MWSUG 2016 — Paper HW02

A Hands-on Introduction to SAS® DATA Step Hash
Programming Techniques
Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract

SAS’ users are always interested in learning techniques that will help them improve the performance of table lookup, search,
and sort operations. SAS software supports a DATA step programming technique known as a hash object to associate a key with
one or more values. This presentation introduces what a hash object is, how it works, the syntax required, and simple
applications of it use. Essential programming techniques will be illustrated to sort data and search memory-resident data using

a simple key to find a single value.

Introduction

One of the more exciting and relevant programming techniques available to SAS users today is the Hash object. Available as a
DATA step construct, users are able to construct relatively simple code to perform match-merge and/or join operations. The
purpose of this paper and presentation is to introduce the basics of what a hash table is and to illustrate practical applications
so SAS users everywhere can begin to take advantage of this powerful SAS Base programming feature.

Example Tables

The data used in all the examples in this paper consists of a Movies data set containing six columns: title, length, category, year,
studio, and rating. Title, category, studio, and rating are defined as character columns with length and year being defined as
numeric columns. The data stored in the Movies data set appears below.

Title I Length I Category I I Studio I Rating

1 Brave Heart 177 Action Adventure 1995 Paramount Pictures R
2 Casablanca 103 Drama 1942 MGM / UA PG
& Christmas Yacation 97 Comedy 1989 Warner Brothers PG-13
4 Coming to &merica 116 Comedy 1988 Paramount Pictures R
5 Dracula 130 Horror 1993 Columbia TriStar R
3] Dressed to Kill 105 Drama Mysteries 1980 Filmways Pictures R
i Forrest Gump 142 Drama 1934 Paramount Pictures PG-13
g Ghost 127 Drama Romance 1930 Paramount Pictures PG-13
9 Jaws 125 Action Adventure 1975 Universal Studios PG
10 |Jurassic Park 127 Action 1993 Universal Pictures PG-13
11 Lethal Weapon 110 Action Cops & Robber 1987 Wamer Brothers R
12 Michael 106 Drama 1997 Wamer Brothers PG-13
13 |National Lampoon's 98 Comedy 1983 Wamer Brothers PG-13

Yacation
14 Paoltergeist 115 Horror 1982 MGM /7 UA PG
15 Rocky 120 Action Adventure 1976 MGM / UA PG
16 Scarface 170 Action Cops & Robber 1983 Universal Studios R
17 Silence of the Lambs 118 Drama Suspense 1991 Orion R
18 Star Wars 124 Action Sci-Fi 1977 Lucas Film Ltd PG
13 The Hunt for Red October 135 Action Adventure 1983 Paramount Pictures PG
20 The Terminator 108 Action Sci-Fi 1984 Live Entertainment R
21 The Wizard of 0z 101 Adventure 1939 MGM 7/ U& G

Titanic 194 Drama Romance 1997 Paramount Pictures PG-13

The second data set used in the examples is the ACTORS data set. It contains three columns: title, actor_leading, and
actor_supporting, all of which are defined as character columns, and is illustrated below.

Title

| Actor_Leading

[Actor_Supporting

1 Brave Heart

2 Christmas Yacation
3 Coming to &merica
4 Forrest Gump

5 Ghost
6

7

8

Lethal Weapon
Michael

9 Rocky
10 Silence of the Lambs

12 The Terminator

13 Titanic

National Lampoon's Vacation

1 The Hunt for Red October

el Gibson

Chevy Chase
Eddie Murphy

Tom Hanks
Patrick Swayze
Mel Gibson

John Travolta
Chewy Chase
Sylvester Stallone
Anthony Hopkins
Sean Connery
Arnold Schwarzenegge
Leonardo DiCaprio

Sophie Marceau
Beverly D'angelo
Arsenio Hall
Sally Field

Demi Moore
Danny Glover
Andie MacDowell
Beverly D'4ngelo
Talia Shire

Jodie Foster
Alec Baldwin
Michael Biehn
Kate Winslet

Page 1

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

What is a Hash Object?

A hash object is a data structure that contains an array of items that are used to map identifying values, known as keys (e.g.,
employee IDs), to their associated values (e.g., employee names or employee addresses). As implemented, it is designed as a
DATA step construct and is not available to any SAS PROCedures. The behavior of a hash object is similar to that of a SAS array
in that the columns comprising it can be saved to a SAS table, but at the end of the DATA step the hash object and all its
contents disappear.

How Does a Hash Object Work?

A hash object permits table lookup operations to be performed considerably faster than other available methods found in the
SAS system. Unlike a DATA step merge or PROC SQL join where the SAS system repeatedly accesses the contents of a table
stored on disk to perform table lookup operations, a hash object reads the contents of a data set into memory once allowing
the SAS system to repeatedly access it, as necessary. Since memory-based operations are typically faster than their disk-based
counterparts, users generally experience faster and more efficient table lookup operations. The following diagram illustrates
the process of performing a table lookup using the Movie Title (i.e., key) in the MOVIES data set matched against the Movie
Title (i.e., key) in the ACTORS data set to return the ACTOR_LEADING and ACTOR_SUPPORTING information.

MOVIES Data Set ACTORS Data Set

TITLE TITLE ACTOR_LEADING ACTOR_SUPPORTING
Brave Heart —) Brave Heart Mel Gibson Sophie Marceau

o _I_> Christmas Vacation Chevy Chase Beverly D’Angelo
Christmas Vacation Coming to America Eddie Murphy Arsenio Hall

Coming to America _|_>

Figure 1. Table Lookup Operation with Simple Key

Although one or more hash tables may be constructed in a single DATA step that reads data into memory, users may
experience insufficient memory conditions preventing larger tables from being successfully processed. To alleviate this kind of
issue, users may want to load the smaller tables as hash tables and continue to sequentially process larger data sets containing
lookup keys.

Hash Object Syntax

Users with DATA step programming experience will find the hash object syntax relatively straight forward to learn and use.
Available in all operating systems running SAS 9 or greater, the hash object is called using methods. The syntax for calling a
method involves specifying the name of the user-assigned hash table, a dot (.), the desired method (e.g., operation) by name,
and finally the specification for the method enclosed in parentheses. The following example illustrates the basic syntax for
calling a method to define a key.

HashTitles.DefineKey (‘Title’);

where:

HashTitles is the name of the hash table, DefineKey is the name of the called method, and ‘Title’ is the specification being
passed to the method.

Hash Object Methods

The author has identified twenty six (26) known methods which are alphabetically displayed, along with their description, in the
following table.

Page 2

An Introduction to SAS® Hash Programming Techniques, continued

Description

MWSUG 2016

ADD Adds data associated with key to hash object.

CHECK Checks whether key is stored in hash object.

CLEAR Removes all items from a hash object without deleting hash object.

DEFINEDATA Defines data to be stored in hash object.

DEFINEDONE Specifies that all key and data definitions are complete.

DEFINEKEY Defines key variables to the hash object.

DELETE Deletes the hash or hash iterator object.

EQUALS Determines whether two hash objects are equal.

FIND Determines whether the key is stored in the hash object.

FIND_NEXT The current list item in the key’s multiple item list is set to the next item.

FIND_PREV The current list item in the key’s multiple item list is set to the previous item.

FIRST Returns the first value in the hash object.

HAS_NEXT Determines whether another item is available in the current key’s list.

HAS_PREV Determines whether a previous item is available in the current key’s list.

LAST Returns the last value in the hash object.

NEXT Returns the next value in the hash object.

OUTPUT Creates one or more data sets containing the data in the hash object.

PREV Returns the previous value in the hash object.

REF Combines the FIND and ADD methods into a single method call.

REMOVE Removes the data associated with a key from the hash object.

REMOVEDUP Removes the data associated with a key’s current data item from the hash object.

REPLACE Replaces the data associated with a key with new data.

REPLACEDUP Replaces data associated with a key’s current data item with new data.

SETCUR Specifies a starting key item for iteration.

SUM Retrieves a summary value for a given key from the hash table and stores the value to a
DATA step variable.

SUMDUP Retrieves a summary value for the key’s current data item and stores the value to a DATA

step variable.

Page 3

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

Sort with a Simple Key

Sorting is a common task performed by SAS users everywhere. The SORT procedure is frequently used to rearrange the order of
data set observations by the value(s) of one or more character or numeric variables. A feature that PROC SORT is able to do is
replace the original data set or create a new ordered data set with the results of the sort. Using hash programming techniques,
SAS users have an alternative to using the SORT procedure. In the following example, a user-written hash routine is constructed
in the DATA step to perform a simple ascending data set sort. As illustrated, the metadata from the MOVIES data set is loaded
into the hash table, a DefineKey method specifies an ascending sort using the variable LENGTH as the primary (simple) key, a
DefineData method to select the desired variables, an Add method to add data to the hash object, and an Output method to
define the data set to output the results of the sort to.

Hash Code with Simple Key

Libname mydata ‘e:\workshops\workshop data’ ;
data _null_;
if 0 then set mydata.movies; /* load variable properties into hash tables */
if _n_ = 1 then do;
HashSort.DefineKey (‘Length'); /* identify variable to use as simple key */
HashSort.DefineData (‘Title",
‘Length’,

‘Category’,

‘Rating’); /* identify columns of data */
HashSort.DefineDone (); /* complete hash table definition */
end;
set mydata.movies end=eof;
® if eof then HashSort.output(dataset:sorted_movies); /* write data using hash
HashSort */

As illustrated in the following SAS Log results, SAS processing stopped with a data-related error due to one or more duplicate
key values. As a result, the output data set contained fewer results (observations) than expected.

SAS Log Results

Libname mydata ‘e:\workshops\workshop data’ ;
data _null_;
if 0 then set mydata.movies; /* load variable properties into hash tables */
if _n_ = 1 then do;
declare Hash HashSort (ordered:'a'); /* declare the sort order for hash */
HashSort.DefineKey ('Length'); /* identify variable to use as simple key */

HashSort.DefineData ('Title',
'Length’,
'Category',
'Rating'); /* identify columns of data */
HashSort.DefineDone (); /* complete hash table definition */
end;

Page 4

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

SAS Log Results (Continued)

set mydata.movies end=eof;

HashSort.add (); /* add data with key to hash object */

if eof then HashSort.output(dataset:'sorted_movies'); /* write data using hash
HashSort */
run;

ERROR: Duplicate key.

NOTE: The data set WORK.SORTED_MOVIES has 21 observations and 4 variables.
NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

Sort with a Composite Key

To resolve the error presented in the previous example, an improved and more uniquely defined key is specified. The simplest
way to prevent a conflict consisting of duplicate is to add a secondary variable to the key creating a composite key. The
following code illustrates constructing a composite key with a primary variable (LENGTH) and a secondary variable (TITLE) to
reduce the prospect of producing a duplicate key value from occurring (collision).

Hash Code with Composite Key

HashSort.DefineKey (‘Length', ‘Title’); /* identify variables to use as
composite key */

HashSort.DefineData (‘Title°®,
‘Length’,
‘Category’,
‘Rating’); /* identify columns of data */
HashSort.DefineDone (); /* complete HashSort table definition */
end;
set mydata.movies end=eof;

© HashSort.add (); /* add data with key to HashSort table */

® if eof then HashSort.output(dataset:sorted_movies); /* write data using hash
HashSort */

SAS Log Results

As shown on the SAS Log results, the creation of the composite key of LENGTH and TITLE is sufficient enough to form a unique
key enabling the sort process to complete successfully with 22 observations read from the MOVIES data set, 22 observations
written to the SORTED_MOVIES data set, and zero conflicts (or collisions).

Page 5

data _null_;
if 0 then set mydata.movies; /* load variable properties into hash tables */
if _n_ =1 then do;
declare Hash HashSort (ordered:'a'); /* declare the sort order for HashSort */

HashSort.DefineKey ('Length', ‘Title’); /* identify variable to use as
composite key */

HashSort.DefineData ('Title',
'Length’',
'Category’',
'Rating'); /* identify columns of data */
HashSort.DefineDone (); /* complete HashSort table definition */
end;
set mydata.movies end=eof;
HashSort.add (); /* add data using key to HashSort table */
if eof then HashSort.output(dataset:'sorted_movies'); /* write data using
HashSort */
run;

NOTE: The data set WORK.SORTED_MOVIES has 22 observations and 4 variables.
NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

erge proce e tollo g code ates a ha obje a ple ke 0 merge (or jo e MO and A OR

data match_on_movie_titles(drop=rc);

|©® if 0 then set mydata.movies |
mydata.actors; /* load variable properties into hash tables */

if _n_ =1 then do;
® declare Hash MatchTitles (dataset:'mydata.actors'); /* declare the name
MatchTitles for hash */

© MatchTitles.DefineKey ('Title'); /* identify variable to use as key */
MatchTitles.DefineData (‘Actor_Leading’,
‘Actor_Supporting’); /* identify columns of data */
MatchTitles.DefineDone (); /* complete hash table definition */
end;

set mydata.movies;

O if MatchTitles.find(key:title) = 0 then output; /* lookup TITLE in MOVIES table
using MatchTitles hash */

run;

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

Results
The match-merge (or join) process is illustrated using the following diagram.

DressedtoKil
Forest Gump
Ghost

Jaws

Jurassic Park

The Hunk for Red October
The Teminator

The Wizard of 02

Thanc

T

177 Action Adventue
103 Drama
7 Comedy

1 .
|1 Movies

142 Drama
127 Drama Romance
125 Action Adventure
127 Action
110 Action Cops & Robber
106 Drama

98 Comedy
115 Homor
120 Action Adventure
170 Action Cops & Robber
118 Drama Suspense
124 Action Scifi
135 Action Adventue
108 Action SciFi
101 Adventue
194 Drama Romance

1995 Pasamount Pictures
1942 MGM /UA

1989 Wame Brothers
1988 Pasamount Pictures
1933 Columbia TriStar
1980 Fimways Pictures
1934 Paramount Pictures
1930 Paramount Pictures
1975 Univessal Studios
1993 Universal Pictures
1987 Wamer Brothers
1997 Wamet Brothers
1983 Wamer Brothers
1982 MGM / UA

1976 MGM / UA

1983 Univessal Studios
1931 Onon

1977 Lucas Fim Ltd
1989 Pasamount Pictures
1984 Live Entestainment
1933 MGM /UA

1397 Patamount Pictures

Ao Leadng

Aelor_Suppatting

Brave Heat
ChistmasVacafon
Coming o America
Forest Gump

Sifhce of the Lanbs

The Hunt for Red October
The Teminglor

Tianic

Actors

ol
TomHarks
Patick Swayee
MelGibson
Jobn Travola
Chey Chase
Sybvester Stallne
Anthony Hopkin
Sean Comnery
Amold Schwarzenegge
Leonardo DiCapiio

Actor Leading

Sophie Merceau
Bevetly D'Angelo
Asenio Hal
Sl Fied
DeniMoore
Danry Glover
Andie MacDowel
Bevelly DAngelo
Tda Shie

Jode Fostr
Hlec Baldwin
Michael Behn
Kate Windkt

Actor_Supporing

Brave Heat

Chistmas Vacation
Coming to America

Forest Gump

Ghost

Lethal Weapon

Michael

National Lampoon's Vacation
Racky

Sience of the Lambs

The Hunt for Red October
The Teminator

Ttanic

177 Action Adventure

97 Comedy
16 Comedy
42 Drama

1995 Paramount Pictures
1989 Wamer Brothers

Match_on_Movies_Titles

IS T OO T TCTaTes

10 Action Cops & Robber
06 Drama

98 Comedy

120 Action Adventure
118 Drama Suspense
135 Action Adventure
108 Action Sci-i

194 Drama Romance

1
1
127 Drama Romance
1
1

1990 Paramount Pictures
1987 Wamer Brothers
1997 Wamer Brothers
1983 Wamer Brothers
1976 MGM / UA

1991 Orion

1989 Paramourt Pictures
1984 Live Entertainment
1997 Paramount Pictures

Transposing with the TRANSPOSE Procedure

Mel Gibson

Chevy Chase
Eddie Muphy
Tom Hanks
Patrick Swayze
Mel Gibson

John Travoka
Chevy Chase
Sytvester Stalone
Arthony Hopking
Sean Connery
Amold Schwarzenegge
Leonardo DiCaprio

Sophie Marceau
Bevery D'Angelo
Arsenio Hall
Sall Field

Demi Moore
Danny Glover
Andie MacDowel
Bevery D'Angelo
Talia Shire

Jodie Foster
Hec Baldwin
Michae! Biehn
Kate Winslet

In the paper; SAS on a Shingle, Flippin with Hash (2012); Miller and Lafler illustrate two key points: 1) how PROC TRANSPOSE is
used for converting SAS data set structures and 2) how hash programming techniques are used to emulate the PROC
TRANSPOSE process. The objective was to demonstrate the programming techniques and select hash methods that were used
to successfully create a transposed data set. For those unfamiliar or with limited experience using PROC TRANSPOSE, the SAS
Base procedure gives SAS users a convenient way to transpose (or restructure) any SAS data set structure. Popular uses for

PROC TRANSPOSE include:

v' Converting the observations of a data set structure to variables, sometimes referred to as changing a vertical (long or

thin) data structure to a horizontal (wide or fat) data structure;

v' Converting the variables of a data set structure to observations, sometimes referred to as changing a horizontal (wide

or fat) data structure to a vertical (long or thin) data structure.

Although experienced SAS users may use any number of approaches in lieu of the TRANSPOSE procedure to restructure a data
set, these alternate techniques can require more time for programming, testing and debugging. The PROC TRANSPOSE syntax
to restructure (or transpose) selected variables into observations is shown, below. After sorting the MOVIES data set in
ascending order by TITLE, PROC TRANSPOSE then accesses the sorted MOVIES data set. The BY statement tells PROC
TRANSPOSE to create BY-groups for the variable TITLE. The VAR statement specifies the variables, RATING and LENGTH, to
transpose into observations. The result of the transpose process is then written to a data set called, Transposed_Movies.

Page 7

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

PROC TRANSPOSE Code:

libname mydata "e:\workshops\workshop data" ;

proc sort data = mydata.movies
out sorted_movies ;
by title ;
run ;

proc transpose data = sorted_movies
out transposed_movies ;
by title ;
var rating length
run;

The resulting Transposed_Movies data set from running the TRANSPOSE procedure, below, contains three variables: TITLE,
NAME and _COL1. With closer inspection, the data set contains duplicate TITLE values (observations), a distinct _NAME_
value for “Rating” in the first observation of COL1 and a distinct _NAME_ value for “Length” in the second observation of COL1
for each BY-group.

Brave Heart

Brave Heart
Casablanca
Casablanca
Christmas Vacation
Christmas Yacation
Coming to America
Coming to America
Dracula

Dracula

Dressed to Kil
Dressed to Kil
Forrest Gump
Formest Gump
Ghost

Ghost

Jaws

Jaws

Jurassic Park
Jurassic Park
Lethal Weapon
Lethal Weapon
Michael

Michael

Mational Lampoon’s Vacation
Mational Lampoon's Vacation
Poltergeist
Paoltergeist

Roclky

Rocky

Transposed_Movies Data Set created with PROC TRANSPOSE

Page 8

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

Transposed_Movies Data Set (continued)

Scarface

Scarface

Silence of the Lambs
Silence of the Lambs

Star Wars

Star Wars

The Hurt for Red October
The Hurt for Red October
The Teminator

The Teminator

The Wizard of Oz

The Wizard of Oz

Titanic

Titanic 194
—_—

Transposed_Movies Data Set created with PROC TRANSPOSE (continued)

Transposing with the DATA Step Hash Method

My objective for using Hash methods in creating a restructured transposed data set is to emulate was is created with the
TRANSPOSE procedure. We'll begin with the statement, “DATA Hash_Long_Movies”, because the application of Hash methods
is currently only available in a DATA step. @ The next statement, “IF 0 THEN SET MYDATA.MOVIES” tells SAS t g# ad variable
properties into the hash object located in real me@)ry. @ The DECLARE HASH statement provide a name to the hash object
being created in memory as ‘Hash_movies’, the name of the input data set, and how the data is ordered. ® The “DECLARE
HITER” statement defines and initializes the hash object for traversing the object in memory. @ The DEFINEKEY method
identifies the variable (or variables) to use as the key. © The DEFINEDATA method informs SAS what variables to read into the
hash object in memory (in our case all variables not removed with the DROP= (or KEEP=) data set option). ® The DEFINEDONE
method completes the hash table definition. @ The FIRST() method tells SAS to return the first value stored in the defined
hash object. @ The DO WHILE loop iterates repeatedly as long as there is data stored in the hash object. @ The LINK

OUTLONG statement tells SAS to execute the OUTLONG subroutine. ® The NEXT() method tells SAS to return the next value
from the defined hash object. o The STOP statement tells SAS to terminate the DATA step. @

libname mydata f‘e:\workshops\workshop data’ ;

© data hash_long movies (drop=rc Rating Length) ;

® if 0 then set mydata.movies(keep=Title Rating Length) ;

if _n_ =1 then do ;
declare Hash Hash_movies(dataset: 'mydata.movies’,

ordered: 'ascending') ;

declare Hiter Hi_movies ('Hash_movies') ;
Hash_movies.DefineKey ('Title') ;
Hash_movies.DefineData (‘Title’, ‘Rating’, ‘Length’) ;
Hash_movies.DefineDone () ;

end ;

rc = Hi_movies.first() ;

do while (rc = 0) ;
link outlong ;

®

)
)
)
@
)
)
©
(]

rc = Hi_movies.next() ;
end;
Eﬂ stop ;
return ;

Page 9

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

®outlong: ;
Title ;

Label '‘Rating’' ;

Value Rating ;
output hash_long_movies

Title ;
Label = 'Length' ;
Value Length ;
output hash_long_movies
return ;
run ;

The resulting Hash_Long_Movies data set created with the Hash methods, below, contains three variables: TITLE, LABEL and
VALUE. As with the transposed data set created earlier, this data set contains duplicate TITLEs, a distinct LABLE value for
“Rating” in the first observation of VALUE and for “Length” in the second observation of VALUE for each BY-group.

| Label | Value
Brave Heart Rating
Brave Heart Length
Casablanca Rating
Casablanca Length
Christmas Vacation Rating
Christmas Wacation Length
Coming to America Rating
Coming to America Length
Dracula Rating
Dracula Length
Dresszed to Kill Rating
Dressed to Kill Length
Fomest Gump Rating
Fomest Gump Length
Ghost Rating
Ghost Length
Jaws Rating
Jaws Length
Jurassic Park Rating
Jurassic Park Length
Lethal Weapon Rating
Lethal Weapon Length
Michael Rating
Michael Length
National Lampoon’s Vacation Rating
National Lampoon’s Vacation Length
Poltergeist Rating
Poltergeist Length
Rocky Rating
Rocly Length

ol = E-N S RN 0 FE R N IR) B

—_
;%]

—
[#%]

—_
=

—_
n

—_
[=x]

—_
|

—_
[=-]

—_
1]

Hash_Long_Movies Data Set created with Hash Methods

Page 10

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

Hash_Long_Movies Data Set (continued)

Scarface

Scarface

Silence of the Lambs
Silence of the Lambs

Star Wars

Star Wars

The Hunt for Red October

The Hunt for Red October

The Teminator
The Teminator
The Wizard of Oz
The Wizard of Oz
Titanic

Titanic

Hash_Long_Movies Data Set created with Hash Methods (continued)

Conclusion

Users have a powerful hash DATA-step construct to sort data, search data sets, perform table lookup operations, and transpose
data sets in the SAS system. This paper introduced the basics of what a hash table is, how it works, the basic syntax, and its
practical applications so SAS users everywhere can begin to take advantage of this powerful memory-based programming
technique to improve the performance of sorts, searches, table lookup operations, and transposes.

References

Dorfman, Paul, and Marina Fridman (2010). "Black Belt Hashigana," Proceedings of the 2010 North East SAS Users Group
(SESUG) Conference.

Dorfman, Paul and Peter Eberhardt (2010). "Two Guys on Hash," Proceedings of the 2010 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul (2009). "The SAS” Hash Object in Action," Proceedings of the 2009 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul, Lessia S. Shajenko and Koen Vyverman (2008). "Hash Crash and Beyond," Proceedings of the 2008 SAS Global
Forum (SGF) Conference.

Dorfman, Paul, and Koen Vyverman (2006). "DATA Step Hash Objects as Programming Tools," Proceedings of the Thirty-First
SAS Users Group International Conference.

Eberhardt, Peter (2011). “The SAS” Hash Object: It’s Time to .find() Your Way Around,” Proceedings of the 2011 SAS Global
Forum (SGF) Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2016 South East SAS Users
Group (SESUG) Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2016 lowa SAS Users
Group (IASUG) Conference.

Lafler, Kirk Paul (2015). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2015 South Central SAS
Users Group (SCSUG) Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2011 South East SAS Users
Group (SESUG) Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2011 PharmaSUG
Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS’ Hash Programming Techniques,” San Diego SAS Users Group (SANDS) Meeting,
February 16“', 2011.

Lafler, Kirk Paul (2010). “An Introduction to SAS’ Hash Programming Techniques,” Bay Area SAS (BASAS) Users Group Meeting,
December 7“‘, 2010.

Page 11

An Introduction to SAS® Hash Programming Techniques, continued MWSUG 2016

Lafler, Kirk Paul (2010). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2010 South Central SAS
Users Group (SCSUG) Conference.

Lafler, Kirk Paul (2010). “An Introduction to SAS” Hash Programming Techniques,” Awarded “Best” Contributed Paper,
Proceedings of the 2010 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul (2010). “DATA Step and PROC SQL Programming Techniques,” Ohio SAS Users Group (OSUG) One-Day
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2010). “Exploring Powerful Features in PROC SQL,” SAS Global Forum (SGF) Conference, Software Intelligence
Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009). “DATA Step and PROC SQL Programming Techniques,” South Central SAS Users Group (SCSUG) 2009
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009). “DATA Step versus PROC SQL Programming Techniques,” Sacramento Valley SAS Users Group 2009
Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Loren, Judy and Richard A. DeVenezia (2011). "Building Provider Panels: An Application for the Hash of Hashes," Proceedings of
the 2011 SAS Global Forum (SGF) Conference.

Loren, Judy (2006). "How Do I Love Hash Tables? Let Me Count The Ways!," Proceedings of the Nineteenth Northeast SAS Users
Group Conference.

Miller, Ethan and Kirk Paul Lafler (2012), “SAS® on a Shingle, Flippin with Hash,” Proceedings of the 2012 Western Users of SAS
Software (WUSS) Conference Proceedings, SRI International, Menlo Park, CA, and Software Intelligence Corporation, Spring
Valley, CA, USA.

Muriel, Elena (2007). “Hashing Performance Time with Hash Tables,” Proceedings of the 2007 SAS Global Forum (SGF)
Conference.

Parman, Bill (2006). “How to Implement the SAS’ DATA Step Hash Object,” Proceedings of the 2006 Southeast SAS Users Group
Conference.

Ray, Robert and Jason Secosky (2008). “Better Hashing in SAS” 9.2,” Proceedings of the Second Annual SAS Global Forum (SGF)
Conference, SAS Institute Inc., Cary, NC, USA.

Secosky, Jason (2007). “Getting Started with the DATA Step Hash Object,” Proceedings of the 2007 SAS Global Forum (SGF)
Conference, SAS Institute Inc., Cary, NC, USA.

Acknowledgments

The author thanks Dave Foster and Chuck Kincaid, Hands-On Workshops Section Chairs, for accepting my abstract and paper;
Richann Watson, MWSUG 2016 Academic Chair; Adrian Katschke, MWSUG 2016 Operations Chair; the MidWest SAS Users
Group (MWSUG) Executive Board; and SAS Institute for organizing and supporting a great conference!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

About The Author

Kirk Paul Lafler is an entrepreneur, consultant and founder of Software Intelligence Corporation, and has been using SAS since
1979. Kirk is a SAS Certified Professional, provider of IT consulting services, advisor and professor at UC San Diego Extension and
educator to SAS users around the world, mentor, and emeritus sasCommunity.org Advisory Board member. As the author of six
books including Google® Search Complete (Odyssey Press. 2014) and PROC SQL: Beyond the Basics Using SAS, Second Edition
(SAS Press. 2013); Kirk has written hundreds of papers and articles; been an Invited speaker and trainer at hundreds of SAS
International, regional, special-interest, local, and in-house user group conferences and meetings; and is the recipient of 23
“Best” contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Senior SAS® Consultant, Application Developer, Data Analyst, Educator and Author
Software Intelligence Corporation
E-mail: KirkLafler@cs.com
LinkedIn: http://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

Page 12

mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

