

1

Paper HW04

Working with the SAS® ODS EXCEL Destination to Send Graphs, and Use
Cascading Style Sheets When Writing to EXCEL Workbooks

William E Benjamin Jr, Owl Computer Consultancy, LLC, Phoenix AZ.

ABSTRACT

This Hands-On-Workshop will explore the new SAS® ODS EXCEL destination and focus on how to write Excel
Worksheets with output from SAS Graph procedures and spice it up using Cascading Style Sheet features available
on modern computer systems. Note that the ODS EXCEL destination is a BASE SAS product, which makes it
available on all platforms. The workshop will be limited to the Windows platform, but it should be simple to port the
code to other operating systems. The code will be on the computers and you will get a chance to see how it handles.

INTRODUCTION

The new ODS Excel Destination allows the direct output of Excel files in the new *.xlsx format. This feature of SAS is
available to anyone using the third maintenance release of SAS 9.4 or greater as the base product, including SAS
University Edition®. This SAS ODS destination is unlike the ODS tagset EXCELXP in that it cannot be modified and
has a slightly different set of options. The most important two differences are that the ODS EXCELXP tagset does not
directly support writing graphic images into an Excel W\workbook or create native format *.xlsx Excel workbooks.

PROBLEM

The ability to directly write graphs to Excel workbooks has long been something that has not been available with the
EXCELXP tagset. Additionally, customizing the workbook has often been hard to accomplish. The new options and
capabilities of the ODS EXCEL destination will simplify the customization of your output Excel workbooks.

ODS DESTINATION EXCEL

All ODS commands are described in the SAS online manual [1] “SAS® 9.4 Output Delivery System: User's Guide,
Fourth Edition” including the commands that relate to the EXCEL destination. I found a copy at the following SAS web
site: http://support.sas.com/documentation/cdl/en/odsug/67921/PDF/default/odsug.pdf In addition, as part of BASE
SAS the ODS EXCEL destination also works on at least some “NON-Windows” based computer systems. See the
SAS documentation to see which platforms are available. One system is the z/OS operating system that is usually
found on IBM mainframes. This Excel destination works when using HFS files and directories, See the manual for
more information.

WORKSHOP FEATURES AND EXAMPLES

OUTPUT USING SAS STYLE SHEET TEMPLATES

The simple way to spruce up your spreadsheet output is to use a SAS Stylesheet, but what are they called? Well it
turns out that there is a simple way to get a listing of all of the SAS Styles supported on your computer. The following
SAS code will write a nice report, listing the style names to the SAS log. I have reformatted the list into Table 1.

SAS Code 1 - SAS code to list all of the supported styles available to your computer.

ods _all_ close;
ods listing;
 proc template;
 list styles;
 run;
quit;

The following list of styles is listed alphabetically by row from the left to the right. I will leave it up to the student to
experiment with these color schemes on your own time.

http://support.sas.com/documentation/cdl/en/odsug/67921/PDF/default/odsug.pdf

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

2

Table 1 List of SAS styles.

List of SAS Styles Supported (SAS 9.4 1M3)

Analysis BarrettsBlue BlockPrint DTree

Daisy Default Dove EGDefault

Excel FancyPrinter Festival FestivalPrinter

Gantt GrayscalePrinter HTMLBlue Harvest

HighContrast HighContrastLarge Journal Journal1a

Journal2 Journal2a Journal3 Journal3a

Listing Meadow MeadowPrinter Minimal

MonochromePrinter Monospace Moonflower Netdraw

NoFontDefault Normal NormalPrinter Ocean

Pearl PearlJ Plateau PowerPointDark

PowerPointLight Printer Raven Rtf

Sapphire SasDocPrinter SasWeb Seaside

SeasidePrinter StatDoc Statistical Word

vaDark vaHighContrast vaLight

An alternate method of locating the available styles on your computer is by looking up the style templates. These
styles are the output from PROC TEMPLATE and are provided be SAS. Since they are text files that are available for
you to use, from the template storage, you can also change them and store them in a user storage directory. But that
is a story for another day. Figure 1 and Figure 2 show the path to the style templates and part of the code for the
HARVEST style used in Figure 3. The starting point for Figure 1 is The Results screen and the View option.

Figure 1 SAS Screens to locate the SAS Style Sheet PROC TEMPLATE code modules (part-1).

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

3

Figure 2 SAS Screens to locate the SAS Style Sheet PROC TEMPLATE code modules (part-2).

SAS Code 2 - Code to write 2 Excel workbooks, with and without the HARVEST style.

ods excel file = "i:\temp\Style_file_1.xlsx" ;
 proc print data=sashelp.shoes (where=(region="Asia"));
 by region;
 run;
ods excel close;

ods excel file = "i:\temp\Style_file_2.xlsx" style=Harvest ;
 proc print data=sashelp.shoes(where=(region="Asia"));
 by region;
 run;
ods excel close;

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

4

Figure 3- Output Excel Workbook without using the HARVEST style.

Figure 4- Output Excel Workbook using the HARVEST style.

While I have not used very many of the SAS Styles, I have found that the ones I have used do change the look of the
output workbook, but they have that look and feel of a standardized output. Here we are looking for that customized
look.

CASCADING STYLE SHEETS

Cascading Style Sheets were designed to enable the simple changing of output displayed to Web documents. A full
explanation can be found at W3C Cascading Style Sheets Home Page. This is the W3C Home page with descriptions

http://www.w3.org/Style/CSS/Overview.en.html

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

5

and links to the CSS Standards. This Web page also describes drafts and proposed changes to the CSS Standards.
SAS documentation indicates that the SAS usage of the CSS is as fully supported as they can make it. As with all
things that are moving targets, the CSS Standards may change as time goes on. The W3C Web page has links to a
Web Standards Curriculum which is a self-study course. While I cannot teach you everything about CSS coding in 20
pages, this will give you a place to start. The function of Cascading Style Sheet is to decorate the output, rather than
modify the structure of the output.

I will jump ahead to show you a simple CSS code module, first let’s write a simple Excel Workbook and create a
simple “Document Object Module” (DOM). The SAS ODS “DOM” option (shown in the command “ODS EXCEL
DOM;”) created the output shown in Attachment 1, which can be used to find CSS elements. The SAS documentation
[4, page 53] identifies the following CSS Style selectors. I will only address a small portion of these in this paper.

1. Class Selectors
2. Element Selectors
3. Universal Selector
4. Pseudo-Class Selectors
5. ID Selectors
6. Attribute Selectors
7. Combinators

The following brief definition of each of these selectors follows, see: SAS Institute Inc. 2014. SAS® 9.4 Output
Delivery System: Advanced Topics. Cary, NC: SAS Institute Inc. pages 54 and following for more details. Since I am
limited in space for this document I only have room to introduce the topics.

https://www.w3.org/community/webed/wiki/Main_Page#CSS

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

6

A Limited Selection of CSS Selector classes [4,page 54 el.]

Selector Class Description Example

Class Selectors Class selectors are style selectors
that select elements based on the
value of the class= attribute in the
markup of an ODS report. Class
selectors must have a period (.)
preceding the class name. For
example, in the following rule set,
the class style selector is
.SYSTEMTITLE.

.systemtitle

 { font-family: arial, helvetica, sans-serif;

 color: red;

 border: 1px solid black;

 }

Element Selectors Element selectors are style selectors
that select DOM elements based on
the element name. For example, the
following rule set selects elements
with the name P:

p {color:green}

Universal Selector The universal selector is a style
selector that is a wildcard. It can
match any element name. The syntax
for the universal selector is an
asterisk (*).

*

Pseudo-Class
Selectors

Pseudo-class selectors are style
selectors that select elements based
on the relationships between DOM
elements. Pseudo-classes are
represented by the pseudo-class
name prefixed with a colon (:). The
following are examples of some
ways that you can use pseudo-class
selectors.

• select the first and last child of a
parent element

• select a specific child based on its
positional index in the parent
element

• select an element by position of a
particular element name

:root Selects the top-level element in the DOM.

:first-child Selects the first element within the
parent.

:first-of-type Selects the first element of that
type (that is, same element name) in the
parent.

:marker Selects a list item bullet in printer
output.

:nth-child(an+b) Selects an element based on
the equation an +b. This equation selects
every ath element starting with element at
position b. The equation can be replaced with
the keywords even or odd for the simple case
of alternating the selection.

:nth-of-type(an+b) Selects the :nth-child,
except that only the same elements of the
same type are used in the calculation.

 :empty Selects one or more empty elements.
This only applies to elements that have been
specified as empty by the procedure. *

:before Inserts content before the element. *

:after Inserts content after the element

:not(…) Selects an element if the selector
within the argument is not true.

ID Selectors ID selectors are style selectors that
select elements based on the id=
attribute of a DOM element. The ID
must be unique within a DOM and
only one can be specified in the id=
attribute. ID selectors are indicated
by a "#" prefix. The following is a
CSS rule set with an ID selector:

#idx1 { font-style: italic }

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

7

Attribute Selectors Attribute selectors select DOM
elements with the specified attribute.
ID selectors and class selectors are
special case attribute selectors.
Attribute selectors use the following
syntax to select attributes:

[attribute operator "value"]

operator

specifies the operator.

operator allows partial
matches.

= Matches the entire attribute value.

^= Matches the beginning of an attribute
value.

=$ Matches the end of an attribute value.

*= Matches any substring in an attribute value.

~= Matches any space-separated word in an
attribute value. This operator can be used to
emulate the class selector.

|= Matches an attribute value and an optional
value followed by a hyphen. This operator is
used to match language codes such as enUS,
en-GB, and so on.

Combinators Combinators are characters that
select an element based partially on
its context within another element.
This is done by combining selectors
using one of the following
characters.

" " (space) indicates that the selector to the
left must match an element anywhere in the
parentage of the currently selected element.

> selects elements that are a direct
descendent of the specified element.

~ selects elements that have another sibling
anywhere within the parent.

+ selects elements that have a specified
element immediately preceding them

SAS Code 3- Use ODS “DOM” to make a Document Object Module output listing.

options linesize=255;

data test_css;

 Column_a = 'My test item';

run;

ods excel dom;

 proc print data=test_css noobs;

 run;

ods excel close;

The main output of this code is the listing in Attachment 1. From Attachment 1, some of the selector and property
constructs of CSS can be identified. For instance “Header”, “Body”, “Rowheader”, “Data”, “Tbody” “TR”, “TP”,
“Class”, and “Type” to name just a few.

SOME SIMPLE CSS SYNTAX

CSS Code 1 - One example of CSS code syntax is the following:

selector {

 property1:value;

 property2:value;

 property3:value;

}

The CSS Code in the text box above is a sample of a simple syntax for CSS code. While other options exist this
shows three types of values a “Sector”, “Property”, and a “Value”. Because CSS was originally developed to modify
HTML most of the elements of CSS are derived from HTML code.

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

8

 The “Sector” identifies an HTML element that we want to change.

 The “Property” is something we want to change.

 The “Value” is what we want the “Property” to become.

The pertinent parts are as follows [3]:

 The selector identifies the HTML elements that the rule will be applied to, using actual element names, eg.
“body”, or another identifier such as class attribute values.

 The curly braces contain the property/value pairs, which are separated from each other by semi-colons; the
properties are separated from their respective values by colons.

 The properties define what you want to do to the element(s) you have selected. These come in wide
varieties, which can affect text color, background color, position on the page, font type, border color and
thickness and many other things.

 The values are the values that you want to set for each property of the selected elements. The values are
dependent on the property, for example properties that affect color can take hexadecimal colors like
#336699, RGB values like rgb(12,134,22) or color names like red, green or blue. Properties that affect
position, margins, width, height etc. can be measured in pixels, ems, percentages, centimeters or other such
units.

Because I want to keep things simple I will show SAS code that builds the CSS file, and then uses it. This process will
enable me to put all of the parts into one simple SAS program without needing to go into a lot of detail. As with other
things I have written, I will show you how to get started, and you can continue from there. Here we will expand upon
the example in Figure 5, which was built with SAS Code 3. The code in text box SAS Code 4, is a program that
produces a simple file for creation of an Excel workbook, a CSS file to modify the output Excel Workbook, and two
Excel workbooks one without modification and one with CSS formatting applied.

SAS Code 4 – Code to generate and apply CSS formatting to a simple Excel workbook.

 1 %let path = C:\HOW\Benjamin;

 2

 3 * Define a CSS output file;

 4 filename css "&path.\out\my_css_1.css";

 5

 6 * Write a css file;

 7 data _null_;

 8 file css noprint linesize=132;

 9 put

10 ".body {background-color: lightblue; } " /

11 ".header{background-color: gold; } " /

12 ".rowheader {background-color: purple; " /

13 " color: white; } " /

14 ".data {background-color: lightgreen; } " ;

15 run;

16

17 * Create a simple file to write to Excel;

18 options linesize=255;

19 data test_css;

20 Column_a = 'My test item 1'; output;

21 Column_a = 'My test item 2'; output;

22 Column_a = 'My test item 3'; output;

23 Column_a = 'My test item 4'; output;

24 Column_a = 'My test item 5'; output;

25 Column_a = 'My test item 6'; output;

26 Column_a = 'My test item 7'; output;

27 run;

28

29 * Write a file to EXCEL without CSS changes;

30 ods excel file = "&path.\out\Css_file_1.xlsx";

31 proc print data=test_css;

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

9

32 run;

33 ods excel close;

34

35 * Write a file to EXCEL with CSS changes;

36 ods excel file = "&path.\out\Css_file_2.xlsx"

37 cssstyle = "&path.\out\my_css_1.css";

38 proc print data=test_css;

39 run;

40 ods excel close;

An explanation of the code in SAS Code 4 follows:

1. Line # 1. Defines a macro variable called PATH the allows you to make the code more portable.

2. Line # 4. Defines a file that will hold the CSS commands created.

3. Lines # 7 – 1 5 This code writes the CSS file with five color modifications listed.

4. Lines # 18 – 27 Creates a SAS data set to be written to Excel using ODS EXCEL commands.

5. Lines # 30 – 33 This writes an Excel workbook with no special processing (See Figure 6).

6. Lines # 36 – 40 This writes an Excel workbook with five modified fields defined by the CSS commands
in step #3 (See Figure 7).

Figure 6 – Excel file output with no CSS modifications.

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

10

Figure 7 – Excel file output with CSS modifications to the output Excel Workbook.

GRAPHS

Graphs are far more complicated than simple PROC PRINT output listings. They have many more parts and options.
In this paper I will stray away from the SGPLOT features that allow multiple charts and graphs on a single page, and
focus of the few questions needed to get started. You may have noticed in the Fine print of Figure 2, there was a long
list of “GRAPHFONTS”, well further down in the style are listed Style colors and a long list of classes of GraphColors
that the style uses. Other Items that I will address are below, If I create a CSS file as shown below and use it to
modify a graph to be placed into EXCEL Let’s see what it will do.

CSS Code 2 – Patriotic CSS Code to decorate an Excel Spreadsheet, named my_css_2.css.

 .graphbackground {background-color: orange; }

 .graphtitle1text {color: blue; Font: 20pt arial; font-

weight: bold;}

 .graphfootnotetext {color: blue; Font: 12pt arial; font-

weight: bold;}

 .graphvaluetext {color: black; }

 .graphdata1 {color: red; }

 .graphdata2 {color: white; }

 .graphdata3 {color: blue; }

 .graphdata4 {color: red; }

 .graphdata5 {color: white; }

 .graphdata6 {color: blue; }

 .graphdata7 {color: red; }

 .graphdata8 {color: white; }

 .graphdata9 {color: blue; }

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

11

Let’s see what happens to a pie chart graph when displayed with and without this CSS code.

SAS Code 5 – SAS Code to Create a Pie Chart of the SASHELP.SHOES (minus “ASIA”).

%let path = C:\HOW\Benjamin;

%macro Graph_it;

 PROC SQL;

 CREATE VIEW WORK.Sorted_1 AS

 SELECT T.Region, T.Sales

 FROM SASHELP.SHOES(WHERE=(Region ne "Asia")) as T;

 QUIT;

 Legend1

 FRAME

 POSITION = (BOTTOM CENTER OUTSIDE);

 TITLE1 "Pie Chart of SASHELP.Shoes Return data by Region";

 TITLE2 "Execpt Asia";

 FOOTNOTE1 "Produced by William E Benjamin Jr";

 PROC GCHART DATA =WORK.Sorted_1;

 PIE3D Region / SUMVAR=Sales

 TYPE=SUM

 LEGEND=LEGEND1

 SLICE=OUTSIDE

 PERCENT=OUTSIDE

 VALUE=OUTSIDE

 OTHER=4

 OTHERLABEL="Other"

 COUTLINE=BLACK

 NOHEADING;

 RUN;

 QUIT;

 TITLE;

 FOOTNOTE;

 RUN;

%mend Graph_it;

 /* without CSS style modification */

 ods excel file = "&path.\out\Test_css_file_1.xlsx";

 %graph_it;

 ods excel close;

 /* with CSS style modification */

 ods excel file = "&path.\out\Test_css_file_2.xlsx"

 cssstyle = "&path.\out\my_css_2.css";

 %graph_it;

 ods excel close;

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

12

Figure 8 – Excel file output without CSS modifications to the output Test_css_file_1.xlsx
Excel Workbook.

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

13

Figure 9 – Excel file output with CSS modifications to the output Test_css_file_2.xlsx
Excel Workbook.

CSS Code 3 – The same CSS code as my_css_2.css with a “.body” command to add a
background image.

 .body {background-image :

 url(&path\data\my_favoriate_photo.jpg); }

 .graphbackground {background-color: orange; }

 .graphtitle1text {color: blue;

 Font: 20pt arial;

 font-weight: bold; }

 .graphfootnotetext {color: blue;

 Font: 12pt arial;

 font-weight: bold; }

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

14

 .graphvaluetext {color: black; }

 .graphdata1 {color: red; }

 .graphdata2 {color: white; }

 .graphdata3 {color: blue; }

 .graphdata4 {color: red; }

 .graphdata5 {color: white; }

 .graphdata6 {color: blue; }

 .graphdata7 {color: red; }

 .graphdata8 {color: white; }

 .graphdata9 {color: blue; }

Note that the only change here is the addition of the “.body” command with the backgroung-image:url. This change
added a background image[7] as a tile that covered the entire spreadsheet.

SAS Code 6 – SAS Code to create the same Pie Chart with a background image.

 /* with CSS style modification */

 ods excel file = "&path.\out\Test_css_file_3.xlsx"

 cssstyle = "&path.\out\my_css_3.css";

 %graph_it;

 ods excel close;

When the code in code box “SAS Code 6” is added to the code in “SAS Code 5” the output Excel
workbook looks like the following. With the added image, which can either add to or detract from the
overall beauty of the spreadsheet.

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

15

Figure 10 – Excel file output with CSS modifications and an image added to Excel
Workbook.

CONCLUSION

I hope you have figured out by now that this new ODS destination called “EXCEL” is a powerful addition
to the SAS system. The most important part of the tool is that it is part of the Output Delivery System
(ODS) of Base SAS and creates EXCEL output files in the native EXCEL format for *.xlsx files.
Additionally you can now write the native format EXCEL workbooks on non-windows computer systems.
You can also write SAS Graphs to Excel Workbooks and apply Cascading Style Sheet (CSS) formatting
to your output spreadsheets.

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

16

REFERENCES

[1] SAS Institute Inc. 2015. SAS® 9.4 Output Delivery System: User's Guide, Fourth Edition. Cary, NC: SAS Institute
Inc.

[2] Benjamin, William E., Jr. 2015. Exchanging Data Between SAS® and Microsoft Excel: Tips and Techniques to
Transfer and Manage Data More Efficiently, Cary, NC: SAS Institute Inc.

[3] Information about CSS Style Rules from the Web at address:
https://www.w3.org/community/webed/wiki/CSS_basics

[4] SAS Institute Inc. 2014. SAS® 9.4 Output Delivery System: Advanced Topics. Cary, NC: SAS Institute Inc.

[5] Smith, Kevin D. 2011. "Unveiling the Power of Cascading Style Sheets (CSS) in ODS." Proceedings of the SAS
Global Forum 2011 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings11/297-2011.pdf .

[6] Parker, Chevell. 2014. "Secrets from a SAS Technical Support Guy: Combining the Power of the SAS® Output
Delivery System with Microsoft Excel Worksheets." Proceedings of the SAS Global Forum 2014 Conference. Cary,
NC: SAS Institute Inc. Available at http://support.sas.com/resources/papers/proceedings14/SAS177-2014.pdf

[7] Image drawn from my SAS Author page http://support.sas.com/publishing/authors/benjamin.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Name: William E Benjamin Jr
Enterprise: Owl Computer Consultancy, LLC
Address: P.O.Box 42434
City, State ZIP: Phoenix AZ, 85080
Work Phone: 623-337-0269
E-mail: William@owlcomputerconsultancy.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://www.w3.org/community/webed/wiki/CSS_basics
http://support.sas.com/resources/papers/proceedings11/297-2011.pdf
http://support.sas.com/resources/papers/proceedings14/SAS177-2014.pdf
http://support.sas.com/publishing/authors/benjamin.html

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

17

ATTACHMENTS

Attachment 1 - Log output of the ODS EXCEL DOM processing for a simple one variable data file sent to
Excel. This output shows CSS items that can be changed. I have highlighted a few of the items that I
changed above.

NOTE: Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software 9.4 (TS1M3)
NOTE: This session is executing on the X64_8HOME platform.

NOTE: Additional host information:

 X64_8HOME WIN 6.2.9200 Workstation

NOTE: SAS initialization used:
 real time 3.50 seconds
 cpu time 2.65 seconds

1 options linesize=255;
2 data test_css;
3 Column_a = 'My test item';
4 run;

NOTE: The data set WORK.TEST_CSS has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.04 seconds
 cpu time 0.03 seconds

5
6 ods excel dom;
<!DOCTYPE html>
<html>
 <head>
 <title>ODS EXCEL DOM</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body dest="excel" class="body">
 <div>
 </div>
 <div>
 </div>
 <body class="startupfunction">
 </body>
 <body class="shutdownfunction">
 </body>
 <div class="body">
7 proc print data=test_css noobs;
8 run;

 <div>
 </div>
 <section id="idx" class="oo" data-name="procprinttable" label="data set work.test_css"
proc="print" output="print" contents-label="data set work.test_css">
 <table class="pageno">
 <tbody>
 <tr>

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

18

 <td class="pageno">1
 </td>
 </tr>
 </tbody>
 </table>
 <table class="bodydate">
 <tbody>
 <tr>
 <td class="bodydate">Thursday, August 25, 2016
 </td>
 </tr>
 </tbody>
 </table>
 <h1 class="systemtitle">
 </h1>
 <table class="systitleandfootercontainer">
 <colgroup>
 <col>
 </colgroup>
 <tr>
 <td class="systemtitle">The SAS System
 </td>
 </tr>
 </table>
 <table class="pageno">
 <tbody>
 <tr>
 <td class="pageno">1
 </td>
 </tr>
 </tbody>
 </table>
 <table class="bodydate">
 <tbody>
 <tr>
 <td class="bodydate">Thursday, August 25, 2016
 </td>
 </tr>
 </tbody>
 </table>
 <h1 class="systemtitle">
 </h1>
 <table class="systitleandfootercontainer">
 <colgroup>
 <col>
 </colgroup>
 <tr>
 <td class="systemtitle">The SAS System
 </td>
 </tr>
 </table>
 <ul class="contentprocname">

 <div class="contentprocname" target="body"
url="c:\users\william\appdata\local\temp\sas temporary
files_td13608_heber_pc__t0000000006d71780\[content_types].xml#idx">
 <ul class="contentitem">

All Aboard! Next Stop is the Destination Excel, continued. MWSUG, 2016

19

 <div class="contentitem" target="body" url="c:\users\william\appdata\local\temp\sas
temporary files_td13608_heber_pc__t0000000006d71780\[content_types].xml#idx">
 <div class="pagesitem">
 </div>
 <div>
 </div>
 <div class="data">
 </div>
 <table class="table">
 <colgroup>
 <col type="char" name="column_a">
 </colgroup>
 <div class="data">
 <div class="header">
 </div>
 </div>
 <thead>
 <tr>
 <th class="header" type="char" unformatted-type="char" index="1"
name="column_a" data-name="column_a" label="column_a">Column_a
 </th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class="data" type="char" unformatted-type="char" index="1"
name="column_a" data-name="column_a" label="column_a">My test item
 </td>
 </tr>
 </tbody>
 <div>
 </div>
 </table>
 </section>
 </div>
 </div>
NOTE: There were 1 observations read from the data set WORK.TEST_CSS.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.20 seconds
 cpu time 0.15 seconds

9 ods excel close;
 </div>
 </body>
 <div dest="excel" url="c:\users\william\appdata\local\temp\sas temporary
files_td13608_heber_pc__t0000000006d71780\[content_types].xml">
 </div>
</html>
NOTE: Writing EXCEL file: .\sasexcl.xlsx

