
1 

MWSUG 2016 – Paper BB34-SAS 

Data Analysis with User-Written DS2 Packages 

Robert Ray and William Eason, SAS Institute Inc., Cary, NC  

ABSTRACT  

The DATA step and DS2 both offer the user a built-in general purpose hash object that has become the 
go-to tool for many data analysis problems. However, there are occasions where the best solution would 
require an object specifically customized for the problem space. The DS2 package syntax enables the 
user to create objects that can be linked to form structures in memory such as trees or lists that can then 
be traversed and manipulated. For data that can describe many more states than actually exist, dynamic 
structures such as this can provide a compact way to represent and analyze the data. The SAS® In-
Database Code Accelerator enables these custom packages to be deployed in parallel on massive data 
grids.  Further, with the use of the SAS Macro facility, it is possible to create a package template that 
facilitates code reuse in a strongly typed system.  

INTRODUCTION  

SAS DATA step programming has traditionally been limited to a few built-in data elements such as 
variables, variable arrays, temporary arrays, and, more recently, the hash object. The introduction of the 
hash object gave the user a powerful dynamic structure that quickly became one of the most used tools in 
the DATA step toolbox. The hash object allows the user to store selected variables in memory and quickly 
access a subset using a single or compound key. As flexible as the hash is, it is still a symmetric structure 
where the dimensions of each element are fixed at initialization. While the number of hash entries can 
grow with the data, the size of each hash element is fixed.  Most modern languages have the ability to 
define an arbitrary combination of fundamental data types into custom structures or objects and include 
the ability to create links between two or more of these objects to create complex structures in memory.  
User-created DS2 packages give this same power to the SAS programmer, which is particularly useful 
when the structure can be used to efficiently represent fundamentally sparse data.  If sparse data is 
represented as an array, the array is primarily filled with zero or missing data points that occupy memory 
but are not needed to represent the problem space.  To avoid inefficient memory utilization, SAS 
procedures such as PROC FREQ and PROC SUMMARY use compact linked structures such as trees or 
hashes to efficiently aggregate statistics in memory.  

In this paper we will show how DS2 packages can be used to create linked in-memory structures in 
general, and then we will apply that to a specific data analysis task. The example code can be easily 
modified to work in your particular problem space. In addition, we will show how to extend specific code to 
be more generic through the use of template techniques with SAS macros.  

DS2 PACKAGE SYNTAX BY EXAMPLE 

One of the useful features of DS2 is its package syntax that enables the user to create compound 
structures and assign actions (methods) to these structures. In essence, the user is creating objects in 
the language sense although DS2 is not a full object-oriented language. A DS2 package cannot inherit 
attributes or methods from another package but it can contain references to other packages and therefore 
can support composition (has-a) relationships.  While DS2 does not offer inheritance we will see that in a 
practical sense, this limitation does not prevent us from achieving code reuse through the principal of 
genericity.  

Let’s start with a very simple list package, myList,that holds a specific element called myElement followed 
by a small data program that will exercise the two packages.  

  



2 

proc ds2; 

/*-- Define a simple list element --*/ 

package myElement/overwrite = yes; 

   dcl package myElement next; 

   dcl int d; 

    

   /*-- Custom constructor with parameter --*/ 

   method myElement( int d ); 

      this.d = d;  /*-- Use “this” to differentiate d’s --*/ 

   end; 

 

   method print(); 

      put d=; 

   end; 

   /*-- A default delete method is implicitly defined --*/ 

endpackage; 

 

/*-- Define a package to hold the elements --*/ 

package myList/overwrite=yes; 

   dcl package myElement front; 

   dcl package myElement back; 

 

   method add( package myElement element ); 

      if null( front ) then do;  /*-- first element --*/ 

         front = element; 

         back = element; 

      end; 

      else do;  /*-- link in new element --*/ 

         back.next = element;  

         back = element; 

      end; 

   end;  

 

   method printFront(); 

      if ^null( front ) then front.print(); 

      else put 'Front is NULL';    

   end; 

 

   method printBack(); 

      if ^null( back ) then back.print(); 

      else put 'Back is NULL'; 

   end; 

 

   /*-- A custom destructor – called when references go to zero --*/ 

   method delete();   

      dcl package myElement cur next; 

      cur = front; 

      /*-- Explicitly empty the list --*/ 

      do while ( ^null( cur ) );  

         next = cur.get_next(); 

         cur.print(); 

         cur.delete(); 

         cur = next; 

      end; 

   end; 

endpackage; 

run; 



3 

data _null_; 

   method run(); 

      dcl int i; 

      dcl package myList ml();  /*-- Instantiated --*/ 

      dcl package myElement me;   /*-- Reference only --*/ 

      do i = 1 to 10; 

         me = _new_ myElement(i); /*-- Constructor with parms --*/ 

         ml.add(me); 

      end; 

      ml.printFront(); 

      ml.printBack(); 

   end; 

enddata; 

run; 

quit; 

 
Notice how the myElement package declares a reference to itself, next, as the first element of its internal 
structure. This is the foundation of building linked structures in memory: a package’s ability to reference 
itself. Next it declares the content that the list will hold, in this case a single integer called d. Two methods 
are defined.The first myElement(int d) has the same name as the package, which means it is the 
constructor for the package. It is not necessary to define a constructor, but, if you do, it can take 
initializing parameters such as the value of d in this case. The second method, print(), simply calls put on 
d to display the value of the element in the SAS log. A default destructor is supplied by the compiler if a 
user-written delete() method is not included.  

Next we have the myList package that includes two elements of type myElement, front and back. With 
those and the add() method, you have a simple list structure.  To illustrate the list there is a printFront() 
and printBack() methods which in turn calls the print() method of the myElement package. Finally, there is 
a custom delete() method, which is recommended whenever one package holds references to other 
packages, which could lead to a circle of references. When the execution leaves the run() method, 
delete() is implicitly called on the instance of myList held by ml, which in-turn explicitly calls delete on all 
the instances of myElement in the list. We will discuss instance management further in the section.  

So there we have a simple but very specific list. DS2 is a strongly typed language that is good for 
producing code that has predictable run-time behavior but, being strongly typed also works against code 
genericity and reuse. Later in the paper we will discuss techniques for improving the reusability of 
fundamental algorithms such as lists by creating the effect of package templates.  

PACKAGE INSTANCE MANAGEMENT 

It is important to understand the difference between a package instance and a package reference 
(variable).  An instance is the in-memory realization of a package, while a variable references (contains 
the memory address of) an instance. Anytime you declare an instance of a DS2 package with an 
instantiating declaration – one that ends with parenthesis and possibly enclosing arguments – you are 
creating an instance of the package in the declaration. The other mechanism to create an instance is 
using the _NEW_ operator with the package name along with a parameter list. When an instance is 
created, memory for the instance attributes along with hidden support structures is allocated and 
associated with the instance reference.  If you assign another instance to the reference, the original 
instance will be abandoned. For example, consider the code below:  

 

dcl package myElement me(0);   /*-- Abandoned instantiation --*/ 

dcl package myList ml();    /*-- Instantiated --*/ 

   do i = 1 to 10; 

      me = _new_ myElement(i); /*-- Constructor with parms --*/ 

      ml.add(me); 

   end; 

 



4 

You will notice that the declaration of me includes “(0)”, which means that an instance was assigned at 
that point.  Later, that instance is replaced with the instance created in the loop with the _NEW_ operator.  
In this case, one instance of myElement was abandoned when I= 1. The DS2 run time will recover these 
instances once it determines that there are no active references to the instance. This reference counting 
memory recovery scheme was added in the SAS 9.4M3 release.  When the reference count of an 
instance goes to zero, its delete() method (or the default destructor) will be called on that instance. If the 
instance contains instance references such as is the case with the next field of our myElement package, 
the delete() method will be called on those elements. As you can imagine, if you had a very long list of 
elements, the function call stack limit could be exceeded. Therefore it is important that a custom delete 
method be created for packages that could hold this type of instance list. You might be thinking that it 
would be elegant to simply create a delete method in the myElement that would call delete() on next.  For 
long lists, that could also result in call stack overflow.  

You might ask “What if another package also held a reference to a list element?” Instance reference is 
actually by indirection. For each instance, there is a small instance “handle.” When delete() is called 
explicitly on a package instance, the actual instance memory is freed and the reference to the memory in 
its associated handle is set to NULL. Any further operations on that instance from other references will 
result in a “NULL package reference error” message being sent to the log and a program halt. This 
scenario is demonstrated by the code below:  

 
proc ds2; 

data _null_; 

method run(); 

   dcl package myList m1 m2(); 

   m1 = m2; /*-- m1 and m2 now reference the same instance --*/ 

   m2.printFront(); 

   m1.printBack(); 

   m2.delete(); /*-- instance body is gone, handle set to NULL --*/ 

   m1.printFront(); /*-- m1 is now null, so this will cause an error --*/ 

end; 

enddata; 

run; 

quit; 

 

Package Instance Size 

Let’s talk about DS2 package instance size in memory. Currently (SAS 9.4M3 and earlier), the instance 
model for DS2 is fairly dense. For example, instances of myElement in the code above will actually 
occupy around 2k bytes of memory. The fixed overhead does not vary based on the number of private 
attributes declared and includes things such as private memory pools for each instance. This is an 
important concept to understand before embarking on building complex structure of package instances. 
Memory savings over traditional data structures such as arrays will be evident only for very sparse data. 
There is currently a project underway to minimize the instance overhead so that complex structures 
composed of small packages will require significantly less memory. The same instance of myElement in 
the new model will consume around 0.2k bytes. This ten-fold reduction in instance overhead will expand 
the scenarios where lists of custom packages create the smallest memory footprint.  

DATA ANALYSIS PROBLEM 

The hypothetical data analysis problem we will explore is as follows.  The user has transactions records 
for customer visits to their website. Each record has the customer ID, timestamp, and an activity code 
indicating which activity on the website the customer selected. There are hundreds of thousands of 
customers and tens of thousands of possible activities, but any one customer will historically engage in 
less than 100 different activities. The objective of the analysis is to generate frequency counts of activities 
for each customer so that a top-N list of activities can be generated. We also need to understand the 
activity pattern for each customer – what are the first-N activities in order for each customer ̶  which gives 



5 

insight into navigation patterns and how they relate to overall top-N list. In doing so, we hope to collect 
data that will help correlate initial navigation patterns with eventual browsing and buying patterns.   

Custom Ordered-Set Package 

What we need is a succinct way to capture the activity code and accumulated frequencies while at the 
same time maintain the order of occurrence. For this, we choose to create a custom DS2 package that 
implements aspects of a typical ordered-set collection class where there is a set of unique elements 
(keyed by activity code) that can be traversed in one or more criteria. Each element of the set also 
contains a cumulative frequency and the earliest start-time for a particular activity code. We will need to 
be able to reorder the set by frequency and start-time at some point, so this ordered-set will need a 
“reordering” method as well. We will also need a simple list class that can manage free customer activity 
instances between BY-groups.  

Below are the initial lines of a customer activity package that will be embedded in a generic collection 
“node.”  As you can see from the node package, a tree algorithm has been used to implement the set. In 
this case, it will be an AVL height-balanced binary tree. The OSet structure will actually maintain two 
ordered states with each insert: order by key ascending and order of arrival. The AVL tree provides an 
efficient key lookup during the date accumulation phase to maintain uniqueness and is used to reorder 
the data for the final output phase.   

 
package CustomerActivity; 

   dcl int activityCode; 

   dcl int frequency; 

   dcl double startTime; 

<…> 

package CustomerActivtyNode; 

   dcl package CustomerActivity key; 

   /*-- For the list --*/ 

   dcl package Node next; 

   /*-- For the AVL --*/ 

   dcl package Node left right;   

<…> 

package CustomerActivityList; 

   dcl package CustomerActivityNode front back; 

   <…> 

package CustomerActivityOSet; 

   dcl package CustomerActivtyNode head; 

   dcl package CustomerActivtyNode front back; 

   dcl int comparisonType; 

<…> 

 
Using this set of packages we will build our custom solution to navigate a large data space using package 
instances to represent discrete data values. The strategy will be to use BY-group processing on the data 
based on customer ID and timestamp. We will reuse a single instance of our Ordered-set (OSet) package 
for each BY group and “reset” it between customers to minimize the frequency of instance creation. For 
each BY group, the frequencies for each unique activity will be accumulated by searching the list and 
updating the value.  Naturally as the list grows, linear searching will be prohibitively expensive, which is 
why our OSet class leverages a balanced binary tree to achieve lookup in O(log N) time. Below is an 
illustration of the links built inside the OSet package to maintain both an order-of-arrival list and a sorted 
binary tree.  
  



6 

 

 
Figure 1. Ordered-Set Internal Structure. Orange Links Are List Links. Green Links Are Tree Links. 

 

 
One of the required methods for a node-key is compare(), which is called at every step of tree traversal to 
establish the desired order. Below is a code segment for the CustomerActivity package showing part of 
the compare() method. A return value of -1 means that this should precede the parameter key ca 
whereas 1 means that ca should precede this.  A return value of 0 means that this and ca are the same 
key value. Only the “0” comparison type can and must return ‘0’, meaning two keys are equal̶̶   which is 
required for the initial set build where each activity node must be unique. Reordering the set by frequency 
or start time must include tie-breaking and never return 0 because 0 indicates duplicate, which would 
invalidate the set after it has been established.   
 

package CustomerActivity; 

   dcl int activityCode; 

   dcl int frequency; 

   dcl double startTime; 

   /*-- user written set/get required for use inside package now --*/ 

   method getFrequency() returns int; 

      return self.frequency;   

   end; 

   method getActivityCode() returns int; 

      return self.activtyCode; 

   end; 

   method getStartTime() returns double; 

      return self.startTime; 

   end; 

   method compare(package CustomerActivity ca, int type) returns int; 

      dcl int caInt; 

      dcl double caDbl; 

      if type = 0 then do; 

         caInt = ca.getActivityCode();   

         if this.activityCode > caInt then return -1; 

         if this.activityCode < caInt then return 1;  

         return 0; 

      end; 



7 

      if type = 2 then do; 

         caInt = ca.getFrequency(); 

         if this.frequency > caInt then return -1; 

         if this.frequency < caInt then return 1; 

         caInt = ca.getActivityCode(); /*-- tie break on activity --*/ 

         if this.activtyCode < caInt then return -1; 

         return 1;  /*-- never return zero for this comp type --*/ 

      end; 

      <…> 

 

Code Acceleration and Distributed BY-Group Processing 

This solution will be run in a THREAD program so it can leverage one of the SAS
®
 In-Database Code 

Accelerator products, which means that BY groups will be distributed across many separated nodes 
during execution. An important concept to understand with distributed BY-group processing is that the 
distribution process might hash the combined values of all BY variables taken together. This means that 
when multiple BY variables are in play such as state and city, that “Nevada / Las Vegas” might not occur 
on the same grid node as “Nevada / Reno”. Logic that depends on traditional, single-threaded execution 
where first.city is nested inside first.state cannot be counted on to “see” all the cities of Nevada in 
alphabetical order. However, using the single BY variable State will ensure that all the cities in Nevada 
will be clustered together in a single node/BY-group but in no specific order. Likewise, we cannot use 
both customerID and startTime as BY variables if we intend that all the rows belonging to a specific 
customer are clustered together on the same node/process. We must use the single BY variable, 
customerID, and therefore cannot assume any ordering of records with regard to startTime. For this 
reason, we will need to reorder our list of activities twice on output, once by frequency and again by 
startTime.  

The Main Processing Thread Program 

Now we are going to look at some segments of the primary data processing thread program. Below are 
the declarations for the primary data processing thread program. Placing the logic in a thread program 
enables it to process the data in parallel and also makes the code eligible for code acceleration. By 
writing logic that is compatible with a program that sees only part of the input data, you are assured that 
the program will translate to large scale distributed database systems.  

 

thread ActivityAnalysis / overwrite = yes; 

   /*-- Primary storage structure – Ordered-set --*/ 

   dcl package CustomerActivityOSet activities;  

   /*-- Simple lists to manage data nodes --*/ 

   dcl package CustomerActivityList freeList; 

   /*-- An iterator to traverse the OSet --*/ 

   dcl package CustomerActivityIterator acti; 

   /*-- The user defined data element of the OSet --*/ 

   dcl package CustomerActivity act find_result; 

   dcl int activityCode frequency; 

   dcl double startTime; 

 

   /*-- output variables --*/ 

   vararray int time_activity_[&n]; 

   vararray double time_[&n]; 

   vararray int freq_activity_[&n]; 

   vararray int freq_[&n]; 

   dcl bigint customerID; 

 

 

 



8 

   method init(); 

      /*-- initialize OSet comparison type 0 --*/ 

      activities = _new_ CustomerActivityOSet(); 

 

      /*-- create empty free list to hold “recycled” activity nodes --*/ 

      freeList = _new_ CustomerActivityList(); 

   end; 

 
With two of our packages initialized, we are now ready to enter the implicit SET loop of the RUN method.  
Remember that the data has three fields, CustomerID, activityCode, and startTime. The logical steps will 
be as follows: 

1. Allocate or reuse an activity node. 

2. Initialize the node with data from the PDV. 

3. Insert the node in the OSet 

a. If it is new, it will be added and the return value will be null. 

b. If it is not new, accumulate the data into the existing node and recycle this one.  

Notice that the CustomerActivityOSet is initialized with the default comparison type code of ‘0’, which is 
the only one valid for inserts. The other comparison codes will be used to reorder by the cumulative 
frequency or the activity start time.  

method run(); 

   /*-- read data in one customer at a time --*/ 

   set ActivtyLog; 

   by customerID; 

 

   /*-- Pull activity node off free list --*/ 

   act = freeList.removeElement(); 

 

   /*-- If list was empty. Create new activity --*/ 

   if null(act) then  

      act = _new_ CustomerActivity(activityCode, 1, startTime); 

   else 

      /*-- load new variables into existing activity node --*/  

      act.resetActivity(activityCode, 1, startTime); 

 

   /*-- Insert the customer activity. Returns null if key is new --*/ 

   find_result = activities.insert(act); 

 

   /*-- If we found an existing entry --*/ 

   If ^null(find_result) then do; 

      /*-- Recycle the unneeded CustomerActivity --*/ 

      freeList.addElement(act); 

      /*-- Accumulate frequency --*/ 

      find_result.frequency = find_result.frequency + 1; 

      /*-- Keep earliest startTime for a given activity --*/ 

      if startTime < find_result.startTime then 

         find_result.startTime = startTime; 

      end; 

   /*-- end of data load loop --*/ 

 
At the end of each customerID BY group, we will generate the output of interest which is two lists of 
activity codes: one based on top N frequencies (with a tie-break of activity code) and a second based on 
earliest activates – the first N activities. To do this, we use the reOrder method of our OSet package. 
During data accumulation, the OSet package is building its unique collection based on the activityCode, 



9 

and this is determined by the comparisonType attribute of the OSet. By changing the comparison type 
field during reOrder(), we can establish new ordering criteria. A custom iterator is used to traverse the 
OSet after each reordering.   

 

   /*-- data output --*/ 

   if last.customerNumber then do; 

      /*-- re-order activities by frequency --*/ 

      activities.reOrder(2); 

 

      /*-- Iterate OSet for top-N frequencies --*/ 

      acti = _new_ CustomerActivityIterator(activities); 

      act = acti.visitNext(); 

      i = 1; 

 

      do while (^null(act) && i <= &n); 

         freq_[i] = act.frequency; 

         freq_activity_[i] = act.activityCode; 

         act = acti.visitNext(); 

         i = i + 1; 

      end; 

      acti.delete(); 

 

      /*-- repeat the process in order of startTime --*/ 

      activities.reOrder(5); 

       

      acti = _new_ CustomerActivityIterator(activities); 

      act = acti.visitNext(); 

      i = 1; 

      do while (^null(act) && i <= &n); 

         time_[i] = act.startTime; 

         time_activity_[i] = act.activityCode; 

         act = acti.visitNext(); 

         i = i + 1; 

      end; 

      acti.delete(); 

 

      /*-- Output PDV and reset the OSet and recycle its nodes --*/  

      output; 

      freeList.appendFromOSet(activities);     

   end; 

end; 

  endthread; 

 
There is nothing in the data program other than the SET statement invoking the thread program. The data 
are processed in parallel with one or more customer BY groups being computed on each parallel thread.  

PACKAGE GENERICITY  

At the heart of this solution is the CustomerActivityOSet package that employs the AVL balance binary 
tree algorithm discovered in 1962 by the Russian mathematicians, G. M. Adelson-Velisky and E. M. 
Landis, as described by Donald Knuth in The Art of Computer Programming, Volume 3: Sorting and 
Searching

.
 The algorithm is compact and elegant, but it is not necessarily simple to code and is definitely 

not something that you would want to code over and over. In this paper we have shown package nesting 
with CustomerActivity being an element of the CustomerActiveyNode, which is the basic element of both 
the CustomerActivityList and the CustomerActivityOSet.  Because DS2 is a strongly typed language, 
making another list/ordered-set package to hold another type of data would require editing both of the 



10 

container packages. Although DS2 does not currently have formal template syntax, a simulation of a C++ 
template or Java generic can be implemented for DS2 by using a SAS macro for code that executed in 
the DS2 procedure. In the context of PROC DS2, the SAS macro will expand the source before it is sent 
to the DS2 compiler. At execution time, the DS2 language will be running outside the domain of the SAS 
macro processor so that runtime interaction with the macro system such as SYMPUT and SYMGET are 
not supported.  The SAS macro-based solution will work for any DS2 code that is launched from PROC 
DS2 on a SAS client such as the SAS

®
 In-Database Code Accelerator.  

At the top of thread program, the following macros are called to generate the packages used.  

%generateOSetPackages(CustomerActivity); 

 
As you might imagine, the macro substitutes the name of the data element package to build type-
matching node, list, and ordered-set packages. Using this technique allows investment in complex code 
to be reused in a type-safe way and thus achieve a greater degree of language genericity.   
 

%MACRO generateOSetPackages(dataPackageName); 

/*-- define the node package used by the sets --*/ 

package &dataPackageName.Node; 

   dcl package &dataPackageName key; 

   /*-- tree pointers --*/ 

   dcl package &dataPackageName.Node left right; 

   /*-- linked list --*/ 

   dcl package &dataPackageName.Node next; 

   <…> 

package &dataPackageName.List; 

   dcl package &dataPackageName.Node front back; 

   <…> 

package &dataPackageName.OSet / overwrite=yes; 

   /*-- tree head --*/ 

   dcl package &dataPackageName.Node head; 

   /*-- linked list front/back --*/ 

   dcl package &dataPackageName.Node front back; 

   /*-- comparison type - default 0 --*/    

   dcl int comparisonType; 

   <…> 

package &dataPackageName.NodeStack/overwrite=yes; 

   dcl package &dataPackageName.Node stackTop; 

   <…> 

package &dataPackageName.Iterator/overwrite=yes; 

   dcl package &dataPackageName.NodeStack ns(); 

   dcl package &dataPackageName.Node current; 

   <…> 

 

The code for the Ordered-Set package is not included in this paper but can be found in the external SAS 
Knowledge Base at this link:  http://support.sas.com/kb/57/803.html 

CONCLUSION 

The ability of a DS2 package to hold a reference to another instance of itself or other package types 
enables the user to create custom complex structures of instances in order to represent irregular or 
sparse data patterns.  These structures are built one instance at a time by linking instances to other 
instances so that meaningful data patterns can be expressed succinctly and that traditional structured 
programming algorithms can be applied to sets of DS2 instances. The example showed a package that 
was similar in many ways to the built-in hash package but the ability of the OSet package to leverage 
comparison methods allows it to behave in very customizable ways. Along with this flexibility comes 
responsibility to manage instance lifetime when the structures include potential rings of instance links. 

http://support.sas.com/kb/57/803.html


11 

Moreover, the current minimum instance size of DS2 packages implies that the total memory required to 
support an instance-based data structure could substantially exceed the same data held in a more 
traditional structure such as an array or a hash package.  A current project to reduce the minimum 
instance size will make structures in DS2 much more efficient. Because DS2 is a strongly typed language, 
reusing complex algorithms can be difficult without a formal template or generic syntax. The SAS macro 
preprocessor can be used to emulate a formal template facility and thereby extend code genericity and 
thereby code reusability. This paper illustrates these concepts with an example of a generic ordered-set 
package, which can be found in the external SAS Knowledge Base at this link:  
http://support.sas.com/kb/57/803.html.  

REFERENCES 

Knuth, Donald E. 1998.The Art of Computer Programming, Volume 3: Sorting and Searching. 2
nd

 ed. 
Reading, MA: Addison-Wesley.  

RECOMMENDED READING 

Ghazaleh, David. 2016. “Exploring SAS® Embedded Process Technologies on Hadoop®.” Proceedings 
of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc. Available 
http://support.sas.com/resources/papers/proceedings16/SAS5060-2016.pdf. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Robert Ray 
William Eason 
500 SAS Campus Drive 
Cary, NC 27513 
SAS Institute, Inc. 
robert.ray@sas.com 

will.eason@sas.com 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

http://support.sas.com/kb/57/803.html
http://support.sas.com/resources/papers/proceedings16/SAS5060-2016.pdf
mailto:robert.ray@sas.com
mailto:will.eason@sas.com

