  

LASSORHO=.80 /* default */ LASSOSTEPS=20; /* default */ 

CLASS C12 C34; 

MODEL Y (descending) = X1-X7 C12 C34 / DISTRIBUTION=BINARY; 

   SELECTION METHOD=LASSO (CHOOSE=SBC STOP=NONE) DETAILS=ALL; 

run; 

The CHOOSE=SBC has the effect of selecting the λ which gives the model with smallest SBC. This value 
of λ is not necessarily a value where a variable is added or removed. The coefficients and other statistics 
that are reported by HPGENSELECT are for this chosen model.  

Table 2 below shows that selection of predictors by LASSO depends on the choice of LASSORHO and 
LASSOSTEPS: 

Table 2. LASSO Selection of Predictors in Model 

Model 
# 

LASSO-
RHO 

LASSO-
STEPS 

Variables in Model 
SBC 
Step 

LASSO 
SBC 

1 0.80 20 X2 X3 X4 X5 X7 C12 C34 20 8803.98 

2 0.80 40 X1 X2 X3 X4 X5 X7 C12 C34 24 8802.36 

3 0.85 20 X2 X5 X7 C12 C34 20 8898.06 

4 0.85 40 X2 X3 X4 X5 X7 C12 C34 28 8801.98 

5 0.90 20 X7 C34 20 9377.81 

6 0.90 40 X2 X4 X5 X7 C12 C34 39 8807.40 

7 0.70 20 X1 X2 X3 X4 X5 X7 C12 C34 15 8802.38 

8 0.70 40 X1 X2 X3 X4 X5 X7 C12 C34 15 8802.38 

The best SBC model for the default values of LASSORHO=0.8 and LASSOSTEPS=20 occurred at 
step 20 (model #1). This suggests that more steps are needed. With 40 steps the best SBC model 
occurred at step 24 (model #2). This model includes three weak variables X1, X3, X4, and the marginally 
strong variable X5.  

Changing to LASSORHO=0.85, the model (model #4) with lowest SBC from the list above is found. 
Models #2, #7 and #8 are (essentially) equal models and these models have only slightly higher SBC. 

Based on the one-variable results of Table 1, the model #3 has appeal. But the SBC of 8898.06 is not 
even close to the lowest among the LASSO models. Also the model found by CHOOSE=SBC occurred at 
the LASSOSTEPS limit of 20. This suggests more steps are needed. 
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Notably, the predictors selected in models #1 to #8 vary significantly by the specification of LASSORHO 
and LASSOSTEPS. The modeler faces the uncertainty of how to specify the search using LASSORHO 
and LASSOSTEPS. 

In contrast the use of FORWARD selection with HPLOGISTIC and SELECT=SBC, CHOOSE=SBC 
identifies as the best model { X7, C34, C12 } and as the second best model { X7, C34, C12, X2 }. 

PROC HPLOGISTIC DATA= TEST;  

CLASS C12 C34; 

MODEL Y (descending) = X1-X7 C12 C34; 

SELECTION METHOD=FORWARD 

(SELECT=SBC CHOOSE=SBC STOP=NONE); 

The Table 3 gives the entry of predictors, the model’s SBC, and shows an asterisk for the chosen model. 

Table 3. HPLOGISTIC FORWARD Entry of Predictions 

Selection Summary 

Step Effect 
Entered 

Number 
Effects In 

SBC 

0 Intercept 1 11596 

1 X7 2 9749.21 

2 C34 3 8866.34 

3 C12 4 8749.31* 

4 X2 5 8752.35 

5 X5 6 8756.47 

6 X4 7 8764.07 

7 X3 8 8772.69 

8 X1 9 8781.65 

9 X6 10 8790.76 

Predictive Accuracy  

Although the LASSO model for the default setting of LASSORHO = 0.8 and LASSOSTEPS = 20 includes 
two weak predictors, the reader can independently check that the predictive accuracy of the LASSO 
Model { X2  X3 X4 X5  X7 C12 C34 } and the MLE Model { X7 C12 C34 } is very similar. 

LASSO and MLE Models are not Comparable Except by Measuring Predictive Accuracy 

HPLOGISTIC models are fit by MLE (maximum likelihood estimation). MLE and LASSO involve different 
objective functions and this has the following consequences: 

 If the same predictors are in a LASSO model and a MLE model, then coefficients and log-likelihoods 
are not the same. 

 When there are classification variables in the model, then SBC is computed differently for LASSO. If 
classification variable C has L levels, then “L” is used in computing the number of parameters K in the 
SBC formula. In contrast, L-1 is used for MLE. For LASSO each of the L levels of C does have a 
coefficient. This is unlike MLE where one level becomes the reference level. 

SPLIT Option in CLASS Statement for HPGENSELECT 

For any selection method (LASSO or otherwise) the SPLIT statement converts the levels of a 
classification variable to dummies that can enter or exit a model independently. For example:  

PROC HPGENSELECT Data=TEST  

LASSORHO=.80 /* default */ LASSOSTEPS=20; /* default */ 

CLASS C12(SPLIT) C34(SPLIT); 

MODEL Y (descending) = X1-X7 C12 C34 / DISTRIBUTION=BINARY; 

   SELECTION METHOD=LASSO (CHOOSE=SBC STOP=NONE) DETAILS=ALL; 
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The use of SPLIT has the effect of violating “final binning is final”. Some, but not all, levels of the 
classification variable are likely to be selected. The modeler then has to decide whether to violate the pre-
modeling binning results. 

PARTITION and CHOOSE=VALIDATE  

Similar to HPLOGISTIC, the PARTITION statement is offered in HPGENSELECT. In this case there is a 
new CHOOSE option: CHOOSE=VALIDATE. 

PROC HPGENSELECT DATA=TEST LASSORHO=.80 LASSOSTEPS= 20;  

PARTITION ROLEVAR = PART(TRAIN="1" VALIDATE="0");  

CLASS C12 C34; 

MODEL Y (descending)= X1-X7 C12 C34 / DISTRIBUTION = BINARY; 

SELECTION METHOD=LASSO (CHOOSE=VALIDATE STOP=NONE) DETAILS=ALL; 

The CHOOSE=VALIDATE finds the model with the best (lowest) SBC on the validation data set. ASE is 
also computed on both the test and validation data sets but is not available for CHOOSE. 

PROC GLMSELECT 

PROC GLMSELECT fits an ordinary regression model.16 But, as discussed by Cohen (2009), a selection 
of good predictors for a logistic model may be identified by PROC GLMSELECT against a binary target. 
Then these predictors can be refit in a logistic model using PROC LOGISTIC. Potentially, the many 
features of PROC GLMSELECT can be leveraged to produce a selection of good predictors. 

Of particular interest is the use of LASSO. PROC GLMSELECT provides SELECTION=LASSO. The 
algorithm for fitting LASSO is a variant of LAR (least angle regression).17  Predictors are entered or 
removed one-at-a-time with no intermediate steps between entry or removal. This algorithm is very fast in 
comparison with LASSO of HPGENSELECT. 

The default for SELECTION=LASSO is to SPLIT classification variables. The user could employ the rule 
that any classification variable where at least one level was selected by LASSO would be entered into a 
final logistic modeling step as a classification variable. 

As an alternative, PROC GLMSELECT provides SELECTION=GROUPLASSO. This gives a parallel 
approach to LASSO from HPGENSELECT, except of course, the model being fit is an ordinary regression 
model with a binary target. The SPLIT statement is supported and converts the levels of a classification 
variable to dummies that can enter or exit a model independently. The GROUPLASSO in GLMSELECT 
runs much faster than LASSO in HPGENSELECT on the same data set. 

A downside to the GROUPLASSO approach is that the analogues of LASSORHO and LASSOSTEPS 
need to be specified. The analogous statements are RHO and MAXSTEP. As seen with HPGENSELECT 
this leads to uncertainty in specifying a LASSO run and in determining the best model between LASSO 
runs.  

The benefit of SELECTION=LASSO is that RHO is not used. MAXSTEP is not really an issue. The default 
for MAXSTEP is two times the number of predictors. This allows for entry and removal of all predictors. 
For TEST this number is 28.18 

Here is the PROC GLMSELECT syntax for GROUPLASSO. The default value of RHO (comparable to 
LASSORHO) is 0.9. The default for MAXSTEP for GROUPLASSO is 100. 

PROC GLMSELECT DATA=TEST; 

CLASS C12 C34; 

MODEL Y = X1-X7 C12 C34 / 

SELECTION=GROUPLASSO (MAXSTEP=50 RHO=.9 CHOOSE=SBC STOP=NONE); 

run;  

                                                           
16 Target (response) variable is interval scaled and is linked by the identity function to a linear combination of 
predictors plus an error term with a normal distribution 
17 See https://support.sas.com/documentation/onlinedoc/stat/141/glmselect.pdf, page 3852. 
18 Numeric predictors: 7, intercept: 1, total class levels: 6 for 14 and multiplying by 2 gives 28 
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The chosen model was {X7 C34 C12 X2 X5 X4} and this model occurred at step 40. The predictor X4 is a 
weak predictor which was entered last. This selection was successful as a starting point for refining the 
predictors for a logistic model.  

Alternatively, PROC GLMSELECT is run below with SELECTION=LASSO. 

PROC GLMSELECT DATA = TEST; 

CLASS C12 C34; 

MODEL Y = X1-X7 C12 C34 / 

SELECTION=LASSO (CHOOSE=SBC STOP=NONE); 

run;  

The chosen model was { X7, part of C34, part of C12, X2, X5, X4 }. The modeler would inspect the 
chosen model and see that classification variables C34 and C12 should be included when fitting a final 
logistic model. 

PARTITION and CHOOSE=VALIDATE  

With PARTITION and CHOOSE=VALIDATE the chosen model is the model with lowest ASE (Average 
Squared Error) on the scored validation data set. 

PROC GLMSELECT DATA = TEST; 

PARTITION ROLEVAR=PART(TRAIN="1" VALIDATE="0");  

CLASS C12 C34; 

MODEL Y = X1-X7 C12 C34 / 

SELECTION = LASSO (CHOOSE=VALIDATE STOP=NONE); 

run; 

SPLIT Statement for the three Procedures (HPGENSELECT, GLMSELECT, HPLOGISTIC) 

It might be hard to keep track of the SPLIT statement for the three procedures under discussion. Table 4 
includes a summary. 

Table 4. Summary of Procedures and the SPLIT Statement 

HPGENSELECT 
(distribution=binary) 

SELECTION METHOD=LASSO 

 Algorithm=group lasso 

 Parameters 
− LASSORHO 
− LASSOSTEPS 

Slow, comparatively 

SPLIT statement for CLASS 
variables 

GLMSELECT (ordinary 
regression with binary target) 

SELECTION=LASSO 

 Algorithm=LAR 

 No Parameters 
Fast 

Splitting of CLASS variables is 
default. (SPLIT statement is 
ignored.) 

GLMSELECT (ordinary 
regression with binary target) 

SELECTION=GROUPLASSO 

 Algorithm=group lasso 

 Parameters: 
− RHO 
− MAXSTEPS 

Fast 

SPLIT statement for CLASS 
variables 

HPLOGISTIC 

SELECTION METHOD=<any> 
Algorithm=maximum likelihood 

estimation 
Fast 

No SPLIT statement 
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COMPARING LOGISTIC PROCEDURES ON A SIMULATED DATA SET WITH MANY X’S 

The data set WORK0 has 10,000 observations with binary target Y. It is designed to look like a data set 
that could arise in model fitting for marketing or credit. There are 20 classification variables and 20 binary 
variables.  

Of these, 10 classification variables CIn1 - CIn10 are in the model. These 10 variables have moderate 
levels of inter-predictor association (dependence). The other 10 classification variables DOut1 - DOut10 
are not in the model.  

There are 10 binary variables BIn1 - BIn10 which are in the model and they have moderate levels of 
correlation. The other 10 binary variables BOut1 - BOut10 are very weakly in the model. These variables 
are not correlated.  

Four tests of selection of predictor variables were run: 

1. PROC GLMSELECT with LASSO and CHOOSE=SBC 

2. PROC GLMSELECT with GROUPLASSO and CHOOSE=SBC (no splits) 

3. PROC HPGENSELECT with (group) LASSO and CHOOSE=SBC (no splits) 

4. PROC HPLOGISTIC with FORWARD and (SELECT=SBC CHOOSE=SBC) 

DATA WORK0; 

array CIn{10} CIn1 - CIn10; 

array COut{10} COut1 - COut10; 

array BIn{10} BIn1 - BIn10; 

array BOut{10} BOut1 - BOut10; 

 

do i = 1 to 10000; 

 do k = 1 to 10; 

  COut{k} = floor((k+2)*ranuni(1)); 

  end; 

 xbeta = 0; 

 RU = ranuni(1); 

 do j = 1 to 10; 

  BOut{j} = (ranuni(1) < j/20); 

  xbeta = xbeta + 0.01*BOut{j}; 

  end; 

 do j = 1 to 10; 

  BIn{j} = (.55*RU + .45*ranuni(1) < (j+1)/20); 

  xbeta = xbeta + 0.15*BIn{j}; 

  end; 

 do j = 1 to 10; 

  CIn{j} = floor((j+2)*(0.5*RU + 0.5*ranuni(1))); 

  end; 

 do j = 1 to 10; 

  do jj = 1 to 10; 

   if j-1 = CIn{jj}  

    then xbeta = xbeta + (-1)**j*(1/j)*(CIn{jj}/(1 + CIn{jj})); 

   end; 

  end; 

 e = rannor(1); 

 xbeta = xbeta + e; 

 P_1 = exp(xbeta) / (1 + exp(xbeta)); 

 Y = (P_1 > 0.50); 

 output; 

 end; 

run; 
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PROC GLMSELECT DATA = WORK0; 

CLASS CIn: COut: ; 

MODEL Y = CIn: COut: BIn: BOut:  

 / SELECTION=LASSO (CHOOSE=SBC STOP=NONE); 

run; 

PROC GLMSELECT DATA = WORK0; 

CLASS CIn: COut: ; 

MODEL Y = CIn: COut: BIn: BOut:  

 / SELECTION=GROUPLASSO (CHOOSE=SBC RHO=.90 MAXSTEPS=40 STOP=NONE); 

run; 

PROC HPGENSELECT DATA = WORK0 LASSORHO=.80 LASSOSTEPS=30;  

CLASS CIn: COut: ; 

MODEL Y (DESCENDING) = CIn: COut: BIn: BOut: 

 / DISTRIBUTION=BINARY; 

SELECTION METHOD=LASSO (CHOOSE=SBC STOP=NONE); 

run; 

PROC HPLOGISTIC DATA = WORK0; 

CLASS CIn: COut: ; 

MODEL Y (DESCENDING) = CIn: COut: BIn: BOut: ;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=SBC STOP=NONE); 

run; 

For all models CHOOSE=SBC was specified. 

GLMSELECT with LASSO selected 13 predictors, the most of any method. Levels from COut3 COut4 
COut8 COut9 were included in the selection. These predictors are not in the actual model.  

GLMSELECT with GROUPLASSO, with default RHO=0.9, selected 2 binary predictors, BOut5 BOut8, 
that are only weakly in the model.  Additionally, all predictors actually in the model were selected. 

HPGENSELECT with GROUPLASSO had very similar results to GLMSELECT with GROUPLASSO. 
Default LASSORHO=0.8 was used but steps were increased to 30. 

HPLOGISTIC with FORWARD and SELECT=SBC gave the most parsimonious model. All classification 
variables actually in the model were selected, but some binary variables actually in the model were not 
selected. No variables not in the model were selected. 

Table 5. Comparison of Predictors Selected by Four Methods 

1. GLMSELECT LASSO CIn1 CIn2 CIn3 CIn4 CIn5 CIn6 CIn7 CIn8 CIn9 CIn10 BIn2 BIn3 BIn4 BIn5 
BIn6 BIn7 BIn8 BIn9 BIn10 COut3 COut4 COut8 COut9 (*) 

2. GLMSELECT 
GROUPLASSO 

CIn1 CIn2 CIn3 CIn4 CIn5 CIn6 CIn7 CIn8 CIn9 CIn10 BIn1 BIn2 BIn3 BIn4 
BIn5 BIn6 BIn7 BIn8 BIn9 BIn10 BOut5 BOut8 

3. HPGENSELECT 
(GROUP)LASSO 

CIn1 CIn2 CIn3 CIn4 CIn5 CIn6 CIn7 CIn8 CIn9 CIn10 BIn3 BIn4 BIn5 BIn6 
BIn7 BIn8 BIn9 BIn10 BOut5 BOut7 BOut8 

4. HPLOGISTIC FORWARD 
SELECT=SBC 

CIn1 CIn2 CIn3 CIn4 CIn5 CIn6 CIn7 CIn8 CIn9 CIn10 BIn3 BIn6 BIn7 BIn8 
BIn9 BIn10 

(*) Classification variable is deemed as entered if any of its levels were selected by LASSO. 

Methods #2 and #3 performed well but this might be a lucky outcome from the use of default values of 
RHO. The run-time for Method #3 was very much longer than for the other 3 methods. 

Method #1 may over-select classification variables based on the practice that one level is enough to 
select the entire variable. 

Method #4 omitted BIn1, BIn2, BIn4, BIn5. The next 3 variables to enter, in order, would be BIn2, BIn1, 
BIn5, but Bin4 would not be entered. 
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Would inclusion of BIn1, BIn2, BIn4, BIn5 give a better model? A model comparison test of the final 
HPLOGISTIC model vs. the final HPLOGISTIC model with the addition of the predictors BIn1, BIn2, BIn4, 
BIn5 is a 4 d.f. chi-square test. The result of the comparison gave a very significant p-value of 0.008. But 
adding BIn1, BIn2, BIn4, BIn5 increases SBC by 23.1. If lower SBC is the guide, then adding these 4 
predictors is not supported. 

A SIMULATED DATA SET WITH MULTICOLLINEARITY 

In a data set WORK1 the predictors BIn1 - BIn10 are binary variables and each has a correlation of more 
than 0.96 with all the other BIn<x>’s. The true logistic model includes CIn1 - CIn10 (classification 
variables) and BIn1 - BIn10. Additional binary variables BOut1 - BOut10 are only weakly in the true 
model. 

Only BIn1 - BIn10 and BOut1 - BOut10 will be allowed in the MODEL statements.  

Both training and validation data sets are included in the sample and each had 10,000 observations. The 
PARTITION statement is used in HPLOGISTIC and HPGENSELECT with the partitioning variable PART 
to identify the training and validation data sets.  

The purpose of this section is to show that HPLOGISTIC with FORWARD and SELECT=SBC, 
CHOOSE=SBC selects only a minimum of the collinear predictors while HPGENSELECT with LASSO 
and CHOOSE=SBC selects more of the collinear predictors. 

DATA WORK1; 

array CIn{10} CIn1 - CIn10; 

array BIn{10} BIn1 - BIn10; 

array BOut{10} BOut1 - BOut10; 

do ID = 1 to 20000; 

 xbeta = 0; 

 RU = ranuni(1); 

 do j = 1 to 10; 

  BOut{j} = (ranuni(1) < 0.3); 

  xbeta = xbeta + 0.01*BOut{j}; 

  end; 

 /* High Multicollinearity is added here */ 

 do j = 1 to 10; 

  BIn{j} = (.96*RU + .04*ranuni(1) < 0.50);  

  xbeta = xbeta + 0.15*BIn{j}; 

  end; 

 do j = 1 to 10; 

  CIn{j} = floor((j+2)*(0.5*RU + 0.5*ranuni(1))); 

  end; 

 do j = 1 to 10; 

  do jj = 1 to 10; 

  if j-1=CIn{jj} then xbeta=xbeta + (-1)**j*(1/j)*(CIn{jj}/(1+CIn{jj})); 

   end; 

  end; 

 e = rannor(1); 

 xbeta = xbeta + e; 

 P_1 = exp(xbeta) / (1 + exp(xbeta)); 

 Y = (P_1 > 0.50); 

 IF ID <= 10000 THEN PART = 1; ELSE PART = 0; 

 output; 

 end; 

PROC CORR DATA = WORK1; 

VAR BIn: ; 

where PART=1; 

run; 
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Here is the HPLOGISTIC model and the Summary of selected predictors. 

PROC HPLOGISTIC DATA = WORK1; 

PARTITION ROLEVAR=PART(TRAIN="1" VALIDATE="0");  

MODEL Y (DESCENDING) = BIn: BOut: ;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=SBC STOP=NONE); 

 

The selection summary for HPLOGISTIC is shown below. Only three predictors: BIn4, BIn6, and BIn7 
were selected. 

Table 6. Selection of Predictors by HPLOGISTIC 

Selection Summary     

Step Effect 
Entered 

Number 
Effects In 

SBC  

0 Intercept 1 11541 

1 BIn4 2 9209.18 

2 BIn6 3 8901.74 

3 BIn7 4 8901.66* 

4 BIn9 5 8906.54 

5 BOut9 6 8911.44 

6 BOut2 7 8916.82 

7 BIn10 8 8923.50 

8 BOut3 9 8931.01 

9 BIn8 10 8938.92 

10 BOut1 11 8947.36 

11 BIn3 12 8956.12 

12 BOut8 13 8965.02 

13 BOut4 14 8973.93 

14 BOut10 15 8983.03 

15 BIn5 16 8992.13 

16 BOut6 17 9001.27 

17 BIn1 18 9010.44 

18 BOut7 19 9019.64 

19 BIn2 20 9028.85 

20 BOut5 21 9038.06 

Next is HPGENSELECT with LASSO. 

PROC HPGENSELECT DATA = WORK1 LASSORHO=.80 LASSOSTEPS=30; 

PARTITION ROLEVAR=PART(TRAIN="1" VALIDATE="0");  

MODEL Y (DESCENDING) = BIn: BOut: / DISTRIBUTION = BINARY; 

SELECTION METHOD=LASSO (CHOOSE=SBC STOP=NONE) DETAILS=all; 

run; 
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Four predictors BIn4, BIn6, BIn9, BIn10 were entered as a group in the first step. Then BIn7, BIn8, BIn5 
were entered. Selection ends at Step 14. 

Table 7. Selection of Predictors by HPGENSELECT 

Selection Details 
 

Step Description Effects In Model Lambda SBC 

0 Initial Model 1 1 11540.875 

1 BIn4 entered 5 0.8 10723.145 

 
BIn6 entered 5 0.8 10723.145 

 
BIn9 entered 5 0.8 10723.145 

 
BIn10 entered 5 0.8 10723.145 

2 BIn7 entered 6 0.64 10157.826 

3 BIn8 entered 7 0.512 9776.755 

4 
 

7 0.4096 9508.506 

5 BIn5 entered 8 0.3277 9332.64 

6 
 

8 0.2621 9204.764 

7 
 

8 0.2097 9116.576 

8 
 

8 0.1678 9055.997 

9 
 

8 0.1342 9014.609 

10 
 

8 0.1074 8986.508 

11 
 

8 0.0859 8967.556 

12 
 

8 0.0687 8954.859 

13 
 

8 0.055 8946.406 

14 
 

8 0.044 8940.812* 

15 BOut9 entered 9 0.0352 8946.262 

Steps 16 – 30 Omitted 

Despite the inclusion of seven correlated predictors in the HPGENSELECT model, the predictive 
accuracy of the two models is essentially the same. Here is the average squared error as measured on 
the validation data set. 

Table 8. Average Squared Error on the Validation Data Set 

Procedure Predictors ASE 

HPLOGISTIC  
SELECTION METHOD=FORWARD (SELECT=SBC 
CHOOSE=SBC) 

Step-by-step: BIn4 BIn6 BIn7 0.1485 

HPGENSELECT 
SELECTION METHOD=LASSO (CHOOSE=SBC) 

First: BIn4 BIn6 BIn9 BIn10 
Then step-by-step: BIn7 BIn8 BIn5 

0.1485 

CONCLUSIONS 

PROC HPLOGISTIC with SELECT=SBC and CHOOSE=SBC is fast, finds parsimonious models, and 
appears to minimize the inclusion of collinear predictors. I see no convincing reason to switch to logistic 
modeling with GROUPLASSO for models designed for direct marketing, customer relationship 
management, or credit scoring.  

MWSUG 2017, St. Louis, MO i 
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APPENDIX 

The connection between SBC and ScoreP 

Likelihood ratio chi-square is: 
LR χ2  = -2*LLr - (-2*LLf) where “r” is intercept-only model and “f” is model with all predictors. 

The likelihood ratio chi-square appears in SBC as shown:  
SBC = -2*LLf  +  log(n)*K  =  - LR χ2  +  log(n)*K  - 2*LLr 

The PROC LOGISTIC SELECTION=SCORE option gives Score χ2 where LR χ2 ~ Score χ2 

https://methodology.psu.edu/media/techreports/12-119.pdf
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So now, SBC ~  - Score χ2  + log(n)*K  -2*LLr 

Definition: ScoreP = - Score χ2 + log(n)*K  …  by dropping -2*LLr  (constant across models) 

Score chi-square computed without finding the maximum likelihood solution 

This code shows, in principle, how the Score Chi-Square can be computed without maximizing the 
likelihood function. 

* This SAS program demonstrates that SCORE-CHI-SQUARE from  

PROC LOGISTIC MODEL Y = <> / SELECTION=SCORE 

can be obtained without ever maximizing the Likelihood function. In the PROC LOGISTIC that is run in the middle of 
this program the MAXITER is set to 0. There are no iterations performed in solving the log-likelihood equations. The 
purpose of this PROC LOGISTIC is to produce the Covariance matrix with the evaluation at specified initial values. 
This Covariance matric is needed in the calculation of the SCORE-CHI-SQUARE. At the end of this program there is 
a real PROC LOGISTIC that actually runs the SELECTION=SCORE. Compare these results with the results that are 
produced by the preceding DATA step.; 

* STEP 0: Create example for PROC LOGISTIC; 

DATA work; 

 DO i = 1 to 1000; 

  w1 = 0.10*rannor(3); 

  w2 = 0.15*rannor(3); 

  y = (ranuni(1) < .5 + 0.1*w1 + .005*w2); 

  output; 

  END; 

run; 

* STEP 1: Obtain Intercept for Logistic Model with no predictors; 

* First find the mean of Y; 

PROC means DATA = work noprint; var y; 

output out = meanout(keep= meanY) 

mean = meanY; 

run; 

* Now transform meanY to the Logistic Intercept (no predictors); 

DATA Estimate; SET meanout; 

intercept = log(meanY/(1 - meanY)); 

run; 

* STEP 2: Compute Score statistics for w1 and w2; 

* The Score statistics are conditional on the Intercept; 

* The Score equations (below) are the first derivatives of the log-likelihood 

function but with the Intercept "in the model"; 

DATA U; SET Estimate work END=eof; 

RETAIN b0 Uw1 Uw2 0; 

KEEP Uw1 Uw2 _LINK_; 

IF _N_ = 1 THEN DO; 

 b0 = intercept; 

 put b0 = ; 

 END; 

IF _N_ > 1 

THEN 

DO; 

* Score Statistics; 

 Uw1 = Uw1 + y*w1 - w1*(exp(b0) / (1 + exp(b0)));  

 Uw2 = Uw2 + y*w2 - w2*(exp(b0) / (1 + exp(b0)));  

 END; 

IF eof THEN DO; 

length _LINK_ $8; 

_LINK_ = "LOGIT"; /* Used for MERGE below */ 

 OUTPUT; 

 END;  

run; 

/* For use in initializing coefficients in PROC LOGISTIC */ 

DATA Initial; SET Estimate; 

     w1=0; w2=0; 
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run; 

/* Suppress unneeded Logistic output */ 

ODS EXCLUDE ALL; 

/* MAXITER = 0 gives Covariance Matrix evaluated at Initial Values of Parameters */ 

PROC logistic DATA = work descending OUTEST = est_w covout INEST= Initial; 

MODEL y = w1 w2 / maxiter = 0; 

run; 

ODS EXCLUDE NONE; 

* STEP 3: Compute Score Chi-Square for w1 and w2; 

DATA score_chi_sq; MERGE U est_w(where = (_name_ in ("w1", "w2"))) END=EOF;  

 by _LINK_; 

length VariablesInModel $5000; 

retain score_chi_sq_sum 0; 

IF _name_ = "w1" THEN DO; 

 score_chi_sq = w1*Uw1**2; 

 VariablesInModel = "w1"; 

 output; 

 score_chi_sq_sum = w1*Uw1**2 + w2*Uw1*Uw2 ; 

 END; 

IF _name_ = "w2" THEN DO; 

 score_chi_sq = w2*Uw2**2; 

 VariablesInModel = "w2"; 

 output; 

 score_chi_sq_sum = score_chi_sq_sum + w1*Uw1*Uw2 + w2*Uw2**2; 

 END; 

IF EOF THEN DO; 

 score_chi_sq = score_chi_sq_sum; 

 VariablesInModel = "w1 w2"; 

 output; 

 END; 

run; 

* COMPARE Calculations above to SELECTION=SCORE; 

PROC logistic DATA = work desc; 

MODEL y = w1 w2 / selection = score 

start=1 stop=2 best=2; 

title "From PROC LOGISTIC SELECTION=SCORE"; 

run; 

PROC PRINT DATA = score_chi_sq;  

var score_chi_sq VariablesInModel; 

title "From Calculation of Score Statistic and Covariance Matrix at Initial Values"; 

run; 

Table 9. From PROC LOGISTIC SELECTION=SCORE 

Score Chi-Square VariablesInModel 

1.8409 w1 

1.0660 w2 

2.9093 w1 w2 

 
Table 10. From calculation with Score Statistic and Covariance Matrix at Initial Values 

Score Chi-Square VariablesInModel 

1.8409 w1 

1.0660 w2 

2.9093 w1 w2 

 

                                                           
i Final3, 8/30/17 


