
MWSUG 2016 - Paper 36

Your Local Fire Engine Has an Apparatus Inventory Sheet and So Should

Your Software: Automatically Generating Software Use and Reuse

Libraries and Catalogs from Standardized SAS® Code

Troy Martin Hughes

ABSTRACT

Fire and rescue services are required to maintain inventory sheets that describe the specific tools, devices, and other

equipment located on each emergency vehicle. From the location of fire extinguishers to the make, model, and

location of power tools, inventory sheets ensure that firefighters and rescue personnel know exactly where to find

equipment during an emergency, when restocking an apparatus, or when auditing an apparatus’ inventory. At the

department level, inventory sheets can also facilitate immediate identification of equipment in the event of a product

recall or the need to upgrade to newer equipment. Software should be similarly monitored within a production

environment, first and foremost to describe and organize code modules—often SAS® macros—so they can be

discovered and located when needed. When code is reused throughout an organization, a reuse library and reuse

catalog should be established that demonstrate where reuse occurs and to ensure that only the most recent, tested,

validated version of code modules are reused. This text introduces SAS software that automatically parses a

directory structure, parses all SAS program files therein (including SAS programs and SAS Enterprise Guide project

files), and automatically builds reuse catalogs from standardized comments within code. Reuse libraries and reuse

catalogs not only encourage code reuse but also facilitate backward compatibility when modules must be modified

because all implementations of specific modules are identified and tracked.

INTRODUCTION

Software reusability is defined as the “degree to which an asset can be used in more than one system, or in building

other assets.”
i
 In this text, assets represent only software programs or modules (such as SAS macros) that can be

reused in subsequent software, but in a broader sense, assets can also refer to software documentation, risk

templates, quality controls, and a host of other software-related items. Two knowledge management artifacts

commonly implemented to document and manage assets and to facilitate reusability include the reuse library and the

reuse catalog. Together, these tools facilitate documentation, organization, search, and retrieval of software so that

developers can locate, understand, and implement code more effectively and efficiently. In many environments, these

artifacts additionally include information about software risk so that SAS practitioners can understand the

performance and relative quality of modules as well as the intended usage. Armed with this information, SAS

practitioners can better assess whether code can be reused in its entirety, whether code must be repurposed to meet

additional business needs, or whether code should be redesigned or developed from scratch.

Software reusability is thwarted when software is not adequately documented and organized, and unfortunately

common in many software development environments, documenting code may be considered an afterthought rather

than a necessity. In essence, software documentation is sometimes conceptualized as a distinct phase of the

software development life cycle (SDLC) that follows software release, and which may juxtapose software operations

and maintenance (O&M) activities. To the contrary, a widely held software development best practice is to infuse

required documentation activities—however lean or fat they may be—into the software development phase, and

possibly as early as software design. In doing so, whether operating in Waterfall or Agile development environments,

this ensures that necessary documentation will be appropriately prioritized and provided sufficient resources (i.e.,

personnel) to be successful.

The automation of documentation can be a tremendous benefit to software development because developers can

produce useful documents with little effort and, as demonstrated in this text, in some cases only through comments

maintained within software. By standardizing the type and content of comments that appear in SAS code, software

can be parsed automatically, all comments extracted and organized, and successful external documentation created

through SAS reporting functionality. In addition to parsing comments, SAS functionality can also be parsed. For

example, the %MACRO statement always denotes the definition of a SAS macro, so the definition of all SAS macros

can be collected, parsed, and organized with ease.

While numerous SAS white papers demonstrate both the successful standardization and parsing of comments within

SAS program files to produce documentation automatically, a common obstacle within environments using SAS

Enterprise Guide has been the disparity in file formats. SAS program files (e.g., those with the .SAS extension that

are created by the SAS Display Manager) are ASCII text files that are readily ingested into SAS data sets for

manipulation and analysis, whereas the SAS Enterprise Guide files (e.g., project files with the .EGP extension) are

compressed, zipped files that must be extracted and interrogated before internal code can be extracted and

analyzed. With the introduction of the ZIP access method within the FILENAME statement in SAS 9.4, this hurdle has

been overcome, and all-SAS solutions can now iteratively read both program and project files (i.e., .SAS and .EGP

files) to support automated document generation or other activities.

This text introduces the SCAVENGER macro that iteratively generates a list of all SAS program and project files

within specified folders, extracts SAS programs from all project files, and parses all programs automatically to

produce documentation that supports software organization and documentation. Once SCAVENGER has aggregated

the collective information about a SAS environment into SAS data sets, separate software demonstrates how these

data can be further parsed automatically to create reuse catalogs. With this pain-free documenting in place, SAS

environments can dramatically improve their software reusability and reuse posture, further driving more efficient

software development. And, because SCAVENGER itself is coded through modular software design that facilitates

flexibility and reuse, other potential uses of SCAVENGER are also introduced and discussed.

REUSE LIBRARY

A reuse library is defined as “a classified collection of assets that allows searching, browsing, and extracting.”
ii
 Again,

within this text, because asset references only software, a reuse library is nothing more than an organized software

repository. Thus, reuse libraries can comprise a simple Windows directory structure on a shared network,

implementation of the SAS Autocall Macro Facility, a SharePoint site, even more complex knowledge management

software that provides software versioning, or any environment or tool along this continuum. To be effective,

however, developers must be able to use a reuse library efficiently to research what software solutions have already

been developed. When reuse libraries are poorly maintained, rogue practices develop and SAS practitioners are

more likely to maintain individual rather than shared code bases because they cannot successfully locate software

when needed.

In addition to promoting efficiency and effectiveness, reuse libraries also must be secure. Whenever developers are

forced to check their code into a single, shared repository, the chance for corruption or overwriting increases, so SAS

practitioners accustomed to developing in stovepipes will naturally be wary of ceding some control over their babies.

To facilitate security of and faith in reuse libraries, shared code repositories typically espouse security measures such

as version control or backups to guard against unwanted or untoward software modifications, and possibly user

auditing and permissions to guard against unintended or malicious modifications. Only with shared code repositories

can developers be sure they are using (or modifying) the most accurate, current, or complete version of specific

software. Moreover, this level of coordination can make the software development process much more efficient, as a

single code base can be tested, validated, and approved rather than wasting effort on testing various versions of

similar software.

Reuse libraries are a critical first step toward organization of a collective software base for an environment, enabling

basic search functionality to locate software modules. However, through the synthesis and analysis of collective

software into a refined artifact, additional information and ease of use can be gained. Thus, reuse catalogs can be

conceptualized as the metadata repositories that describe reuse libraries. For example, to determine the number of

and ways in which a specific SAS macro is reutilized throughout an organization, a developer could conduct a global

search of his network (i.e., the reuse library) to produce a disorganized array of information. Where reuse catalogs

are incorporated, the developer would be able to access this information directly. Other benefits can include summary

metadata such as program file cryptographic checksums, line counts, or versioning information that can be calculated

automatically and added to reuse catalogs to promote greater understanding of and security in software modules.

REUSE CATALOG

A reuse catalog is defined as “a set of descriptions of assets with a reference or pointer to where the assets are

actually.”
iii

 Reuse catalogs rely on the underlying structure and contents of reuse libraries but facilitate greater

exploration and retrieval through additional metadata and information. Typical information found within a reuse

catalog might include:

 software path and file name

 process, module, or task name (e.g., in SAS this is commonly a macro name)

 software description

 link to program file

 creation time-date stamp

 last update time-date stamp

 additional versioning information

 file size

 lines of code

 cryptographic checksum (used to validate program file integrity and constancy)

 risk (including known threats, software vulnerabilities, and technical debt)

 program prerequisites or dependencies (including other software that use/reuse the program)

 program inputs or outputs

The SCAVENGER program is capable of parsing most of these metadata and generates a user-friendly HTML report

that promotes readability. This strategy benefits SAS practitioners who otherwise would be forced to sift through code

manually and who thus would be less likely to reuse code already produced within their environment.

Moreover, because SCAVENGER iteratively parses all code within an infrastructure, subsequent reuses of software

are cataloged. For example, the FINDVARS macro might be created and used to generate a space-delimited list of all

variables found within a parameterized data set. Due to its flexibility and generalizability, FINDVARS would be an

ideal candidate for inclusion into a reuse library, at which point other developers could begin to utilize in their

respective software products. However, if FINDVARS needed to be modified—to increase functionality, improve

performance, or reduce vulnerabilities—developers would have to check all individual uses of FINDVARS to ensure

the proposed modifications were backward compatible to current usage and did not break software products using it.

These types of audits are facilitated by reuse catalogs that depict all software using specific software modules.

Another tremendous advantage of reuse catalogs is their ability to drive the reuse-versus-redevelop decision, in

which developers are often faced with the decision of whether to use (or cannibalize) existing code to build a software

product or to redesign and redevelop from scratch. When inline comments within SAS programs include information

about software capabilities, use cases, best practices, and vulnerabilities, developers are able to make more

informed decisions about whether, how, and to what degree to reuse existing software modules in future software

products. These metadata can be included within SAS comments and easily parsed by standardized commenting

and automatic parsing thereof.

CONCLUSION

The SCAVENGER program expands the ability to interrogate SAS program files to include SAS Enterprise Guide

project files and the program files that reside within them. With this capability, SCAVENGER iteratively and efficiently

parses the collective body of shared SAS programs within an environment to produce a SAS data set that includes

metadata and information for all SAS programs. This text demonstrated one remarkable use of SCAVENGER—to

create software reuse catalogs that can be used to facilitate and measure software reuse within an organization.

REFERENCES

i
 ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE)—System and software quality models. Geneva, Switzerland: International Organization for
Standardization and Institute of Electrical and Electronics Engineers.

ii
 IEEE Std 1517-2010. IEEE standard for information technology—System and software life cycle processes—Reuse

processes. Geneva, Switzerland: Institute of Electrical and Electronics Engineers.

iii
 Id.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes

E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A. SCAVENGER SOFTWARE
insert code here

APPENDIX B. REUSE CATALOG CODE
insert code here

