
1

MWSUG 2016 – Paper DV10-SAS

Annotating the ODS Graphics Way!

Dan Heath, SAS Institute Inc., Cary, NC

ABSTRACT

For some users, having an annotation facility is an integral part of creating polished graphics for their
work. To meet that need, we created a new annotation facility for the SAS® ODS Graphics (SG)
procedures in SAS® 9.3. Now, with SAS® 9.4, the Graph Template Language (GTL) supports annotation
as well! In fact, the GTL annotation facility has some unique features not available in the SG procedures,
such as using multiple sets of annotation in the same graph and the ability to bind annotation to a
particular cell in the graph. This presentation will cover some basic concepts of annotating that are
common to both GTL and the SG procedures. Then, I will apply those concepts to demonstrate some
unique abilities of GTL annotation.

INTRODUCTION

The abilities of the ODS graphics system have grown significantly since the system was first released in
SAS® 9.2. SAS development needs and customer feedback have helped ODS graphics become a
feature-rich system for creating a variety of graphics used in many industries.

One important feature we added was annotation support. This support was initially added to the SG
procedures in SAS 9.3, and included a new keyword-based data set definition and new capabilities. I
wrote a paper called, "Now You Can Annotate Your Statistical Graphics Procedure Graphs" (Heath,
2011), which presents the details of this functionality, along with many examples. It is interesting to note
that, since that paper was written, several of the examples no longer require annotation to create them,
including the following:

 Adding Unicode characters in tick values – You can now add Unicode characters to format
definitions.

 Splitting of tick values – You can specify this behavior as an axis fit policy.

 Creating axis-aligned tables – You can now use the AXISTABLE statement to help create these
displays.

 Using images as scatter points – You can now use the SYMBOLIMAGE statement to define an
image as a marker type that can be used anywhere that a scatter marker can be used.

Despite the advances we continue to make in functionality, there is always a need for annotation. This is
why, in SAS 9.4, we took the next step and added annotation support to the SAS® Graph Template
Language (GTL). While adding this functionality, we extended the capabilities of the annotation facility to
give users the ability to draw annotations in multiple regions and data spaces within the same graph.

In this paper, I want to begin by establishing a foundation of how the annotation facility works, both from
an SG procedure and a GTL context. Then, I will show several examples featuring the various annotation
types, focusing primarily on GTL examples.

DRAWING SPACES

Before creating annotations, it is important to understand the concept of drawing spaces. A graph
contains multiple drawing areas that can be used as a basis for drawing annotations. This is particularly
true for GTL, where layouts can be nested and combined to create more complex graphs. In Figure 1, this
diagram shows the four types of drawing spaces inside of a typical single-celled graph. These types of
graphs can be generated from PROC SGPLOT, or from GTL using a LAYOUT OVERLAY as your root
layout.

The DRAWSPACE keywords used in the data set are a combination of the drawing area and the drawing
unit. All drawing areas support pixel and percentage units. The data drawing area also supports data

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiazqurjc7KAhUKTCYKHUNaBTYQFggbMAA&url=https%3A%2F%2Fsupport.sas.com%2Fresources%2Fpapers%2Fproceedings11%2F277-2011.pdf&usg=AFQjCNHEJE8oluZoT7OaGbF4Y2bUEKcrWg&bvm=bv.113034660,d.eWE

2

value units for positioning annotations using axis values. For example, the keyword for drawing an
annotation in the wall area using percentage units is WALLPERCENT. These keywords can be specified
in the DRAWSPACE column to apply to all coordinates of the drawing function, or they can be specified
on specific drawing space columns for each coordinate of the function.

Figure 1. Drawing Spaces for a Single-Celled Graph

When using percent or pixel units, the origin for all spaces is the bottom left corner. The origin for the
DATAVALUE space depends on the direction of the axes. The annotation facility allows you to specify
values outside of the normal range to place annotations. For example, specifying WALLPERCENT and
an X coordinate of 105% will put the annotation 5% outside of the right edge of the wall. This technique
can be useful when you want to bind the placement of an exterior annotation to the position of the wall.
There are some interesting examples in my previous SG procedure annotation paper involving axis-
aligned tables that demonstrate this technique.

When creating multi-cell displays using LAYOUT LATTICE or LAYOUT GRIDDED (see Figure 2), the
graph will contain multiple layout, wall, and data spaces. In order to address the space in each of these
areas, we created a new GTL statement called ANNOTATE that binds the annotation to the layout in
which it is defined. Using the code from Figure 2 as an example, the "anno1" ANNOTATE statement can
address the spaces in the first cell and the "anno2" ANNOTATE statement can address the spaces in the
second cell. The "anno3" ANNOTATE is defined outside of the LAYOUT OVERLAYs, but inside of the
LAYOUT LATTICE. This means that the layout, wall, and data spaces of the cells are not addressable,
but you can address the layout space of the LAYOUT LATTICE (The long line under "Layout Space" in
Figure 2). The "Graph Space" is addressable from any location in the template.

3

Figure 2. Drawing Spaces in a Multi-Cell Layout

define statgraph two_cell;

begingraph / backgroundcolor=GraphDataDefault:color;

 entrytitle "This is a Title";

 layout lattice / columns=2;

 layout overlay / opaque=true;

 bandplot x=age limitupper=72 limitlower=0;

 barchart category=age response=height / stat=mean

 datatransparency=0.9 fillattrs=graphdata2;

 annotate / id="anno1"; /* can address first cell spaces */

 endlayout;

 layout overlay / opaque=true;

 bandplot x=age limitupper=72 limitlower=50;

 scatterplot x=weight y=height / datatransparency=0.75

 markerattrs=graphdata2;

 annotate / id="anno2"; /* can address second cell spaces */

 endlayout;

 annotate / id="anno3"; /* can address layout space of LAYOUT LATTICE */

 endlayout;

endgraph;

end;

The ID option in the ANNOTATION statement gives you the ability to reference specific pieces of
annotation from the annotation data set. I will use this functionality in the "embedded charts" example.

4

PADDING

It is important to note that annotations do not reserve any space on the graph – they simply draw on top
of (or behind) what exists in the graph. There might be times where you want to reserve space in the
graph for your annotations, such as a small table outside of the data area. Both GTL and the SG
procedures have an option called PAD that can be used to create this extra space. For the SG
procedures, the PAD option can control only the padding around the outside of the graph (see Figure 3),
whereas GTL supports the PAD (and OUTERPAD) options on a number of graphics features. The values
can be specified with dimensions such as inches, percent, or pixels.

60 80 100 120 140

Weight

50

55

60

65

70

H
e
ig

h
t

proc sgplot pad=20%

60 80 100 120 140

Weight

50

55

60

65

70

H
e
ig

h
t

proc sgplot pad=(right=20%)

Figure 3. PROC SGPLOT with the PAD Option

The PAD option is not your only option for creating space for annotations. If you need space within the
wall area, you can consider using the OFFSETMIN and OFFSETMAX options to move the endpoints of
the data space away from the wall edge to create some extra space that does not collide with your plot.
Also, having smaller graphical components, such as legends and entry text, inside of their own layout
cells will inherently create some extra space that can be used for annotations.

FUNCTIONS

The following list (Table 1) contains the supported annotation functions as of SAS 9.4:

Function Description

Text Draw a text string on the graph

Textcont Continue a text string from the Text function. This function is typically used for rich text situations
where you want to change the attributes of the text somewhere in the string.

Image Draw an image on the graph.
Line Draw a line on the graph.
Arrow Draw a line with an arrowhead on the graph.
Rectangle Draw a square or rectangle on the graph.
Oval Draw a circle or oval on the graph.
Polygon Draw a closed polygon on the graph. The last point is automatically connected to the first point.
Polyline Draw a multi-line figure on the graph.

Polycont Continue a polygon or polyline. The Polygon and Polyline functions specify the starting point for
the figure. The Polycont function adds an additional point per function call.

Table 1. Annotation Functions

The annotation data set definition currently has 50 reserved column names, but you will never use them
all at once. Each function uses a subset of those columns for its required and optional arguments to

5

define the annotation. Most functions are self-contained, meaning that they can be drawn using the information in

one observation without any dependence on another function call. The two main exceptions to this rule are
POLYGON and POLYLINE. These functions must be followed by one or more POLYCONT functions to draw
anything. The TEXTCONT function can be used to extend a string from the TEXT function, but it is not required to
draw a text string.

Starting at SAS 9.4, maintenance 1, we created a set annotation macros to help in the data set creation process.

There is macro for each function, as well as initialization and help macros (see Table 2). I will show an example

using these macros in the "custom legends" and "Annotated drilldown" examples.

Macro Description

%SGANNO
Initializes the annotation macros. This macro must be called before you run any of the other
annotation macros. This initialization is good for the lifetime of the session.

%SGANNO_HELP
Give help information for macros. Pass it a particular macro name or the keyword ALL for
information about all macros.

%SGTEXT Draw a text string on the graph

%SGTEXTCONT Continue a text string from the Text function. This function is typically used for rich text
situations where you want to change the attributes of the text somewhere in the string.

%SGIMAGE Draw an image on the graph.
%SGLINE Draw a line on the graph.
%SGARROW Draw a line with an arrowhead on the graph.
%SGRECTANGLE Draw a square or rectangle on the graph.
%SGOVAL Draw a circle or oval on the graph.

%SGPOLYGON Draw a closed polygon on the graph. The last point is automatically connected to the first
point.

%SGPOLYLINE Draw a multi-line figure on the graph.

%SGPOLYCONT Continue a polygon or polyline. The Polygon and Polyline functions specify the starting point
for the figure. The Polycont function adds an additional point per function call.

Table 2. Annotation Macros

When using these macros to create annotation, be careful if you intermix the macros with normal DATA
step processing, as the macros can clear out retained annotation variables and create unexpected
results.

EMPHASIS ANNOTATION

In this first example (Figure 5), I am adding a very common type of annotation that is used to notate and
emphasize part of a plot. This notation demonstrates the use of the TEXT, TEXTCONT, and ARROW
functions.

The TEXT function is probably one of the most used annotation functions. The key features of this
function include the following:

 text wrapping

 text rotation

 Unicode, superscript, and subscript support

 transparency

There are several examples using these features in my previously mentioned annotation paper. In this
example, I want to focus on creating rich text by combining the TEXT and TEXTCONT functions

The TEXTCONT function is used primarily to create rich text strings by changing the text attributes of a
string that is already started by a TEXT function. Because of this, The TEXTCONT function takes no

6

positional arguments. Once you start using the TEXTCONT function, you must continue to use it until you
complete the string. If any other function type occurs in the data set, the string is closed and drawn.

The ARROW and LINE functions are very similar. (You will see the LINE function used later.) The main
difference between them is that the ARROW function supports an additional set of columns that let you
modify the arrowhead behavior. The definition for arrows and lines are self-contained, meaning that the
positional information and the visual attributes are all defined in one observation. The X1, Y1, X2, and Y2
columns (or their character counterparts) must be specified for the annotation to be drawn.

The three columns used to control the arrowhead behavior are DIRECTION, SCALE, and SHAPE. The
DIRECTION column is used to specify which end (or both ends) of the line has or have the arrowhead.
The SCALE column is used as a scale factor for the arrowhead size. The SHAPE column is used to
specify the shape of the arrowhead. The valid shapes are in Figure 4.

Figure 4. Arrowhead Shapes

10 20 30 40 50 60

MPG (City)

$0

$50,000

$100,000

$150,000

$200,000

M
S

R
P

HybridTruckWagonSportsSedanSUVType

Is Good Gas Mileage Expensive?

These cars are VERY expensive!

Figure 5. Emphasis Annotation

7

data expensive;

 set sashelp.cars;

 where msrp >= 100000;

run;

data anno;

 set expensive (keep=msrp mpg_city) end=_last_;

 length x1space $ 11 y1space $ 11 function $ 8 textcolor $ 5;

 retain function "Arrow" x1space "datavalue" y1space "datavalue"

 x2space "wallpercent" y2space "wallpercent" x2 50 y2 75

 direction "in" scale 0.5;

 rename msrp=y1 mpg_city=x1;

 mpg_city = mpg_city + 1; /* slightly to the right of the scatter point */

 output;

 if (_last_) then do;

 function = "text";

 x1space = "wallpercent";

 y1space = "wallpercent";

 mpg_city=50;

 msrp=75;

 anchor="left";

 width=50;

 label="These cars are";

 output;

 function = "textcont";

 label=" VERY";

 textcolor="red";

 output;

 label=" expensive!";

 textcolor="black";

 output;

 end;

run;

Title "Is Good Gas Mileage Expensive?";

proc sgplot data=sashelp.cars sganno=anno;

 scatter x=mpg_city y=msrp / group=type;

 loess x=mpg_city y=msrp / nomarkers;

run;

The idea here is to start from a point of origin and draw arrows out to the cars of interest. Then, label the
arrows at the point of origin using rich text. The point of origin is retained in the "x2" and "y2" variable in
terms of "wallpercent." (See the x2space and y2space variables.) The DATA step iterates through a data
set called "expensive" that contains the cars of interest, setting the "x1" and "y1" end points of the arrow.
To simplify this process, I renamed the original columns I needed to be the "x1" and "y1" needed for the
annotation data set. I also moved the "x1" value slightly to prevent the arrow from sitting directly on the
scatter point.

After the last observation was processed, I added the observations needed to draw the rich text. There
are three observations created: one TEXT annotation and two TEXTCONT observations. The TEXT
observation established four attributes about the text:

 The position of the text in terms of "wallpercent".

 The "anchor" point of the text box to attach to the position ("left", in this case). There are nine
possible positions, including the center.

 The "width" of the text box. If the box is too small, the text will wrap into multiple lines.

8

 The initial part of the string ("These cars are")

Each of the last two TEXTCONT observations simply change the color and add another part to the string.
To render the graph, I used PROC SGPLOT to create the scatterplot with loess fit, along with the
annotation. This plot could have also been created using GTL, but it was very straightforward using
SGPLOT syntax. The remaining examples will be created using GTL.

EMBEDDED CHARTS

 This example will focus on the IMAGE function of annotation. Images can be used for adding company
logos, background watermarks, or even plot symbols to a graph. In this example, I will use them to embed
one graph into another.

Figure 6. Embedded Charts

The first part of this process involves creating the charts to embed – in this case, a pie chart:

proc template;

 define statgraph pie;

 dynamic CATVAR RESPVAR;

 begingraph / opaque=false pad=0;

 layout region;

 piechart category=CATVAR response=RESPVAR / dataskin=pressed

 datalabelcontent=(percent) datalabellocation=inside;

 endlayout;

 endgraph;

end; run;

9

One of the keys for making this graph is to make the graph background transparent. There are three
options used to achieve this effect:

 OPAQUE=FALSE – By putting this option in the BEGINGRAPH statement, the graph background
is made transparent.

 PAD=0 – The OPAQUE option does not affect the default padding around the outer edge of the
graph. Therefore, you must set PAD=0 to remove the padding and make the background
completely transparent.

 BORDER=off – This option in the ODS GRAPHICS statement turns off the border around the
outside of the graph.

Another key for making this graph is size. You want to create the graph at the size that you want it
rendered inside of the main graph. Otherwise, the text in the graph could be unreadable when you shrink
it to fit. I used the ODS GRAPHICS statement to size the graphs correctly and to uniquely name the pie
charts for reference from the annotation.

ods graphics / reset width=2in border=off imagename="pie_sales";

proc sgrender data=sashelp.shoes template=pie dattrmap=attrmap;

 dynamic catvar="product" respvar="sales";

 dattrvar product="shoes";

run;

ods graphics / imagename="pie_returns";

proc sgrender data=sashelp.shoes template=pie dattrmap=attrmap;

 dynamic catvar="product" respvar="returns";

 dattrvar product="shoes";

run;

Notice that the DATTRMAP option is used for both pie charts. The attributes map is needed for all graphs
in this composite so that the correct color is guaranteed to be associated with the correct categories. Here
is the code used to create the attributes map:

data attrmap;

retain id "shoes" linecolor "black";

length fillstyleelement $ 10;

input value $ 1-14 fillstyleelement $;

cards;

Men's Casual graphdata1

Men's Dress graphdata2

Women's Dress graphdata3

Slipper graphdata4

Women's Casual graphdata5

Boot graphdata6

Sandal graphdata7

Sport Shoe graphdata8

;

run;

I used style references instead of literal fill colors because I was only interested in correct attribute
assignment, not the value of the attributes. By using style references, the graph attributes can change if
the ODS style is changed, but I'm still guaranteed consistent assignment.

For this annotation, I needed to put two images into two different cells. The easiest way to do this is to
bind each image to the correct cell by using the ID option of the ANNOTATE statement. The following
code is the template for the gridded bar chart. Notice how the ANNOTATE statement is specified in each
cell.

10

proc template;

 define statgraph bar;

 dynamic CATVAR1 RESPVAR1 CATVAR2 RESPVAR2;

 begingraph;

 layout lattice / columns=1 rowweights=(.45 .55);

 layout overlay / xaxisopts=(display=none);

 barchart category=CATVAR1 response=RESPVAR1 / group=CATVAR1

 dataskin=pressed;

 annotate / id="Sales";

 endlayout;

 layout overlay / xaxisopts=(display=none);

 barchart category=CATVAR2 response=RESPVAR2 / group=CATVAR2

 dataskin=pressed;

 annotate / id="Returns";

 endlayout;

 endlayout;

 endgraph;

 end;

run;

The code for the annotation data set retains most of the same value for both images. The only difference
is for the ID and IMAGE columns:

data anno;

retain function "image" width 35 x1 104 y1 99 anchor "topright"

 drawspace "wallpercent";

length id $ 7 image $ 15;

input id $ image $;

cards;

Sales pie_sales.png

Returns pie_returns.png;

The ANCHOR column works the same way with images as it does with text boxes. To make the
placement easier, I set the ANCHOR to be in the "topright" because I wanted the pie charts in the top
right corner of each cell. I also specified only the width so that the system would render the pie chart
using the aspect ratio of the image.

Finally, the composite graph is create by using SGRENDER with the bar chart template and the
annotation data set. I used PROC SORT to sort the raw data in descending order to help make room for
the embedded graph. Even with the sort, the style attributes are correctly assigned because of the
attributes map.

ods graphics / width=7in imagename="bar_report";

proc sort data=sashelp.shoes out=shoes; by descending sales; run;

proc sgrender data=shoes template=bar dattrmap=attrmap sganno=anno;

 dynamic catvar1="product" respvar1="sales"

 catvar2="product" respvar2="returns";

 dattrvar product="shoes";

run;

CUSTOM LEGENDS

In this example, I used the RECTANGLE and OVAL functions to create a custom size legend to coexist
with a standard discrete legend outside of the plot area. There are a couple of ways to reserve space for
the custom legend:

11

 Combine the space created for the discrete legend with some extra bottom padding to create
enough space for the size legend.

 Put the discrete legend and the custom legend in their own LAYOUT LATTICE cell and use
ROWWEIGHTS to control the amount of space to reserve. I used this technique for this example.

Figure 7. Bubble Plot with Custom Legend

%SGANNO;

data anno;

 %SGRECTANGLE(drawspace="layoutpercent",widthunit="pixel",x1=85,y1=0,

 heightunit="pixel",anchor="bottom",width=135,height=73,

 display="all",linethickness=1,fillcolor="white",

 linecolor="GraphBorderLines:contrastcolor");

 %SGOVAL(drawspace="layoutpercent",widthunit="pixel", x1=80,y1=28,

 heightunit="pixel",width=44,height=44,display="outline",

 linethickness=1,linecolor="GraphDataDefault:contrastcolor");

 %SGOVAL(drawspace="layoutpercent",widthunit="pixel", x1=80,y1=12,

 heightunit="pixel",width=16,height=16,display="outline",

 linethickness=1);

 %SGLINE(drawspace="layoutpercent",x1=80,y1=54,x2=87,y2=54,

 linethickness=1);

 %SGLINE(drawspace="layoutpercent",x1=80,y1=21.5,x2=87,y2=21.5,

 linethickness=1);

 %SGTEXT(drawspace="layoutpercent",widthunit="pixel",x1=85.5,y1=84,

 anchor="top",width=140,textsize=10,label="Salary (in dollars)");

12

 %SGTEXT(drawspace="layoutpercent",widthunit="pixel",x1=87,y1=54,

 anchor="left",width=140,textsize=8,label="$32,816");

 %SGTEXT(drawspace="layoutpercent",widthunit="pixel",x1=87,y1=21.5,

 anchor="left",width=140,textsize=8,label="$18,444");

Instead of using standard DATA step coding to create the annotation data set, I used the SG annotation
macros instead. When you use a variety of functions and their options, it can create a lot of "holes" in your
input data lines and make it difficult to line up your data correctly. These macros can make it easier to
visualize the annotation functions and the arguments you are using. Be sure to specify the %SGANNO
macro first to initialize the macros before you start using them.

Notice that the size specification for both the RECTANGLE and OVAL functions are in terms of width and
height. For the oval shape, the width and height determine the size of the bounding box, and the oval is
effectively drawn within the bounding box. Therefore, if you want a circle (as in this case), the width and
height should be the same. Rectangles and ovals can be filled or unfilled, and there are various other
options to control their appearance.

In the BUBBLEPLOT statement below, the BUBBLERADIUSMIN and BUBBLERADIUSMAX are set to 8
pixels and 22 pixels, respectively. To synchronize the size of the annotated bubbles with the sizes used
by the bubble plot, I set the BUBBLERADIUSMIN and BUBBLERADIUSMAX (the radius) to be half of the
annotation width and height (the diameter).

proc template;

 define statgraph pie;

 dynamic CATVAR RESPVAR;

 begingraph;

 entrytitle "Survey of Engineering Jobs";

 layout lattice / rowweights=(.8 .2);

 layout overlay;

 bubbleplot y=Num x=Eng size=Dollars / datalabel=dollars

 bubbleradiusmax=22px bubbleradiusmin=8px

 group=avggrp name="bubble";

 endlayout;

 layout overlay;

 discretelegend "bubble" / halign=left title="Job Count Grouping"

 outerpad=(left=85px);

 annotate;

 endlayout;

 endlayout;

 endgraph;

 end;

run;

This template defines two cells – the first contains the plot and the second contains the two legends. I
used the ROWWEIGHTS option to give 80% of the layout height to the bubble plot and 20% to the
legends.

In the legend cell, I wanted the discrete legend on the left and the size legend on the right. I also wanted
both legends to be under the plot area. To create this layout, I used HALIGN=LEFT on the discrete
legend to move it to the left side of the cell. However, the cell boundaries are wider than the plot walls, so
I needed to bring the legend back to the right a little to get it under the plot area. To do this, I used the
OUTERPAD option to add left padding to the legend and push it back to the right. By using the
OUTERPAD option instead of the PAD option, the padding was added outside of the legend border area
instead of inside the legend border area.

Notice that the ANNOTATE statement has no arguments. When the ANNOTATE statement is specified
this way, all annotations from the data set are rendered and are bound to the layout that contains the
ANNOTATE statement. The annotations were defined to draw the size legend to the right side of the cell.

13

ANNOTATED DRILLDOWN

For this final example, I wanted to use polygon-based annotations to create a "drilldown" graph, with a
contour plot (left) of the density values represented by the boxed observations in the heat map (right).

Figure 8. Drilldown Graph

One of the biggest keys for creating a graph like this is data preparation. After finding an area of interest
in your plot, you need to determine the data range of that area and extract those observations into a
separate data set. Then, rename the columns in the subset data set and merge it with the original data
into a new data set. This merged data set is the one you will use to create the graph.

proc template;

 define statgraph drilldown;

 begingraph;

 entrytitle "Density Data Drilldown";

 layout lattice / columns=2 rowdatarange=data;

 layout gridded;

 layout overlay / xaxisopts=(offsetmin=0 offsetmax=0

 linearopts=(thresholdmin=0 thresholdmax=0))

 yaxisopts=(offsetmin=0 offsetmax=0

 linearopts=(thresholdmin=0 thresholdmax=0));

 contourplotparm x=x2 y=y2 z=density2 / name="contour";

 continuouslegend "contour" / orient=horizontal location=outside

 halign=center valign=bottom title="Density";

 endlayout;

 endlayout;

 layout overlay;

 heatmap x=x y=y / colorresponse=count xbinaxis=false

 ybinaxis=false colorstat=sum name="heatmap";

 continuouslegend "heatmap" / orient=horizontal location=outside

 halign=center valign=bottom title="Count";

 annotate;

 endlayout;

 endlayout;

 endgraph;

 end; run;

14

Without any annotation, this template produces a standard-looking gridded graph.

Figure 9. Drilldown Graph with No Annotation

The annotation for the drilldown effect is a combination of a rectangle and a filled polygon: The rectangle
surrounds the data of interest in the heat map and is specified in data coordinates. The polygon
annotation has to draw outside of the second cell area, so the drawing space changes for different
segments of the polygon. Polygon annotations automatically close the last point to the first point, which is
why I did not add a closing observation. Since some of these annotations use data coordinates from the
second cell, the ANNOTATE statement is added to the second cell of the graph template.

%SGANNO;

data anno;

%SGRECTANGLE(drawspace="datavalue",x1=0,y1=-0.5,width=9,height=16);

%SGPOLYGON(x1space="graphpercent",y1space="layoutpercent",x1=50,y1=100,

 display="fill",filltransparency=0.7,fillcolor="yellow");

%SGPOLYCONT(x1space="datavalue",y1space="datavalue",x1=-7,y1=1.1);

%SGPOLYCONT(x1space="datavalue",y1space="datavalue",x1=-1,y1=1.1);

%SGPOLYCONT(x1space="datavalue",y1space="datavalue",x1=-1,y1=-2);

%SGPOLYCONT(x1space="datavalue",y1space="datavalue",x1=-7,y1=-2);

%SGPOLYCONT(x1space="graphpercent",y1space="layoutpercent",x1=50,y1=25);

The %SGPOLYGON macro defines the polygon as being fill-only (no outline), with a yellow color at 70%
transparency. The polygon starts at the top right corner of the first cell, works over to the rectangle, runs
down the rectangle, and works back over to the bottom right corner of the first cell.

Finally, to keep the plots in each cell at a good aspect, I increased the width of the graph. I also had to
specify the height of the graph, else the ODS Graphics system would have also grown the height of the
graph to maintain the default aspect with the width.

ods graphics / width=960px height=480px;

proc sgrender data=merged template=drilldown;

run;

15

CONCLUSION

The goal of this paper has been to give you a good overview of the ODS Graphics annotation facility and
show you some examples of how the facility can be used. It is worth noting, however, that "annotations"
can be created using standard graphics syntax. For example, if the annotation is completely in data
space, consider using the POLYGON plot instead. That plot will give you the ability to draw polygons in
data space while maintaining the characteristics of a regular plot. Also, creative use of ENTRY
statements and LAYOUT GRIDDED statements can provide the ability to add text annotations to your
graph. I encourage you to explore the entire ODS Graphics system and discover all of its capabilities.

REFERENCES

Heath, Dan. 2011. “Now You Can Annotate Your Statistical Graphics Procedure Graphs.” Proceedings of
the SAS Global 2011 Conference, Las Vegas, NV: SAS Institute, Inc., Available at
http://support.sas.com/resources/papers/proceedings11/TOC.html.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Dan Heath
SAS Institute Inc.
100 SAS Campus Drive
Cary, NC 27513
Dan.Heath@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings11/TOC.html

