
1

Paper BI03-2016
SAS AUTOMATION & SAS CODE IMPROVEMENT (MAKING CODES DYNAMIC)

Arjun K Shrestha, Centene Corporation

ABSTRACT

Process automation using dynamic SAS code will save time and money, giving your team more time to
innovate rather than doing manual work. SAS automation is achieved by having a good architectural design,
database design, robust IT infrastructure, and fluid work environment with some easy considerations and out
of the box thinking, it is possible to build more dynamic SAS codes.

INTRODUCTION

This paper focuses on how architectural design, database design, IT infrastructure, fluid work environment,
and dynamic SAS code can give rise to process automation. These five components play a crucial role in
creating a product that is solid and innovative. Reducing code-dependency and database-dependency will
save maintenance cost, time, and resources, allowing the team to focus on other products. Good database
design will improve performance, for example table driven SAS code would be dynamic (see code example 1
and 3). Adding additional data in the table should not affect the code and vice versa.

In addition, this paper will focus on importance of a relationship between IT and SAS Analysts. Supporting
and understanding the benefit of the SAS language by IT is crucial since in most cases, most of the
components are IT related. Also, it is important to communicate and synchronize your ideas with other
internal stakeholders such as the team and department; without approval from your team and department
sometimes it is impossible to achieve what you want to achieve.

OVERVIEW OF THE SYSTEM COMPONENT/PLAYERS

The following graph shows different components that are important for successful process/system
automation. Each of the components is discussed further.

Architectural
Design

dBASE
Design

Dynamic SAS Code

Fluid
Environment

Robust
IT-Infratructure

Product
Process

Output

Product
Actual Product

System Component/Players

FIGURE 1

2

ARCHITECTURAL DESIGN

What is a good architectural design? In my opinion, good architectural design would have two main
components - development design and documentation.

Good architectural design reduces code and database dependency. Making code and data less dependent
will reduce maintenance cost (time and money) in the long run. That is, if we update code, there should not
be a need for database change. Similarly, if we add certain data in a sourcing table that the SAS code uses,
there should be no need or very little need for SAS code update. Build a table driven code structure so that
you can control the output without changing the code. Refer to the mapping files below for a table driven
SAS code output (See also code Example 1).

MAPPING FILE 1

OUTPUT 1

MAPPING FILE 2

3

OUTPUT 2

DATABASE DESIGN

It is important that the database design needs to align with SAS coding standards. For example, variable
length, variable type, and database naming convention are some common considerations to take into
account as you are designing the database.

Variable length - SAS does not support variable name longer than 32 characters. You will get the following
error if more than 32 characters: Variable type - Another example is variable type such as Bigint, which is
not supported by SAS. You need to cast the Bigint to integer before importing to SAS. Also, if the database
has a Bigint-type column, you cannot directly insert integer value from SAS. Instead, the user needs to
create and load data into a temporary table in the Teradata that has an integer column. Then copy data from
temporary table to original table.

Database Naming Convention – It is important to keep a consistent name for the database. I have come
across database naming convention where database name would change with each update. This will cause
issues if you want to use encrypted password. Depending upon how often the database gets updated, the
DSN database connection object needs to be configured as well.

It is possible to connect dynamically to different database residing within a server using init-string; however, it
does not support encrypted password.

TERADATA_21: Prepared: on connection 1
USING ("FACT_DIM_CK_FACT_DIM_CK_CK_FAC" INTEGER,"ACTIVE_IND" VARCHAR (1))INSERT INTO

test_table."varible_len_test_arjun" ("FACT_DIM_CK_FACT_DIM_CK_CK_FAC","ACTIVE_IND") VALUES
(:"FACT_DIM_CK_FACT_DIM_CK_CK_FAC",:"ACTIVE_IND")

TERADATA: trrlbk: ROLLBACK WORK
ERROR: Teradata insert: Column/Parameter
'test_table.varible_len_test_arjun.FACT_DIM_CK_FACT_DIM_CK_CK_FAC' does
 not exist. SQL statement was: USING ("FACT_DIM_CK_FACT_DIM_CK_CK_FAC" INTEGER,"ACTIVE_IND"
VARCHAR (1))INSERT INTO
 test_table."varible_len_test_arjun" ("FACT_DIM_CK_FACT_DIM_CK_CK_FAC","ACTIVE_IND") VALUES
 (:"FACT_DIM_CK_FACT_DIM_CK_CK_FAC",:"ACTIVE_IND"). Insert substitution values are not shown.
ERROR: ROLLBACK issued due to errors for data set CONN.varible_len_test_arjun.DATA. Note:
FACT_DIM_CK_FACT_DIM_CK_CK_FAC is actually 30 char long

Error 2 generated while creating table with variable name longer that 32 character:
23 data test;
24 input t12345678912345678901234567890abcd v $1.;
ERROR: The variable named t12345678912345678901234567890abcd contains more than 32 characters.
25 cards;

 LIBNAME SQL1 ODBC DSN=DSN_NAME USER=USER_NAME PW=" ENCRYPTED_PASSWORD" STRINGDATES=NO SCHEMA=DBO;

%LET INIT_STRING = "PROVIDER=SQLOLEDB.1; User ID=user_name; password=password; PERSIST SECURITY INFO=TRUE;
INITIAL CATALOG = database_name ; DATA SOURCE=data_source_name";
LIBNAME SQLP OLEDB INIT_STRING=&INIT_STRING. SCHEMA=DBO;

4

While designing database tables, keep in mind how it may affect the SAS code. For example, table-driven
SAS code would be more dynamic and scalable as opposed to a hard-coded SAS code. You will also need
to keep in mind how you are going to save the error code. Sometimes you might need to do edit check and
keep pass/fail records of each step of code execution. For example if it is ETL process, I prefer keeping
before insert, after insert, and duplicate count, if any.

ROBUST IT-INFRASTURCTURE

A good IT infrastructure is important for SAS support. Depending on the protocol of the company and
department, IT may have a little or a bigger role to play.

For example, you may need IT approval to turn on shell command. It is important to have shell command
capability where SAS needs to move files around. Ability to automatically send e-mail after the completion of
SAS job to respective stakeholders is a nice feature to have. However, one needs IT approval to use e-mail
feature in SAS. Finally, while scheduling of SAS jobs, you need IT support.

So it is important that IT work for SAS support. However, the structure may vary based on the organization
goals. The IT support is either built around SAS, or SAS code needs to accommodate IT requirements, or
both IT and SAS requirement are compromised for common goal.

IT-Relationship

IT-Team SAS-Team

SAS-
Team

IT-Team
SAS-

Team IT-Team

FIGURE 2

FLUID ENVIRONMENT

If you have a system where moving from Development to Test and Test to Production is fluid, then the
product development and bug fixing will be very smooth, robust, and dynamic. I have seen structure where
individuals are empowered and trained to use all three environments. There is hierarchical structure, where
certain environment is run by specific stakeholders at a specific time. Both have pros and cons, however the
former is much better than the later.

The culture to accept change is also equally important. For example, stakeholders get apprehensive to use a
program, where they have little knowledge. It does not hurt to give it a try. Of course, you have to keep in
mind the existing resources that are in your exposure. Your ideas need to follow your company policies and
procedure.

A SIMPLE SYSTEM ARCHITECTURE

The figure below represents system architecture: a user select certain job to complete; the JavaScript
captures the necessary parameter and passes them to Java or .NET process; depending on the task, Java
or .NET process then calls SAS process and updates database.

5

EXAMPLE 1

Dynamic SAS Code

DATA MAIN;

 INPUT KEY VALUE $;

 CARDS;

 1 DEMO

 ;

Interacts

decision

User

dBASE

Java Process
.NET Process

SAS Process/
Program

Interface
HTML/ASP page

Javascript

SYSTEM ARCHITETURE

6

RUN;

DATA SECONDARY (WHERE=(KEY IS NOT NULL));

 INPUT KEY VISIT_NUM COST VISIT $20. ;

 CARDS;

 1 1 100 NEPAL

 1 2 200 KANSAS

 1 3 100 ST._LOUIS

 1 4 10 TROY

 1 5 50 COLLINSVILLE

 1 6 11 EDWARDSVILLE

 1 7 500 NEW_YORK

 1 8 600 DC

 1 9 400 NASHVILLE

 1 10 700 AUSTIN

 1 1000 900 X_COUNTRY

 ;

RUN;

/***

 METHOD 1

**/

PROC SQL;

 CREATE TABLE FINAL AS

 SELECT A.KEY

 , A.DEMO

 , C1.COST AS NEPAL

 , C2.COST AS KANSAS

 , C1000.COST AS X_COUNTRY

 FROM MAIN AS A

 LEFT JOIN SECONDARY AS C1

 ON A.KEY = C1.KEY

 AND VISIT_NUM=1

 LEFT JOIN SECONDARY AS C2

 ON A.KEY = C1.KEY

 AND VISIT_NUM=2

 LEFT JOIN SECONDARY AS C1000

 ON A.KEY = C1.KEY

 AND VISIT_NUM=1000

;

QUIT;

/***

 METHOD 2

**/

PROC SQL;

 CREATE TABLE FINAL AS

 SELECT A.KEY

 , A.VALUE

 , COST.C1 AS NEPAL

 , COST.C2 AS KANSAS

 , COST.C1000 AS X_COUNTRY

 FROM MAIN AS A

 LEFT JOIN (

 SELECT DISTINCT KEY

 , MAX(C1) AS C1

 , MAX(C2) AS C2

 , MAX(C1000) AS C1000

 FROM (

 SELECT KEY

 , CASE WHEN VISIT_NUM=1 THEN COST END AS C1

 , CASE WHEN VISIT_NUM=2 THEN COST END AS C2

7

 , CASE WHEN VISIT_NUM=1000 THEN COST END AS C1000

 FROM SECONDARY

)AS INNER_A

) AS COST

 ON A.KEY=COST.KEY

;

QUIT;

/***

 METHOD 3

**/

PROC TRANSPOSE DATA=SECONDARY(WHERE=(VISIT_NUM IS NOT NULL)) OUT=SECONDARY_OUT (DROP=_NAME_)

;

 *TRANSPOSE ON;

 BY KEY;

 *TRANSPOSE VARIABLE;

 ID VISIT;

 *TRANSPOSE VALUE;

 VAR COST;

RUN;

PROC SQL;

 CREATE TABLE FINAL AS

 SELECT MAIN.KEY

 , MAIN.VALUE

 , SECONDARY.*

 FROM MAIN AS MAIN

 LEFT JOIN SECONDARY_OUT AS SECONDARY

 ON MAIN.KEY =SECONDARY.KEY

 ;

QUIT;

/***

 METHOD 3

WHAT DO YOU DYNAMICALLY CHANGE THE COLUMN ORDER?

HOW DO YOU DYNAMICALLY CHANGE THE NAME OF THE FIELD?

ONE SOLUTION: CREATE MAP FILE OR TABLE

**/

PROC IMPORT DATAFILE="\\MAP_FILE_LOCATION\MAP.XLSX"

 DBMS=XLSX

 OUT=MAP(WHERE=(UPCASE(ACTIVE_IND) = 'Y'));

RUN;

%LET DREF = %SYSFUNC(OPEN(MAP, IS));

%LET TOTAL_ROWS =%SYSFUNC(ATTRN(&DREF, NLOBS));

%LET DCLOSE = %SYSFUNC(CLOSE(&DREF.));

%PUT DREF=&DREF.;

%PUT TOTAL_ROWS=&TOTAL_ROWS.;

%PUT DCLOSE=&DCLOSE.;

PROC SQL NOPRINT;

 SELECT ORDER

 , VISIT_NUM

 , COMPRESS(VISIT,'.-&*')

 INTO :ORDER1-:ORDER&TOTAL_ROWS.

 , :VISIT_NUM1-:VISIT_NUM&TOTAL_ROWS.

 , :VISIT1-:VISIT&TOTAL_ROWS.

 FROM MAP

 ORDER BY ORDER

 ;

QUIT;

%PUT ORDER = &ORDER1.;

%PUT VISIT_NUM = &VISIT_NUM1.;

%PUT VISIT = &VISIT1.;

8

OPTION MPRINT MLOGIC;

%MACRO DYNAMIC_TRANSPOSE(OUT_DATASET=);

 PROC SQL;

 CREATE TABLE &OUT_DATASET. AS

 SELECT A.KEY

 , A.VALUE

 %DO K=1 %TO &TOTAL_ROWS.;

 , COST.C&K. AS &&VISIT&K..

 %END;

 FROM MAIN AS A

 LEFT JOIN (

 SELECT DISTINCT KEY

 %DO J=1 %TO &TOTAL_ROWS.;

 , MAX(C&J.) AS C&J.

 %END;

 FROM (

 SELECT KEY

 %DO I = 1 %TO &TOTAL_ROWS.;

 , CASE WHEN VISIT_NUM=&&VISIT_NUM&I.. THEN COST END AS C&I.

 %END;

 FROM SECONDARY

)AS INNER_A

) AS COST

 ON A.KEY=COST.KEY

 ;

 QUIT;

%MEND DYNAMIC_TRANSPOSE;

%DYNAMIC_TRANSPOSE(OUT_DATASET=FINAL2);

MAPPING FILE 1

OUTPUT 1

9

MAPPING FILE 2

OUTPUT 2

EXAMPLE 2

SAS EG autoexec node containing configuration SAS code:

Create Executable batch file using VBScript. Update the project location and save file as .VBS

OPTION EXPLICIT
DIM APP
CALL DOWORK
'SHUT DOWN THE APP
IF NOT (APP IS NOTHING) THEN
 APP.QUIT
 SET APP = NOTHING
END IF

SUB DOWORK()

 ' START UP ENTERPRISE GUIDE USING THE PROJECT NAME
 DIM PRJNAME
 DIM PRJOBJECT
 PRJNAME = “PROJECT_LOCATION\TEST_PROJECT.EGP"
 SET APP = CREATEOBJECT("SASEGOBJECTMODEL.APPLICATION.6.1")

10

 IF CHECKERROR("CREATEOBJECT","CREATED OBJECT SUCCESSFULLY") = TRUE THEN
 EXIT SUB
 END IF

 ' OPEN THE PROJECT
 SET PRJOBJECT = APP.OPEN(PRJNAME,"")

 IF CHECKERROR("APP.OPEN","EG APPLICATION OPENED SUCCESSFULLY") = TRUE THEN
 EXIT SUB
 END IF

 ' RUN THE PROJECT
 PRJOBJECT.RUN

 IF CHECKERROR("PROJECT.RUN","PROJECT RAN SUCCESSFULLY") = TRUE THEN
 EXIT SUB
 END IF

 ' SAVE THE NEW PROJECT
 PRJOBJECT.SAVE

 IF CHECKERROR("PROJECT.SAVE","PROJECT SAVED SUCCESSFULLY") = TRUE THEN
 EXIT SUB
 END IF

 PRJOBJECT.CLOSE
 IF CHECKERROR("PROJECT.CLOSE","PROJECT CLOSED SUCCESSFULLY") = TRUE THEN
 EXIT SUB
 END IF

 MSGBOX("EXECUTED SUCCESSFULLY")
END SUB

FUNCTION CHECKERROR(FNNAME,NUM)
 CHECKERROR = FALSE
 DIM STRMSG
 DIM ERRNUM
 IF ERR.NUMBER <> 0 THEN
 STRMSG = NUM & "ERROR #" & HEX(ERR.NUMBER) & VBCRLF & "IN FUNCTION " & _
 FNNAME & VBCRLF & ERR.DESCRIPTION
 MSGBOX STRMSG
 CHECKERROR = TRUE
 ELSE
 'MSGBOX(NUM)
 END IF
END FUNCTION

EXAMPLE 3

/***

 GET ALL THE VARIABLES FROM SOURCE DATA

 KEEP ONLY REQUESTED VARIABLES, FLAG IF NOT FOUND IN SOURCE TABLE

**/

*%LET ID=2;

DATA SOURCE_DATA;

 INFILE CARDS DLM=',';

 INPUT ID NAME $ A_NUM B_NUM C_NUM D_NUM E_NUM F_NUM G_NUM H_NUM I_NUM J_NUM K_NUM

 A_DEN B_DEN C_DEN D_DEN E_DEN F_DEN G_DEN H_DEN I_DEN J_DEN

K_DEN ;

 CARDS;

 1,ROBERT,1,3,4,5,2,3,4,7,1,2,7,1,2,3,5,6,7,8,7,5,9,0

 2,HARRY,1,2,3,5,6,7,8,7,5,9,0,1,3,4,5,2,3,4,7,1,2,7

 ;

RUN;

/***

 A=SCORE0

11

 B=SCORE1

 C=SCORE2

 D=SCORE3

 E=SCORE4

 F=SCORE5

 G=SCORE6

 H=SCORE7

 I=SCORE8

 J=SCORE9

 K=SCORE10

**/

DATA _MAP;

 INFILE CARDS DLM=',';

 INPUT ID ORDER INPUT_VAR $ OUTPUT_VAR $;

 CARDS;

 1,1,A,SCORE0

 1,2,B,SCORE1

 1,3,C,SCORE2

 1,4,I,SCORE8

 2,1,A,SCORE0

 2,2,G,SCORE6

 2,3,B,SCORE1

 2,4,K,SCORE10

 2,5,L,SCORE11

RUN;

%MACRO RUN_ID(ID=);

 DATA _VARNAMES (KEEP=VNAME);

 LENGTH TYPE $4.;

 SET SOURCE_DATA (OBS=1) ;

 ARRAY N{*} _NUMERIC_ ;

 DO I = 1 TO DIM(N) ;

 VNAME = VNAME(N{I}) ;

 TYPE='NUM';

 OUTPUT ;

 END ;

 ARRAY C{*} _CHARACTER_ ;

 DO I = 1 TO DIM(C) ;

 VNAME = VNAME(C{I}) ;

 TYPE='CHAR';

 OUTPUT ;

 END ;

 RUN ;

 PROC SQL;

 CREATE TABLE _FINAL_VARNAMES AS

 SELECT DISTINCT *

 FROM

 (

 SELECT TRANWRD(VNAME,'_NUM','') AS VAR_FINAL

 FROM _VARNAMES(WHERE=(INDEX(VNAME,'_NUM')>0))

 UNION

 SELECT TRANWRD(VNAME,'_DEN','') AS VAR_FINAL

 FROM _VARNAMES(WHERE=(INDEX(VNAME,'_DEN')>0))

)

 ;

 QUIT;

 PROC SQL NOPRINT;

 SELECT STRIP(VAR_FINAL) INTO :S_VAR_ALL SEPARATED BY ' '

 FROM _FINAL_VARNAMES

 ;

 QUIT;

 %LET S_VAR_ALL=&S_VAR_ALL.;

 %PUT S_VAR_ALL=&S_VAR_ALL.;

12

 /***

 GET THE REQUESTED VARIABLES FROM MAPPING

 **/

 PROC SQL;

 CREATE TABLE _HVARS AS

 SELECT INPUT_VAR, OUTPUT_VAR

 FROM _MAP

 WHERE ID=&ID.

 ORDER BY ORDER

 ;

 QUIT;

 %LET IVARCOUNT=&SQLOBS.;

 %PUT IVARCOUNT=&IVARCOUNT;

 PROC SQL;

 SELECT INPUT_VAR

 , OUTPUT_VAR

 INTO :INPUTVAR1-:INPUTVAR&IVARCOUNT.

 , :OUTPUTVAR1-:OUTPUTVAR&IVARCOUNT.

 FROM _HVARS

 ;

 QUIT;

 PROC SQL NOPRINT;

 SELECT '''' || STRIP(INPUT_VAR) || '''' INTO :INPUT_VAR_ALL SEPARATED BY ','

 FROM _HVARS

 ;

 QUIT;

 %LET PVARCOUNT=&SQLOBS.;

 %PUT PVARCOUNT=&PVARCOUNT;

 %PUT INPUT_VAR_ALL=&INPUT_VAR_ALL;

 /***

 CREATE EXLUDING MACRO VARIABLE

 **/

 PROC SQL NOPRINT;

 SELECT STRIP(VAR_FINAL) || '_DEN'

 , STRIP(VAR_FINAL) || '_NUM'

 INTO :EXCLUDE_VAR_ALL_D SEPARATED BY ' '

 , :EXCLUDE_VAR_ALL_N SEPARATED BY ' '

 FROM _FINAL_VARNAMES

 WHERE STRIP(VAR_FINAL) NOT IN (&INPUT_VAR_ALL.)

 ;

 QUIT;

 %LET EVARCOUNT=&SQLOBS.;

 %PUT EVARCOUNT=&EVARCOUNT;

 %PUT EXCLUDE_VAR_ALL_D=&EXCLUDE_VAR_ALL_D;

 %PUT EXCLUDE_VAR_ALL_N=&EXCLUDE_VAR_ALL_N;

 /***

 CREATE DATASET THAT CONTAINS REQUESTED VARIABLES. PUT -1 VALUE WHEN THE REQUESTED

 VARIABLE IS NOT FOUND

 **/

 %MACRO LOOP;

 PROC SQL;

 CREATE TABLE DEMO_&ID. AS

 SELECT ID,

 NAME,

 %DO I=1 %TO &IVARCOUNT.;

 %IF %INDEX(&S_VAR_ALL.,&&INPUTVAR&I.) > 0 %THEN %DO;

 SUM(&&INPUTVAR&I.._NUM)/

SUM(&&INPUTVAR&I.._DEN) AS &&OUTPUTVAR&I.._RATE,

 %END;

 %ELSE %DO;

 -1 AS &&OUTPUTVAR&I.._RATE,

 %END;

13

 %END;

 %DO I=1 %TO &IVARCOUNT.;

 %IF &I NE &IVARCOUNT. %THEN %DO;

 %IF %INDEX(&S_VAR_ALL.,&&INPUTVAR&I.) > 0 %THEN %DO;

 SUM(&&INPUTVAR&I.._DEN) AS &&OUTPUTVAR&I.._DEN,

 SUM(&&INPUTVAR&I.._NUM) AS &&OUTPUTVAR&I.._NUM,

 %END;

 %ELSE %DO;

 -1 AS &&OUTPUTVAR&I.._DEN,

 -1 AS &&OUTPUTVAR&I.._NUM,

 %END;

 %END;

 %ELSE %DO;

 %IF %INDEX(&S_VAR_ALL.,&&INPUTVAR&I.) > 0 %THEN %DO;

 SUM(&&INPUTVAR&I.._DEN) AS &&OUTPUTVAR&I.._DEN,

 SUM(&&INPUTVAR&I.._NUM) AS &&OUTPUTVAR&I.._NUM

 %END;

 %ELSE %DO;

 -1 AS &&OUTPUTVAR&I.._DEN,

 -1 AS &&OUTPUTVAR&I.._NUM

 %END;

 %END;

%END;

 FROM SOURCE_DATA(DROP=&EXCLUDE_VAR_ALL_D. &EXCLUDE_VAR_ALL_N.)

 WHERE ID=&ID.

 ;

 QUIT;

 %MEND;

 %LOOP;

%MEND RUN_ID;

%RUN_ID(ID=1);

%RUN_ID(ID=2);

.

CONCLUSION

SAS automation is achieved through good architectural design, database design, IT-Infrastructure, and most
importantly the team, department, and company culture. One business process is linked to another, often
overlapping. You need to foresee the need and scope of the project. Making SAS codes as dynamic and
independent as possible, helps to produce an awesome product.

14

REFERENCES

http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a001328775.htm

https://support.sas.com/resources/papers/EffectivelyMovingSASDataintoTeradata.pdf

http://support.sas.com/kb/14/700.html

https://communities.sas.com/t5/SAS-Enterprise-Guide/Automation-in-EG-using-VBScript/td-p/189324

http://support.sas.com/documentation/cdl/en/lrcon/68089/HTML/default/viewer.htm#p0ji1unv6thm0dn1gp4t0
1a1u0g6.htm

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Arjun K Shrestha
Centene Corporation
618-789-4833
shresthaarjun@yahoo.com

http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#a001328775.htm
https://support.sas.com/resources/papers/EffectivelyMovingSASDataintoTeradata.pdf
http://support.sas.com/kb/14/700.html
https://communities.sas.com/t5/SAS-Enterprise-Guide/Automation-in-EG-using-VBScript/td-p/189324
http://support.sas.com/documentation/cdl/en/lrcon/68089/HTML/default/viewer.htm#p0ji1unv6thm0dn1gp4t01a1u0g6.htm
http://support.sas.com/documentation/cdl/en/lrcon/68089/HTML/default/viewer.htm#p0ji1unv6thm0dn1gp4t01a1u0g6.htm
mailto:shresthaarjun@yahoo.com

