
1

MWSUG 2016 - Paper TT10
Performing Pattern Matching by Using Perl Regular Expressions

Arthur Li, City of Hope National Medical Center, Duarte, CA

ABSTRACT
SAS® provides many DATA step functions to search and extract patterns from a character string, such as SUBSTR,
SCAN, INDEX, TRANWRD, etc. Using these functions to perform pattern matching often requires utilizing many
function calls to match a character position. However, using the Perl Regular Expression (PRX) functions or routines
in the DATA step will improve pattern matching tasks by reducing the number of function calls and making the
program easier to maintain. In this talk, in addition to learning the syntax of Perl Regular Expressions, many real-
world applications will be demonstrated.

COMMON STEPS FOR USING PRX IN THE DATA STEP
A regular expression can be considered a separate type of language. It consists of a sequence of characters that is
used to define a search pattern. In SAS, there are many functions and CALL routines that use a modified version of
the Perl regular expression (PRX) to parse character strings. For the rest of the paper, PRX will be used instead of
the full name.

The most common steps in using PRX in the DATA step consist of the following:

1. Defining a regular expression pattern and compile it by using the PRXPARSE function
2. Use a PRX function or CALL routine to search or substitute text strings by using the defined pattern
3. (optional) More character manipulations are performed based on the result from step 2

For example, Program 1 starts with defining a regular expression pattern (/Zack/) that is enclosed in the
PRXPARSE function. In the second step, the PRXMATCH function is used to locate the defined pattern in the input
address. If the pattern is found, the PRXMATCH function would return the position of the pattern. A more detailed
discussion about both functions will be discussed later in this paper. In the third step, when the position is not
equaling to 0 (the match is found), the address in which the pattern is found will be printed in the SAS log.

Program 1:
data _null_;
 /*step 1*/
 if _N_=1 then patternID=prxparse("/Zack/");
 retain patternID;

input address $80.;
/*step 2*/
position = prxmatch(patternID, address);
/*step 3*/

 if position ^= 0 then put address=;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

SAS Log from Program1:
1376
1377 data _null_;
1378 if _N_=1 then patternID=prxparse("/Zack/");
1379 retain patternID;
1380 input address $80.;
1381 position = prxmatch(patternID, address);
1382 if position ^= 0 then put address=;
1383 datalines;

address=Zack Johnson, 153 First Str, Chapel Hill, NC27514
address=Dan Zack, 67891 64th st, Brea, CA
NOTE: DATA statement used (Total process time):

 real time 0.01 seconds
 cpu time 0.01 seconds

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

2

DEFINING A PERL REGULAR EXPRESSION
In SAS, the PRX pattern is defined and enclosed with a pair of forward slashes (/). To compile a PRX that can be
used for pattern matching, you need to use the PRXPARSE function:

regular-expression-id=PRXPARSE(perl-regular-expression)

The regular-expression-id is a numeric pattern identifier that is returned by the PRXPARSE function. This pattern
identifier number is used by other PRX functions or CALL routines to match patterns. If an error occurs in parsing the
regular expression, SAS returns a missing value.

COMPILING A REGULAR EXPRESSION
During the DATA step execution, the PRXPARSE function compiles the PRX and assigns a numeric pattern identifier
to the regular-expression-id at each DATA step iteration. However, if we have a large number of observations to
process, it will waste a lot of memory. A common programming practice is to generate the pattern identifier only once
when processing the first observation. For example, Program 1 uses the IF statement to assign the pattern identifier
to PATTERNID when _N_ equals 1.Since PATTERNID is used at every iteration of the DATA step, the RETAIN
statement is then used to retain its value.

Alternatively, you can use the PRX compile once option by placing an “o” option immediately after the closing slash,
just like in Program 2. Using the /o option will force SAS to compile the PRX pattern only once and create
PATTERNID at the first iteration only. This approach will also imply your code by avoiding the use of the RETAIN
statement.

Program 2:
data _null_;
 patternID=prxparse("/Zack/o");
 input address $80.;
 position = prxmatch(patternID, address);
 if position ^= 0 then put address=;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

A TUTORIAL FOR CREATING THE PERL REGULAR EXPRESSION (PRX)
In Program 1, the PRX pattern is /Zack/, which consists of only letters. In this pattern, each character is going to
match exactly one single character in the searched string. That is to say “Z” needs to match with “Z”, “a” needs to
match with “a”, etc. Instead of matching one character in the string, you can also write a PRX to match many
characters or even zero-width characters.

In addition to letters, a PRX can also contain digits, metacharacters, and special characters. Metacharacters are a set
of characters that means something different from its literal meaning. For example, in PRX, a period (.) not only
matches itself, but also matches any single character except for a newline character (\n).

Special characters are some ASCII characters that affect the structure and behavior of PRX. The most commonly
used special characters are a forward slash /, parentheses (), a vertical bar |, and a backslash \.

• forward slash /: The forward slash is used to enclose the PRX
• Parentheses (): Using parentheses creates logical groups of pattern characters and metacharacters.
• Vertical bar |: logical OR. For example, /Zack|ZACK/ can match either “Zack” or “ZACK”
• Black slash \:

o A backslash is mostly used as part of metacharacters. For example, the metacharacter \d matches on
numerical digits (0-9). It tells SAS that the “d” component is not a regular letter by placing a backslash in
front of the “d”

o Sometimes you may want to treat a special character as a regular text. In this situation, you need to
place a backslash in front of this special character. We often call the backslash an “escape” character

http://127.0.0.1:50273/help/lefunctionsref.hlp/p06i7305izsnvcn1ru9147suzyv5.htm#p1kgllmlqnk5uan16vfgj3u6swst
http://127.0.0.1:50273/help/lefunctionsref.hlp/p06i7305izsnvcn1ru9147suzyv5.htm#n1blwz99xt7snon1gtwlak6ab920
http://127.0.0.1:50273/help/lefunctionsref.hlp/p06i7305izsnvcn1ru9147suzyv5.htm#p1kgllmlqnk5uan16vfgj3u6swst
http://127.0.0.1:50273/help/lefunctionsref.hlp/p06i7305izsnvcn1ru9147suzyv5.htm#p1kgllmlqnk5uan16vfgj3u6swst

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

3

You can add these special characters, such as | or parentheses, to make your matching more flexible. For example:

• /(Z|z)ack/ will match either “Zack” or “zack”
• /(Z|z)ack|(J/j)ohn/ will match either “Zack” or “zack”, “John”, or “john”
• /\(Zack\)/ will match “(Zack)”

Both metacharacters and other special characters will be introduced gradually in the following subsection.

USING METACHARACTERS TO MATCH ONE CHARACTER IN THE SEARCHED STRING
The simple example of matching one character in the string is demonstrated in the previous program. Sometimes you
might to want to use one character in the PRX to match different characters in the string. In this situation, you need to
utilize metacharacters in the PDX. The most commonly used metacharacters are summarized in the Table 1.

Table 1: Examples of Meta characters

Metacharacter Description Example Matches
Wild card: . Matches any single character except for (\n) /D.g/ “Dog”, “D.g”, “D8g”, “D-g”, …
Word: \w Matches a-z, A-Z, 0-9 and underscore(_) /D\wg/ “Dog”, “Dag”, “D8g”, “D_g”, …
Non-word: \W Matches a value that \w doesn’t match,

except for \n.
/D\Wg/ “D-g”, “D!g”, “D.g”, “D g”,…

Whitespace: \s Matches one single white space, tab, or
newline (\n)

/D\sg/ “D g”

Non-whitespace: \S Matches a value that \s doesn’t match /D\Sg/ “Dog”, “D8g”, “D-g”, “D!g”,…
Digit: \d Matches on one numerical digit (0-9) /D\dg/ “D1g”, “D8g”, “D0g”,…
Non-digit: \D Matches on one non-numerical character /D\Dg/ “Dog”, “D_g”, “D-g”, “D!g”,…

USING A CHARACTER CLASS TO MATCH ONE CHARACTER IN THE SEARCHED STRING
We can create a character class by enclosing all the possible values within a pair of square brackets to match one
single character in the searched string. Here are the characteristics of character class that one needs to know:

• You can include metacharacter(s) in the character class
• When you include a special character in the character class, this special character will only be treated as a

regular text. No need to place a backslash in front. For example, (will match (, | will match |, etc
• You can use the range notation (-) with the character class. For example, [a-d] matches one character

between letter “a” and “d”. [3-7] matches one digit between 3 and 7.
• You can also exclude a list of characters by placing ^ at the beginning of the character class (except for \n)

Table 2: Examples of User-Defined Character Classes

Character class Description Example Matches
[io23] Matches “i”, “o”, “2”, or “3” /D[io23]g/ “Dig”, “Dog”, “D2g”, “D3g”
[1-5] Matches 1 to 5 /A[1-5]/ “A1”, “A2”, “A3”, “A4”, “A5”
[\da-c] Matches all digits and letters “a”, “b”,

and “c”
/D[\da-c]g/ “D0g”… “D9g”, “Dag”, “Dbg”,

“Dcg”
[^aeiou] Matches anything other than lower

case vowels
/D[^aeiou]g/ “D0g”, “Dbg”, “Dcg”, “Ddg”,

“D!g”, …

MATCHING ZERO, ONE, OR MORE CHARACTERS IN THE SEARCHED STRING
You can use a repetition modifier, which is also a type of special character, to match characters in the strings, and the
number of characters in the searched strings can be varied. The repetition modifiers only change the behavior of the
metacharacters or characters immediately preceding them. If you want to repeat the entire group of characters, you
can place them in parentheses. Examples of using repetition modifiers are shown in Table 3.

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

4

 Table 3: Examples of Using Repetition Modifiers
Repetition
Modifier

Description Example Matches

* Requests preceding character
to match 0 or more times.

/Art*/ “Art”, “Arthur”, “Artie”, …
/U\W*S\W*/ “US”, “U.S”, “U.S.-”, ..

+ Requests preceding character
to match 1 or more times.

/1st +St/ “1st St”, “1st St”, …
/(Hi)+/ “Hi”, “HiHiHi”, …

? Requests preceding character
to match 0 or 1 time.

/1\D?800\D?123\D?4567/ “18001234567”, “1-800-123-
4567”

{n} Requests preceding character
to match exactly n times.

/1-800-\d{3}-\d{4}/ “1800-123-4567”,“1-800-345-
8797”, …

{n,} Requests preceding character
to match at least n times.

/1-800-\d{1,}-\d{2,}/ “1800-123-4567” “1-800-12-
345”, …

{n,m} Requests preceding character
to match n to m times

/A\w{2,5}\d{1,2}/ “Art0”, “Arthur12”, …

MATCHING ZERO-WIDTH CHARACTERS IN THE SEARCHED STRING
In some situations, one might want to create a PRX that matches characters at the beginning or end of the string, or
at the beginning or end of a word. Table 4 summarizes the metacharacters that you can use to achieve such a task.

Table 4: Methacharacters to Locate Boundaries.

Metacharacter Description Example Matches
^ Matches beginning of a line or string /^Zack/ Matches “Zack Johnson”, not “A Zack”
$ Matches end of a line or string /\d{5}$/ CA 91768
\b Matches a word boundary; it separates

a \w character and a \W character
/Ave/b/ Matches “Ave” from “Ave,” not “Avenue”

 /\b9\d\d\b/ Matches “900” from “(900)”, not “19001”
\B Matches a non-word boundary; the

opposite of \b
/run\B/ Matches “run” from “running”, not “run,”

PRX FUNCTIONS AND CALL ROUTINES
In this section, the four PRX functions PRXMATCH, PRXCHANGE, PRXPOSN, and PRXPAREN) and four PRX call
routines (CALL PRXCHANGE, CALL PRXPOSN, CALL PRXSUBSTR, and CALL PRXNEXT) will be reviewed.

THE PRXMATCH FUNCTION
The PRXMATCH function is used to search for a pattern match. If the pattern is found, the function will return the
position at which the pattern is found. When there are multiple matches that are found, only the position of the first
match is returned. If there is no match, PRXMATCH returns a zero.

PRXMATCH(regular-expression-id | perl-regular-expression, source)

You can either use the regular-expression-id, which is a pattern identifier that is returned from the PRXPARSE
function, or a perl-regular-expression for the function. The source argument is used to specify a character constant,
variable, or expression that you want to search.

For example, Program 3 uses the PRXMATCH function to identify whether the input addresses contain zip codes. If a
zip code is found, then the address will be printed in the log.

Program 3:
data _null_;
 patternID=prxparse("/\w\w\s?\d{5}/o");
 input address $80.;
 position = prxmatch(patternID, address);
 if position ^= 0 then put address= position=;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

http://127.0.0.1:50273/help/lefunctionsref.hlp/n0bj9p4401w3n9n1gmv6tfshit9m.htm#p0zfpo1x4o4n0ln19yyfx1v7gspv
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0bj9p4401w3n9n1gmv6tfshit9m.htm#n1r5oq03e1qm74n148e3g3o6qjpe
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0bj9p4401w3n9n1gmv6tfshit9m.htm#p1fne62dqzmusxn1mrvueaut2xxu
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0bj9p4401w3n9n1gmv6tfshit9m.htm#p0zfpo1x4o4n0ln19yyfx1v7gspv

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

5

There are many ways to write the PRX pattern to locate the zip code. However, there are a couple of issues one
needs to consider when creating this PRX. First of all, the address number can also be a five digit number. Secondly,
there is no space between the state abbreviation and the zip code in the first input address. Thus, the PRX pattern in
Program 3 is written as /\w\w\s?\d{5}/:

• \w\w: Two words elements
• \s?: One or zero space
• \d{5}: 5 digits

THE CALL PRXSUBSTR ROUTINE
Similar to the PRXMATCH function, the CALL PRXSUBSTR routine not only can return the position of a matched
pattern, it can also return the length of the searched pattern.

CALL PRXSUBSTR(regular-expression-id, source, position <, length>);

The position argument is a numeric variable with a returned value that is the position in source where the pattern
begins. If no match is found, CALL PRXSUBSTR = returns zero. The optional length variable is a numeric variable
with a returned value that is the length of the substring that is matched by the pattern. If no match is found, CALL
PRXSUBSTR returns zero.

Program 4 illustrates an example to extract the zip code from the input address. The PRX pattern that is defined in
Program 3 is to match both the two-letter state abbreviation and the zip code. The PRXSUBSTR routine in Program 4
identifies the position and length of the pattern and stores them in the POSITION and LENGTH variable. If a pattern
is matched, both the state and the zip code will be extracted by using the SUBSTR function and the resulting values
will be stored in the STATE_ZIP variable. The second CALL PRXSUBSTR is also needed to identify the location and
length of the zip code from the newly-created STATE_ZIP variable by using the /\d{5}/ pattern. Finally, another
SUBSTR function is used to extract the zip code.

Program 4:
data ex4 (keep=address zip);
 patternID=prxparse("/\w\w\s?\d{5}/o");
 patternID2=prxparse("/\d{5}/o");
 input address $80.;
 call prxsubstr(patternID, address, position, length);
 if position ^= 0 then do;
 state_zip = substr(address, position, length);
 call prxsubstr(patternID2, state_zip, position_zip, length_zip);

 zip = substr(state_zip, position_zip, length_zip);
 end;
 else zip = " ";
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

proc print data=ex4;
run;

Listing Output from Program 4:

 The SAS System
 Obs address zip

 1 Zack Johnson, 153 First Str, Chapel Hill, NC27514 27514
 2 Dan Zack, 67891 64th st, Brea, CA
 3 Sally Johns, 4 Moritz Street, Duarte, CA 91010 91010

http://127.0.0.1:50273/help/lefunctionsref.hlp/n0nfo9duehtfixn1hgk9dum1rnty.htm#n0tq6wmj651fh0n1568cthctfjrz
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0nfo9duehtfixn1hgk9dum1rnty.htm#p0m1507p95z7z1n1unwn9akrplda
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0nfo9duehtfixn1hgk9dum1rnty.htm#n0ovn8sh8u6iwin1f0zy8mk3znnl
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0nfo9duehtfixn1hgk9dum1rnty.htm#p1kjgrtzk5nqnqn1lbz40gdhl8lb

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

6

THE CALL PRXPOSN ROUTINE
The method of extracting the zip code in Program 4 used two CALL PRXSUBSTR and two SUBSTR functions to
complete the task. Alternatively, you can also us the PROXPOSN routine to accomplish such a task.

The PROXPOSN routine requires an understanding of the capture buffer concept. Remember that we can use
parentheses to create a logical grouping within PRX. When a pair of parentheses are used within the PRX, a slot in
the memory buffer is created. Each slot can be referenced accordingly in the sequential order of the parenthesized
pair in the PRX. For example, if we place two parenthesis pairs in the pattern /(\w\w)\s?(\d{5})/, then the first
capture buffer would refer to \w\w, and the second one would refer to \d{5}.The CALL PRXPOSN is used to return
the starting position and length of a capture buffer.

CALL PRXPOSN(regular-expression-id, capture-buffer, start <, length>);

The first argument is regular-expression-id that is returned by the PRXPARSE function. The capture-buffer argument
is a numeric constant, variable, or expression with a value that locates the capture buffer from which to retrieve the
starting position and length. The start argument is a numeric variable with a returned value that is the position at
which the capture buffer is found. If the value of capture-buffer is not found, CALL PRXPOSN returns a zero value.
The optional length argument is a numeric variable with a returned value that is the pattern length of the previous
pattern match. If the pattern match is not found, CALL PRXPOSN returns a zero as well.

To use the CALL PRXPOSN, you need to use the PRXMATCH, PRXSUBSTR, PRXCHANGE, or PRXNEXT
functions (or routines) to return capture buffers. Program 5 uses PRXMATCH to locate the pattern in the input
address. If the pattern is found, then CALL PRXPOSN is used to identify the starting position and the length of the
second specified buffer, which is the zip code. Then the extracted starting position and the length of the zip code is
used in the SUBSTR function to create the ZIP variable.

Program 5:
data ex5 (keep=address zip);
 patternID=prxparse("/(\w\w)\s?(\d{5})/o");
 input address $80.;
 position = prxmatch(patternID, address);
 if position ^= 0 then do;
 call prxposn(patternID, 2, start, length);
 zip = substr(address, start, length);
 end;
 else zip = " ";
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

proc print data=ex5;
run;

Listing Output from Program 5

 The SAS System
 Obs address zip

 1 Zack Johnson, 153 First Str, Chapel Hill, NC27514 27514
 2 Dan Zack, 67891 64th st, Brea, CA
 3 Sally Johns, 4 Moritz Street, Duarte, CA 91010 91010

THE PRXPOSN FUNCTION
The PRXPOSN function is similar to the CALL PRXPOSN routine except that the PROXPOSN function returns the
capture buffer itself rather than the position and the length of the capture buffer.

PRXPOSN(regular-expression-id, capture-buffer, source)

http://127.0.0.1:50273/help/lefunctionsref.hlp/p1pnb2n4hhvw6hn112walxn4ppt9.htm#n1ubjx60td7pgpn10f1uohw7cfpi
http://127.0.0.1:50273/help/lefunctionsref.hlp/p1pnb2n4hhvw6hn112walxn4ppt9.htm#p1nwayal9ftwa9n1g27efvv0h1g5
http://127.0.0.1:50273/help/lefunctionsref.hlp/p1pnb2n4hhvw6hn112walxn4ppt9.htm#p0hjzwmbmaj8okn1i1jqtcs37dki
http://127.0.0.1:50273/help/lefunctionsref.hlp/p1pnb2n4hhvw6hn112walxn4ppt9.htm#p0kvze3g3jvvcon1awq7ufpsnkug
http://127.0.0.1:50273/help/lefunctionsref.hlp/p1pnb2n4hhvw6hn112walxn4ppt9.htm#n1ubjx60td7pgpn10f1uohw7cfpi
http://127.0.0.1:50273/help/lefunctionsref.hlp/p1pnb2n4hhvw6hn112walxn4ppt9.htm#p1nwayal9ftwa9n1g27efvv0h1g5
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1lru1b4uoogqvn1ig446q4c6muu.htm#p0u8hh5emxobytn1aty5tgjr2k4q
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1lru1b4uoogqvn1ig446q4c6muu.htm#p0j6ojmlk5ztmln12amynw410hjf
http://127.0.0.1:50273/help/lefunctionsref.hlp/p06i7305izsnvcn1ru9147suzyv5.htm#p1kgllmlqnk5uan16vfgj3u6swst

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

7

The source argument is used to specify the text from which to extract capture buffers. Similar to CALL PRXPOSN,
the PRXPOSN function uses PRXMATCH, PRXSUBSTR, PRXCHANGE, or PRXNEXT to return capture buffers.
Program 6 is a modified version of Program 5 by using the PRXPOSN function.

Program 6:
data ex6 (keep=address zip);
 patternID=prxparse("/(\w\w)\s?(\d{5})/o");
 input address $80.;
 position = prxmatch(patternID, address);
 if position ^= 0 then do;
 zip = prxposn(patternID, 2, address);
 end;
 else zip = " ";
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

THE PRXCHANGE FUNCTION
The PRXCHANGE function can be used to perform a replacement for a matched pattern.

PRXCHANGE(perl-regular-expression | regular-expression-id, times, source)

You can use either a PRX or a regular-expression-id that is returned from the PRXPARSE function as the first
argument. The times argument is a numeric constant, variable, or expression that specifies the number of times to
search for a match and replace a matching pattern. If you use -1 for the times argument, then matching patterns
continue to be replaced until the end of source is reached. The source argument is used to specify a character
constant, variable, or expression that you would like to search.

The situation for using the PRXCHANGE can apply to applications of data standardization. For example, the
addresses that we entered in the previous program have different ways of writing the word “Street.” Both first and
second records use the abbreviations (Str and st). If we want to replace the abbreviation with the word “Street”, we
can use the PRXCHANGE function.

When writing a PRX for the PRXCHANGE function, you need to write two components: the first component is the
pattern that you would like to search, and the second component is the pattern that you will use to replace. These two
components need to be separated by a slash (/). Furthermore, a substitution operator (s) needs to be placed in front
of the expression. Program 7 illustrates how to replace the street abbreviation with the full word “Street.”

Program 7:
data _null_;
 input address $80.;
 new_address=prxchange("s/\s+[sS]t(reet|r)?/ Street/o", -1, address);
 put new_address=;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

SAS Log from Program7:
2047 data _null_;
2048 input address $80.;
2049 new_address=prxchange("s/\s+[sS]t(reet|r)?/ Street/o", -1, address);
2050 put new_address=;
2051 datalines;

new_address=Zack Johnson, 153 First Street, Chapel Hill, NC27514
new_address=Dan Zack, 67891 64th Street, Brea, CA
new_address=Sally Johns, 4 Moritz Street, Duarte, CA 91010

http://127.0.0.1:50273/help/lefunctionsref.hlp/n0r8h2fa8djqf1n1cnenrvm573br.htm#n13cu0uqbdk7qxn1x8d7cnf5kv2k
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0r8h2fa8djqf1n1cnenrvm573br.htm#p09dx2qs6yt98zn1koqme342izix
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0r8h2fa8djqf1n1cnenrvm573br.htm#n1gqsymypkzuhcn19bwsqcsv5q6z
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0r8h2fa8djqf1n1cnenrvm573br.htm#n16tufg0350vuyn1jgj1bfbpmgl9
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0r8h2fa8djqf1n1cnenrvm573br.htm#p09dx2qs6yt98zn1koqme342izix

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

8

NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

You can reference a capture buffer by using its reference number after a dollar sign ($) in the PDX. Program 8 shows
how to switch the first and last names and separate them by a comma. The first component of the PRX
^(\w\w+)\s+(\w\w+), is used to identify the names of the address. The second component, $2, $1, is to arrange
the order of the first and second buffer and separate them by a comma.

Program 8:
data _null_;
 input address $80.;
 new_address=prxchange("s/^(\w\w+)\s+(\w\w+)/$2, $1/o", -1, address);
 new_address1=prxchange("s/\s+[sS]t(reet|r)?/ Street/o", -1, new_address);
 put new_address1=;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

SAS Log from Program8:
2056 data _null_;
2057 input address $80.;
2058 new_address=prxchange("s/^(\w\w+)\s+(\w\w+)/$2, $1/o", -1, address);
2059 new_address1=prxchange("s/\s+[sS]t(reet|r)?/ Street/o", -1, new_address);
2060 put new_address1=;
2061 datalines;

new_address1=Johnson, Zack, 153 First Street, Chapel Hill, NC27514
new_address1=Zack, Dan, 67891 64th Street, Brea, CA
new_address1=Johns, Sally, 4 Moritz Street, Duarte, CA 91010
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

THE CALL PRXCHANGE ROUTINE
Similar to the PRXCHANGE function, the CALL PRXCHANGE routine can also perform a replacement for matched
patterns.

CALL PRXCHANGE(regular-expression-id, times, old-string <, new-string <, result-length
<, truncation-value <, number-of-changes> > > >);

Unlike the PRXCHANGE function, the first argument can only be a regular-expression-id that is returned from the
PRXPARSE function. The times argument is a numeric constant, variable, or expression that specifies the number of
times to search for a match and replace a matching pattern. If you use -1 as the value times, then matching patterns
continue to be replaced until the end of source is reached. The old-string argument is used to specify the character
expression on which to perform a search and replace. The optional new-string argument is used to specify a variable
in which to store the replacement result. If the new-string argument is not specified, the replacement changes will be
made to the old-string. The optional result-length is a numeric variable that contains the value of the number of
characters that are copied to the result. The optional truncation-value is also a numeric variable with a value equaling
1 when the entire replacement result is longer than the length of the new-string; otherwise, the value will be set to 0.
The last optional argument number-of-changes is a numeric variable that records the number of replacements that
were made.

Similar to Program 8, Program 9 switches the order of first and last names by using CALL PRXCHANGE. After the
replacement, the modified values are stored in the new variable NEW_ADDRESS.

http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n1nd9x9s7dpcaqn1tmaoke5w0qqz
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n0b8gfebn8rqaxn1uj787d7ixgqf
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#p19xg56j4k68djn1bjt92meljbo5
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n0ng27vaibjhmon1cq4gx5bf6kqh
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n023w6mzwvpb6jn1xdmuz5xr7ukf
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n08hwc9r0raybhn1p1q2xeml0f42
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n0km4l9c929eion1q7cr7w1eid9v
http://127.0.0.1:50273/help/lefunctionsref.hlp/n0frf578x6vno8n1w26b6qn2wlt5.htm#n1nd9x9s7dpcaqn1tmaoke5w0qqz

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

9

Program 9:
data _null_;
 input address $80.;
 length new_address $80;
 patternID=prxparse("s/^(\w\w+)\s+(\w\w+)/$2, $1/o");
 call prxchange(patternID, -1, address, new_address);
 put new_address=;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514
Dan Zack, 67891 64th st, Brea, CA
Sally Johns, 4 Moritz Street, Duarte, CA 91010
;

SAS Log from Program9:
2067 data _null_;
2068 input address $80.;
2069 length new_address $80;
2070 patternID=prxparse("s/^(\w\w+)\s+(\w\w+)/$2, $1/o");
2071 call prxchange(patternID, -1, address, new_address);
2072 put new_address=;
2073 datalines;

new_address=Johnson, Zack, 153 First Str, Chapel Hill, NC27514
new_address=Zack, Dan, 67891 64th st, Brea, CA
new_address=Johns, Sally, 4 Moritz Street, Duarte, CA 91010
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

THE PRXPAREN FUNCTION
The PRXPAREN function is used to return a value of the largest capture buffer that contains the data of the first
match. You need to use the PRXSUBSTR, PRXMATCH, PRXNEXT, or PRXCHANGE functions (routines) with the
PRXPAREN together to obtain the accurate result.

PRXPAREN(regular-expression-id)

The only requirement for the PRXPAREN function is the regular-expression-id, which needs to be returned by the
PRXPARSE function.

Program 10 illustrates the use of the PRXPAREN function. Notice that there are four groupings in the PRX. The outer
parentheses that enclosed ((one)|(two)|(three)) is referenced as 1, then (one) is referenced as 2, (two)
referenced as 3, and(three)is referenced as 4. Once a match is found, the PRXMATCH function returns the value
of the largest capture buffer. For example, the first line of the input data contains “one”, “two”, and “three,” and “one”
is the first matched word in the pattern. Although “one” is in both buffer 1 and buffer 2, only 2 is returned by the
PRXPAREN function.

Program 10:
data ex10 (keep=numbers which);
 input numbers $15.;
 patternID=prxparse("/((one)|(two)|(three))/o");
 position = prxmatch (patternID, numbers);
 if position then do;
 which=prxparen(patternID);
 output;

end;
datalines;

one two three
two XXX YYY
XXX YYY three
four five six
;

http://127.0.0.1:50273/help/lefunctionsref.hlp/p1kh2qqybgx44gn12who44jdxifs.htm#n0eb8f7ll9suw2n1jr1tx54jyqtt
http://127.0.0.1:50273/help/lefunctionsref.hlp/p1kh2qqybgx44gn12who44jdxifs.htm#n0eb8f7ll9suw2n1jr1tx54jyqtt

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

10

proc print data=ex10;
run;

Listing Output from Program 10:
 The SAS System

 Obs numbers which

 1 one two three 2
 2 two XXX YYY 3
 3 XXX YYY three 4

A useful application is to use the PRXPAREN function to find the largest capture-buffer number first. Then pass this
number to the CALL PRXPOSN routine to extract the position and length of the desired match.

For example, suppose that a telephone number is entered by either using parentheses to enclose the area code and
using a dash to separate the rest of the seven digits or all the numbers are separated by two dashes. Thus, there are
two ways of writing the matched patterns. At the beginning of Program 11, both patterns were entered as strings,
INPUT1 and INPUT2. Then the final pattern is created by combining INPUT1 and INPUT2 by using the concatenation
operator (||) along with the OR (|) operator. Notice that the final pattern will contain two groupings with one
corresponding to each input pattern. The purpose of this program is to identify whether the input address with the
phone numbers contains the area code from Orange County (Area codes: 949 or 714). Once the pattern is matched
(from the PRXMATCH function), the PRXPAREN function returns the buffer number that identifies the match. Then
this number is passed to the CALL PRXPOSN routine to extract the position and length of the area code. In the final
step, if an OC area code is matched with the extracted area code, the address will be printed in the log.

Program 11:
data _null_;
 input1 = "\(([2-9]\d\d)\) ?[2-9]\d\d-\d{4}";
 input2 = "([2-9]\d\d)-[2-9]\d\d-\d{4}";
 both_input = "/(" || input1 || ")|(" || input2 || ")/o";
 patternID = prxparse(both_input);
 OC_ID = prxparse("/714|949/o");

 length areacode $ 3;
 input address $80.;

 if prxmatch(patternID, address) then do;
 which_format = prxparen(patternID);
 call prxposn(patternID, which_format, pos, len);
 areacode = substr(address, pos, len);
 if prxmatch(OC_ID, areacode) then put "In OC:" address=;
 end;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514 (828) 345-2345
Dan Zack, 67891 64th st, Brea, CA 714-320-1000
Sally Johns, 4 Moritz Street, Duarte, CA 91010 310-232-0001
Eric Johnson, 112 Dublin Ln, Irvine, CA (949) 230-3209
;

SAS Log from Program11:
2797 data _null_;
2798 input1 = "\(([2-9]\d\d)\) ?[2-9]\d\d-\d{4}";
2799 input2 = "([2-9]\d\d)-[2-9]\d\d-\d{4}";
2800 both_input = "/(" || input1 || ")|(" || input2 || ")/o";
2801 patternID = prxparse(both_input);
2802 OC_ID = prxparse("/714|949/o");
2803
2804 length areacode $ 3;
2805 input address $80.;
2806

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

11

2807 if prxmatch(patternID, address) then do;
2808 which_format = prxparen(patternID);
2809 call prxposn(patternID, which_format, pos, len);
2810 areacode = substr(address, pos, len);
2811 if prxmatch(OC_ID, areacode) then put "In OC:" address=;
2812 end;
2813 datalines;

In OC:address=Dan Zack, 67891 64th st, Brea, CA 714-320-1000
In OC:address=Eric Johnson, 112 Dublin Ln, Irvine, CA (949) 230-3209
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

THE CALL PRXNEXT ROUTINE
The CALL PRXNEXT routine is used to return the position and length of a substring that matches a PRX pattern, and
iterates over multiple matches within one string.

CALL PRXNEXT(regular-expression-id, start, stop, source, position, length);

The start argument is a numeric variable that specifies the position at which to start the pattern matching in the
source argument. The stop is a numeric constant, variable, or expression that specifies the last character to use in
source. The source argument is to specify a character constant, variable, or expression that you want to search. The
position argument is a numeric variable with a returned value that is the position in source at which the pattern
begins. Lastly, the length argument is a numeric variable with a returned value that is the length of the string that is
matched by the pattern.

Program 12 illustrates an example of using the PRXNEXT routine to extract all the numeric values from the input
addresses. The START and STOP arguments were initialized to 1 and the length of the input address respectively.
The first PRXNEXT routine is used to extract the starting position and length of the first match. Then an iterative DO
WHILE loop is used to continue extracting the match. Within the loop, the SUBSTR function is used to extract the
numbers based on the extracted position and length.

Program 12:
data ex12 (keep=address num1-num5);
 patternID=prxparse("/\d+/o");
 input address $80.;
 start = 1;
 stop = length(address);
 call prxnext(patternID, start, stop, address, position, length);
 array num[5] $;

do i = 1 to 5 while (position > 0);
 num[i]= substr(address, position, length);

 call prxnext(patternID, start, stop, address, position, length);
 end;
 datalines;
Zack Johnson, 153 First Str, Chapel Hill, NC27514 (828) 345-2345
Dan Zack, 67891 64th st, Brea, CA 714-320-1000
Sally Johns, 4 Moritz Street, Duarte, CA 91010 310-232-0001
Eric Johnson, 112 Dublin Ln, Irvine, CA (949) 230-3209
;
proc print data=ex12;
run;

Listing Output from Program 12
 Listing of Data Set FIND_NUM
Obs address num1 num2 num3 num4 num5

 1 Zack Johnson, 153 First Str, Chapel Hill, NC27514 (828) 345-2345 153 27514 828 345 2345
 2 Dan Zack, 67891 64th st, Brea, CA 714-320-1000 67891 64 714 320 1000
 3 Sally Johns, 4 Moritz Street, Duarte, CA 91010 310-232-0001 4 91010 310 232 0001
 4 Eric Johnson, 112 Dublin Ln, Irvine, CA (949) 230-3209 112 949 230 3209

http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#p0o8ohqk7su2zrn1gd0mloqb9dss
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#p08ajmsn8rkofon1v872sl3glnhw
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#p0wrght0qx3p5jn1dpv7eapohej2
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#n10wc4juk9opitn1shggnx38h3rz
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#n1nh05i8w3ha2nn12kh3w8e6fvlt
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#n12nzakjqmuxm6n1bwdyavl83hjx
http://127.0.0.1:50273/help/lefunctionsref.hlp/n1obc9u7z3225mn1npwnassehff0.htm#n1nh05i8w3ha2nn12kh3w8e6fvlt

<Performing Pattern Matching by Using Perl Regular Expressions>, continued

12

CONCLUSION
In this paper, only a small proportion of the syntax for writing PRX is introduced. However, based on the examples in
this paper, you have probably started to realize how powerful the PRX can be, especially when you start to work on
large and un-cleaned data. Thoroughly knowing PRX might become an essential skill for being a successful
programmer.

REFERENCES
Cody, Ron. (2004). “An Introduction to Perl Regular Expressions in SAS 9,” in Proceedingsof SUGI29, Montréal,

Canana
SAS Institute. (2010). SAS® 9.4 Functions and CALL Routines Reference. Cary, NC: SAS Institute.
Windham, K. Matthew. (2014). Introduction to Regular Expressions in SAS ®. Cary, NC: SAS Institute.

CONTACT INFORMATION

Arthur X. Li
City of Hope National Medical Center
Division of Information Science
1500 East Duarte Road
Duarte, CA 91010 - 3000
Work Phone: (626) 256-4673 ext. 65121
Fax: (626) 471-7106
E-mail: arthurli@coh.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

