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Abstract  
An iterative Bezier curve cubic spline algorithm is used to approximate a hysteretic loop for a 
pharmacodynamics(PD) dose/response curve. The accuracy of the resulting vector-valued function is 
tested using graphs produced through PROC SGPLOT. The centroid of each curve is found through 
PROC IML. Euclidean distances from each centroid to points on the respective polygonal curves 
(experimental and model) produce several distance vectors for each curve. A sequence of these distance 
vectors is plotted as a Pseudo Time Series for both the original experimental and the adapted model 
curves. The graphical similarity of these curves is examined using the Dynamic Time Warping (DTW) 
algorithm in PROC SIMILARITY. The information produced from the DTW process gives a numerical 
measure of how well the model follows the experimental curve. The parametric equations from this a 
posteriori model can form a composition with a time-based function to produce the final PK/PD effect 
versus time equations. 

Introduction  
Hysteresis loops occur from the time lag of a response (effect) behind the instigator of the “effect”. In 
dose response curves the two typical reasons for the lag are (1) a dearth of drug receptor sites and (2) 
slowed drug-receptor site interaction. The aforementioned reasons produce counter-clockwise hysteresis 
loop, in which plasma drug concentration precedes then lags the observed effect with time.  
An alternative hysteretic curve process would include any situation in which the value of one variable 
depends on whether the other variable is increasing or decreasing. A clockwise hysteresis path occurs 
with the development of tolerance to a drug. 
 
Hysteresis loops are graphical traces occasionally encountered in the analysis of pharmacokinetic and 
pharmacodynamic relationships. Hysteretic curves often indicate more complex drug-receptor interaction 
and/or the presence of confounding drug metabolites. They are typically relations and not functions, 
forcing a different modeling process that might involve systems of equations. 

 

Figure 1.  Clockwise and Counter-clockwise Hysteresis loops. 

a. b.  
 
 

 
 
 

Figure 1. (a) counterclockwise movement of a dose response curve where the drug 

and receptor interactions are limited. (b) clockwise movement where drug tolerance 
has increased. 

 
Pharmacokinetics (PK) measure effect versus time, while pharmacodynamics (PD) measure 
concentration versus effect. Ultimately a PK/PD curve will measure effect versus time (Fig. 2).  
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Figure 2. The combination of the dimensions of the pharmacokinetics and pharmacodynamics in 

pharmaceutical dose-response studies. 

 
The present paper will describe an a posteriori model of the effect versus drug concentration hysteresis 
loop using a Bezier type curve adaptation that will produce two parametric equations of the form x( ) and 
y( ), with   as a parametric placeholder for a function of time. That is, we have a composition where   

= f(t). Figure 3. shows how a time component may be displayed along with the planar hysteresis loop in 
an experimental setting. 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
Figure 3. Hourly assay points superimposed on a typical experimental hysteresis plot. The dots represent 

time values where blood assays are taken along the concentration effect curve. Note: Time is often not in 

linear relation with the unit movement along the curve. Time and distance along the curve may be 
logarithmically or exponentially related.  

There are many researchers who have developed a priori models for hysteretic systems. The equations 
for these systems are very briefly described in Appendix B. 
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The outline of the a posteriori process of the current paper follows: 
1. A cubic Bezier spline curve is produced using an iterative process that determines the distances of 

1/3 and 2/3 the measure along the complete curve path. Control points for the model curve are 
derived from points on the experimental curve that might be obtained through pharmaceutical 
research. 

2. Once the centroid of each of the two curves is found, the Euclidean distance from the center of mass 
to each of the sequential points on the curve is found. The included Bezier Curve analysis insures 
that the starting and ending points (identified as anchor points) for the two curves are automatically 
the same.  

3. A pseudo time series for each curve is determined using the Euclidean distance plotted against an 
integer n-value starting at 1 and ending with the nth point on each polygon. Here, the (n+1)st point is 
equivalent to the 1st point. 

4. The pseudo time series are evaluated by PROC ARIMA and checked for ARIMA model and 
stationarity. 

5. The pseudo time series values are examined in PROC SIMILARITY using Dynamic Time Warping to 
give a measure of the similarity of the two curves. A small difference found through DTW is taken as 
a confirmation that the curves are similar and that the adaptive curve might be used to model the 
experimental curve. 

Modeling the Dose-Response Hysteretic Loop  
The shape of the hysteretic loop in the PK/PD dose-response curve is mindful of a cubic spline curve, 
with the cubic Bezier curve being a special form of the spline curve. A spline is a series of connected 
polygonal segments. The segments can be linear, quadratic, cubic, or even higher order polynomials. As 
we produce our model curve, we derive a set of parametric-form vector-valued functions using a set of 
four control points (Po, P1, P2, P3) that produce the cubic Bezier polynomial. The cubic Bezier curve is 
given by is found from the binomial expansion of Equation 1.  

Equation 1: 

Cubic Bezier (3, ) = 
3

3

0

( ) (1 )k k

k

k

P   



  

using the parameter, ,  and its complement (1- ) since [0,1]   .  The control points help form the 

curve, with Po, P3   as anchor points which are on the Bezier curve (black) and P1, P2 are control points not 
on the curve. The solid back dots are auxiliary control points with point A on the Bezier curve.  

 

 

 

 
 
 
 
 
 

 
Since points Po, P3   are already known, we need find points P1, P2 to produce the equation for the model 
curve.  Po, P3   will be the same for the experimental and the adapted model curve. In order to get the best 

Po 

P1 

P2 

P3 

A 

Figure 4.The four control points of the cubic 

Bezier spline w ith interior tangent at point A. 
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fit for the model curve, we must obtain two points from the original curve for the dose-response data. 
Measuring (counter-clockwise) along the curve, it is common to select a point one-third of the distance 
from the anchor point, Po, to the terminal anchor point, P3 and another point at two-thirds of the distance.  
 
In terms of a matrix equation, Equation 1 becomes (now identified as Equation 2):    

Equation 2: 

( )   B T C P  

 
where B contains the two parametric equations, x( ) and y( ), that will trace the curve on the two-

dimensional plane. T is the   power matrix, C is the coefficient matrix and P is the matrix of control 
points. 
In the expanded form, the matrices become: 
 

Equation 3: 

1 1 12 3

2 2 2

3 3 3

( , )1 0 0 0

( , )( ) 3 3 0 0
1

( , )( ) 3 6 3 0

( , )1 3 3 1

o o oP x y

P x yx

P x yy

P x y


  



  
  

              
  

    

 

We need four data values from the experimental original curve and determine control point information 
that will interpolate our data for a model. We can state that we have four values Q0, Q1, Q2 and Q3, from 
our experimental curve and that we want to determine control values so that our Bezier function will pass 
through these data points. To force interpolation, it is only necessary to set the definition of the control 
point values as follows: 

Equation 4 

27 0 0 0

8 12 6 11

1 6 12 827

0 0 0 27

 
 
  
 
 
 

Q P  

The above formulas were derived by evaluating the formal representation of the cubic Bezier function 
at path distance = 0, 1/3, 2/3 and 1. The four equations produce the x-values and y-values of the control 
points we seek. 

The Bezier function P(n) determined by these control values Q ( ) will have the interpolation property we 
desired, namely, that: 

Equation 5 

Q (0) = P0 
Q (1/3) = P1 
Q (2/3) = P2 
Q (1) = P3 

The relationship we derived above may be written as that found in Equation 6. This relationship is found 
through the inverse of the coefficient matrix: 
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Equation 6    

6 0 0 0

5 18 9 21

2 9 18 56

0 0 0 6

 
 
 
  
  
 
 

P Q  

The fact that each row contains positive entries that add up to 1.0 is an illustration of the fact that the data 

values are convex combinations of the control values. 

The value from the experimentally derived curve are as follows for twenty-one points identified. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1 Points Attained from Experimental Curve . Numbered points (in shaded orange columns) w ith x and y 

values. 

 
An in-depth examination of the curve’s arc gives Q0 (50,58); Q1 (distance = 1/3) (220,81); 
Q2 (distance = 2/3) (350,39); Q3 (0,0). 
 
   
Multiplication of the four points by the coefficient matrix gives: 
 

Equation 7 

1 1

2 2

3 3

6 0 0 0 50 58 50 58

5 18 9 2 220 81 109.3 131.71

2 9 18 5 350 39 729.2 19.36

0 0 0 6 0 0 0 0

o ox y

x y

x y

x y

       
       

 
          
        
       

      

P  

 
Which gives the two parametric equations: 
 

Equation 8 

2 3

2 3

( ) 50 174 1689 1913

( ) 58 219 555 278

x

y

   

   

   

   
 

 
Rewriting these parametric equations with the previously mentioned   f(t) =  , we can now plot the 

location on the curve with respect to the parameter time using 

point x y point x y 
1 50 58 12 290 63 
2 60 60 13 300 49 
3 75 70 14 350 39 
4 112 75 15 340 33 
5 120 77 16 300 30 
6 160 80 17 250 21 
7 180 81 18 229 20 
8 215 82 19 200 17 
9 220 81 20 100 10 
10 240 80 21 0 0 
11 255 70       
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Equation 9 

2 3

2 3

( ( )) 50 174( ( )) 1689( ( )) 1913( ( ))

( ( )) 58 219( ( )) 555( ( )) 278( ( ))

x f t f t f t f t

y f t f t f t f t

   

   
 

 
These equations produce the graph shown below for the adaptive model Bezier curve. The numerical 
values associated with the dots on the curve are   - values. 

 

  
Figure 5.  The Adapted Model Curve. Showing parametric tau-values at 0.05 values along the curve. See 

Appendix C for SAS code. 

 

From these parametric equations, we can add the modeled-curve graph to that of the original 
experimentally obtained curve below: 

 
 

Figure 6.  Graph of the Original Curve and the Adapted Model Curve. Common plot of the experimental curve 

(red) and the modeled curve (blue). 
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Table 2. Numbered points (in shaded orange columns) w ith x and y 
values (the closed polygon actually starts at (0,0) and returns to (0,0)). 

Point x y Point x y 

1 50 58 12 338 57 

2 62 68 13 349 50 

3 75 74 14 351 42 

4 107 79 15 343 35 

5 137 81 16 323 27 

6 169 82 17 291 20 

7 202 81 18 243 14 

8 236 79 19 180 8 

9 267 75 20 99 3 

10 296 69 21 0 0 

11 320 63    
 

 

 

Produce a Centroid for Each Curve using PROC IML. 
The area of a simple closed polygon with vertices (x0, y0), (x1, y1), ..., (xn-1, yn-1), is given by 

Equation 10 

1

1 1

0

1
( )

2

n

i i i i

i

Area A x y x y


 



    

 

In the formula, the vertex (xn, yn) is identified with the first vertex, (x0, y0). The centroid of the polygon 
occurs at the point (cx, cy), where 

Equation 11 

1

1 1 1

0

1
( )( )

6

n

i i i i i i

i

cx x x x y x y
A



  



    

1

1 1 1

0

1
( )( )

6

n

i i i i i i

i

cy y y x y x y
A



  



    

 
The above equations are employed in finding the “center of mass” (centroid) of closed polygons formed 
from the joining of the ends of the two curves under study (the experimental drug curve and the model 
cubic Bezier curve). 
  
Rick Wicklin, of the SAS Institute, has produced (in his blog, The Do Loop) a very fine SAS procedure in 
PROC IML to find the centroid (barycenter) of a simple closed polygon. This procedure (see appendix) 
was employed to find a barycentric point for each of the experimental curve and the adaptive model 
curve. The results of the aforementioned procedure are presented in the following tables and graphs. 

 
Experimental Drug Polygon 
Centroid x Centroid y 

161.583 42.8722 

Table 3. Calculated x and y values of the centroid based upon 

the program furnished by Dr. Rick Wicklin in The DO Loop. 
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Figure 7. Plot of the experimental curve showing the calculated centroid position. 
 

 
Adaptive Model Polygon 

Centroid x Centroid y 
172.895 41.5548 

Table 4.Calculated x and y values of the centroid based upon the program furnished by Dr. Rick Wicklin in 

The DO Loop. 

 

 

 

Figure 8. Plot of the modeled curve showing the calculated centroid position. 

 

Compared to the absolute distances found in the experimental and adapted model curves , the centroids 
are quite close in location. While the goal of the procedure is to test the similarity of the two curves, it is of 
note that the Euclidean distance between the centroids (although not exactly coincident) is proximal 
(approximately 9.1 units apart). 

centroid 
Dashed line 

completes 

polygon. 

centroid 

Dashed line 

completes 

polygon. 
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Finding the Euclidean distance from the center of mass to each of the sequential points 

on the curve. 

Using the distance formula,    
2 2

2 1 2 1d x x y y     , the Euclidean distance from the centroid to each 

point in the data set that lies on the curve is found. The Euclidean distance is the distance metric 
commonly used in simpler shape analyses. The results are in the two tables that follow: 

Point X-value Y-value 
Euclid Distance from 

Centroid 

1 50 58 112.603 

2 60 60 103.016 

3 75 70 90.733 

4 112 75 59.081 

5 120 77 53.794 

6 160 80 37.162 

7 180 81 42.343 

8 215 82 66.215 

9 220 81 69.759 

10 240 80 86.763 

11 255 70 97.277 

12 290 63 129.985 

13 300 49 138.553 

14 350 39 188.457 

15 340 33 178.690 

16 300 30 139.015 

17 250 21 91.083 

18 229 20 71.192 

19 200 17 46.317 

20 100 10 69.807 

21 0 0 167.173 
 

 

 

Table 5. Euclidean distances of points on the experimental 

curve is found using the distance formula. 

 

Point X-value Y-value 
Euclid Distance from 

Centroid 

1 50 58 123.991 

2 62 68 114.005 

3 75 74 103.132 

4 107 79 75.792 

5 137 81 53.333 

6 169 82 40.632 

7 202 81 49.020 

8 236 79 73.378 

9 267 75 99.871 

10 296 69 126.127 

11 320 63 148.660 

12 338 57 165.825 

13 349 50 176.307 

14 351 42 178.105 

15 343 35 170.231 

16 323 27 150.809 

17 291 20 120.055 

18 243 14 75.325 

19 180 8 34.299 

20 99 3 83.349 

21 0 0 177.819 

Table 6. Euclidean distances of points on the modeled curve is found using the distance formula. 
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A Pseudo Time Series is formed. 

 
A pseudo time series is determined using the Euclidean distance plotted against number of the nth 

sequential point on the curve. Here, the (n+1)st point is equivalent to the 1st point. 
 

Wei (et al.) demonstrates in the following figure how a plot of the Euclidean distance against the 
point designation produces a Pseudo Time Series. 

 
Figure 9. Example used to demonstrate mapping of the centroid and 

Euclidean distance to convert a closed simple curve to a Pseudo 
Time Series. From Wei (2008). 

 

 
 

 
 

Figure 10. The colored coded arrows in the figure above point to the place in the Pseudo Time Series that 

relates to the Euclidean distance from that example point to the centroid. 
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The process used in producing the time series for the experimental drug curve is also used to 
produce a Pseudo Time Series for the adaptive model curve 
 

 

 

 

Figure 6. Plot of the Euclidean Distance versus the index number 

of the Pseudo Time Series. 

 

The Pseudo Time Series Tested for Stationarity using PROC ARIMA  

The Euclidean distances for the Pseudo Time Series were obtained from a closed polygon and that 
process would necessarily indicate a stationary time series. However, the stationarity of each Pseudo 
Time Series was further tested through an ARMA model using PROC ARIMA. The following tables 
display the mean and standard deviation of the respective pseudo time series.  
 
 

Mean and Std. Dev. Model 
Mean of Working Series 111.4317 
Standard Deviation 46.86071 
Number of Observations 21 

 

Table 7. Mean and St. Dev. of the Model Pseudo Time Series Found through PROC ARIMA 

 

 
Mean and Std. Dev. Experimental 
Mean of Working Series 97.0961 
Standard Deviation 43.9356 
Number of Observations 21 

 

Table 8. Mean and St. Dev. of the Experimental Pseudo Time Series Found through PROC ARIMA 

Example code for the model follows: 

proc arima data=adaptive; 

      identify var=euc_dist(1) stationarity=(ADF=(0,1,2,3)) outcov=adf; 

 label euc_dist = "Adaptive Model Curve"; 
 run; 

The models for both times series shows that the MA (1) model is appropriate. This model assures us that 
the two Pseudo Time Series are stationary (since these times series are necessarily finite). If the 
respective time series are not stationary (i.e. with a constant mean), we would not be able to compare 
them properly.  
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SCAN (from PROC ARIMA) 

Experimental Pseudo Time Series  Modeled Pseudo Time Series  

p+d q p+d q 

0 1 0 1 

2 0   

Table 9. The models suggested by the SCAN option from PROC ARIMA. Models suggested by the 
ARIMA Procedure with ARMA (0,1) chosen as the applicable format. MA(1): (    


   1 1t t tY ) 

is stationary for all for all ) (Hamilton, 1994). 
 

The following data set shows the Euclidean Distance values for the two curves and the index point .  

 

Table 10. Dataset Summary of the Euclidean Distances for both curves. 

These were compared using PROC Similarity 

The two pseudo time series are shown in an overlay in the graph below. It appears that they are in good 
agreement. 

 
 

Index 
Euclidean Distance for 

Model Curve 

Euclidean Distance for 

Experimental Curve 
Index 

Euclidean Distance for 

Model Curve 

Euclidean Distance for 

Experimental Curve 

1 123.991 112.603 12 165.825 129.985 

2 114.005 103.016 13 176.307 138.553 

3 103.132 90.733 14 178.105 188.457 

4 75.792 59.081 15 170.231 178.690 

5 53.333 53.794 16 150.809 139.015 

6 40.632 37.162 17 120.055 91.083 

7 49.020 42.343 18 75.325 71.192 

8 73.378 66.215 19 34.299 46.317 

9 99.871 69.759 20 83.349 69.807 

10 126.127 86.763 21 177.819 167.173 

11 148.660 97.277 13 176.307 138.553 

 
Figure 7. The two pseudo time series plotted on the sam e graph. 

The times series in red(input) is the experimental curve Pseudo 
Time Series. The time series in blue (target) is the modeled 

Pseudo Time Series. 
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The table and warp map that follows show that the distances are kept relatively minimum. As can be seen 
from the dynamic time warp map, most of the deviation from similarity takes place from points 7 to 15. 
This is also noted in the original comparison of the experimental curve and the curve generated using 
control points for the cubic Bezier spline. 
 

 
Figure 8. Path diagram for the minal paths for linking the 

nodes for both Pseudo Time Series. 
 

Table 11. This table shows that there were 6 warps (3 compressions and 3 expansion). 

The warp diagram displays good agreement between the respective time series. 
 

 
Figure 14. The trace in red is the experimental curve and the trace in blue is the modeled curve. This map 

shows the minimum distance map for connecting nearest nodes. Note that the majority of the difference in 

distances comes from indices 5 to 15. 

Path Numb. 

Path 

 % 

Input  

% 

Target  

% Max 

Path Maximum  

% 

Input Maximum 

 % 

Target Maximum 

 % 

Missing Map 0 0 0 0 0 0  0 0 

Direct Maps 18 75 85.71 85.71 6 25.00 28.57 28.57 

Compression 3 12.5 14.29 14.29 2 8.333 9.524 9.524 

Expansion 3 12.5 14.29 14.29 1 4.167 4.762 4.762 

Warps 6 25 28.57 28.57 2 8.333 9.524 9.524 
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The minimum relative measure of connecting the nearest nodes of the respective time series is 
approximately 8.33. 

Minimum Measure Summary 
Input Variable Model Pseudo Time Series 

Experimental Pseudo Time Series 8.32567 

 

Table 12. The minimum measure of connecting sequential elements of the time series.  

Conclusion 
The processes involved in retro-fitting a Bezier-type curve to the experimentally plotted PK/PD curve 
produced a very similar model. The experimental curve in the present study is fairly easily modeled by a 

cubic Bezier spline. Non-simple curves and more complex experimental curves might require splines of 
higher order. PROC TRANSREG is very effective modeling splines, but, as found in this case, parametric 

equations are needed to model the curve as a relation and not as a function. 

The intent of Dynamic Time Warping is to find a minimally weighted sum of path lengths between the two 

compared series. In the present example, the sum of the Dynamic Time Warp distances is 8.32, a much 
smaller number than the distances plotted for the vertical axis of each of the two series. 

It is well understood that Dynamic Time Warping does not produce a distance metric in the usual sense in 
that it does not obey the triangle inequality. However, two series that are identical in magnitude and 

phase should, theoretically, produce a weighted Dynamic Time Warping of 0. Thus, a relatively small 
value compared to the magnitude of the series numerical values, would indicate a stronger similarity for 

the two series that are compared. 

A production of a model PK/PD curve that is very similar to the experimentally derived curve provides a 

chance to form a set of parametric equations that define the system under study. These parametrically 
defined equations can be composed with a time-parameter function to allow the prediction of affect 

response versus time. One could then calculate the percent response to a drug based upon the time 
elapsed since initial treatment. It is interesting that the solutions to the a priori modeling process (briefly 

described in Appendix 2) would produce equations similar to the composition functions of the Bezier 
equations with exponential time curves. 
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Appendices 
Appendix A 

 
Program adapted from Wicklin, R., Compute the centroid of a polygon in SAS, The DO Loop. 
 

 

 

 

Appendix B 

Use of the Bouc-Wen model for hysteresis loop systems and the Hill function from Biochemistry are 
becoming more common in dose response curves, gene regulation networks, and studies in 
anesthesiology. Drugs and enzymes often synergistically interact in biological systems. Therefore, any 
drugs, their metabolites and activated enzymes must be accounted for in a system of equations and/or 
differential equations. The Hill function is: 

Equation 14 

     0

0

1

n

n n

ax
x

b x



   

Where x0 may denote the drug concentration in the experiment. x 1 represents molecular structural 
changes in a hybrid form that allows the expression of subsequently expressed enzymes. The values for 
a and b are constants relevant to the system, while n is the Hill coefficient. 
The overall model for the system is designed from an adapted Bouc-Wen non-linear differential equation 
and its sub-functions. 

 

 

http://blogs.sas.com/content/iml/author/rickwicklin/
http://blogs.sas.com/content/iml/2016/01/13/compute-centroid-polygon-sas.html
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Equation 15 

                     
dw dx dx dw dw

w x w
dt dt dt dt dt

   
 

    
 

    and 

Equation 16 

                          

1 0 0min
0

0 0min

0max 2 2min

0max 2max 2min

1 2 ,

, 1 2

n

n n

m

n

m n n

x x ax
x c

c c b x

ax x x
c w

b x x x


   

 


   

 

 

Here x2 is the expressed enzyme  concentration, w is the normalization of x2 and ρ, σ, γ, κ are model 

parameters determined through experiment. 

Note: The above equations can be modeled by PROC MODEL. 

Appendix C 
The following program shows the code for the Bezier Curve in Figure 5. Code suggested by Dr. Rick 

Wicklin (personal communication). 

data adapt; 

do tau = 0 to 1 by 0.05; 

   x = 50 + 174*tau + 1689*tau**2 - 1913*tau**3; 

   y = 58 + 219*tau - 555*tau**2 + 278*tau**3; 

   output; 

end; 

run; 

 

proc sgplot data=adapt; 

series x=x y=y /markers datalabel=tau datalabelattrs=(size=16); 

run; 
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