MWSUG 2016 - Paper BB18

SAS Advanced Programming with Efficiency in Mind: A Real Case Study

Lingqun Liu, University of Michigan, Ann Arbor, Ml

ABSTRACT

This paper uses a real work example to demonstrate the concept and some basic tips of SAS programming
efficiency. The first section of the paper introduces the background of a SAS application and its
performance metrics. The second section analyzes the structure and features of the SAS application.

The third section analyzes the log of the application to identify efficiency issues. In addition, in this
section a log analysis utility is introduced. The fourth section provides a re-developed version of the
application with performance improved to reduce 99.6% of its runtime. The last section tries to raise
awareness of SAS programming efficiency and suggests some basic tips. The application discussed in the
paper has been tested with SAS 9.2, 9.3 and 9.4 on Windows machines. The target audience includes SAS
programmers from beginner to advanced level.

INTRODUCTION

Did you ever have any SAS applications that took longer than you expected to run? It could be hours, or
even days long. Most of us find it frustrating when things like that happened, especially when you had a
tight deadline to meet, or you had to run the job many times within a limit of time. Many programmers
might think it is caused by the nature of their SAS application, such as big data sets, complex process, and
limitation of computing power and resources, etc. Moreover, it was not uncommon that many SAS
application developers/programmers did not realize that there usually were efficiency issues. This paper
uses an example to raise the awareness of SAS programming efficiency, introduce a log analysis utility,
and provide some basic tips.

.1 BACKGROUND

UM-KECC is a multidisciplinary research center within the UM School of Public Health (SPH). UM-
KECC was formed in 1993 and its mission is “to promote health, improve clinical practice and
patient outcomes, optimize resource utilization, and inform public policy regarding organ failure
and organ transplantation.” UM-KECC pursues this mission “through high quality research,
advances in biostatistics, and post-graduate education and training.” (www.kecc.sph.umich.edu).

UM-KECC has been working with CMS to develop quality measures of ESRD patient care for years.
Each quarter, as one tiny part of the large efforts, UM-KECC produces lists of ESRD patients included in
the dialysis facility compare (QDFC) measures for more than 6,000 Medicare dialysis facilities
nationwide. There are five measures: M1, M2, M3, M4, and M5. In each quarter, there are more than
21.7K patient list files (21,870 for 201607, 21,702 for 201604) created. This whole process consists of
five similar SAS jobs, one for each measure.

M1 _DFC Patient Lists.sas
M2 DFC Patient Lists.sas
M3 DFC Patient Lists.sas
M4 DFC Patient Lists.sas
M5 DFC Patient Lists.sas

http://www.kecc.sph.umich.edu/

.2 PROCESS TIME

The process time varies for the jobs. The M5 job took about 10 hours. (And it could occasionally even
take longer than 69 hours for some reason in reality. It was the worst case we had!) The rest took from 18
seconds to around 16 hours. The total process times for the last two quarters were about 19.4 hours and
33.4 hours.

Jobs 201604 201607
Real time CPU time Real time CPU time

M1 DFC Patient Lists.sas 4:16:02.04 4:04:10.54 4:11:53.18 4:04:35.88
M2 DFC Patient Lists.sas 16:30.83 13:40.53 1:48:09.24 15:27.02
M3 DFC Patient Lists.sas 1:39.45 18.93 2:30.09 22.88
M4 DFC Patient Lists.sas 4:49:30.74 4:42:13.26 | 16:17:07.14 7:34:12.81
M5 DFC Patient Lists.sas 10:02:30.96 9:49:39.17 | 11:02:17.87 10:22:32.44

total 19:26:14.02 17:08:55.50 | 33:21:57.52 22:17:11.03

Il. CODE ANALYSIS

You may wonder why some of these simple jobs can take more than 10 hours. Moreover, 19 to 33 hours
of total runtime of the production is way too long. Are there any efficiency issues? Can the application
be improved? Let us start with examining the SAS code, in order to see what the issues could be and
identify how to fix them. In the following sections, our analysis and redevelopment will use M5 job as an
example. The rest of these jobs are identical in terms of the code design, structure, functionality, and
issues, etc. Please see Figure 1.1 and Figure 1.2 for the code listings.

Figure 1.1 Original Code Snapshot One

Ej r\WWSUG16_ BB18\MS_DFC_Patient Lists_original MWSUG.sas ™ = |[=][=
25 -
26 proc sort data=faclib.facinfo_&lookupdt. out= facinfo (keep= facid network provname provcity state)
27 where DFC_report=1;
28 by facid;
29 run;
38
31 %macro print_list{data,measure,name);
32

33 %IF &measure=H5 %then %do;

34 %let vars=firsts dialysis_ 968days age_ge 18 calcium_uncorrected in_facility modality elig pm avg_3mo
35 %let varslabel= firsts='First™service date’ dialysis_98_days='Dialysis”ge 98 days' age_ge_18="Patie
26 in_facility=""Heets"facility”requirement” modality-""Heets"modality”requirement” elig pm="Eligible”pa
27 hypercal_gt18_2="Hypercalemia-gt™18.2";

38 %end;

48 %put &uars;
41 %put &varslabel;

42

43

4y w——————— Sort measure files, keep only wvariables output to list

45

46

47 proc sort data=mlib.&data. out=temp(keep=patid facid &vwars year month quarter);

48 by patid;

49 run;

s

51 7/

52 =—-Merge individual measure files with patients to get patient identifiers—--=;

53 / 2

54 data saflib.M5_plist_g&dateit.;

55 merge temp {in=a) saflib.patients (keep=patid surname first_name m_initial ssn);

56 by patid;

57 if a;

S8 fname=trim{first_name}||" '|ltrim{m_initial};

59 Patient_id=_n_;

(1] ssni1=s5s5n+0;

61 xx%xx Mote: In this step, a small percentage of pts have characters in their S$3H. This *HKE]
62 * causes warning messages in the log file because ssn1 cannot be calculated, and in the *3
63 = final patient list they will have a missing SSH. Since the $SHs are not numeric, we EH
6h * assume they are not valid, so having missing SSH is not a problem. *3
65 run;

66

67 f

68 #-——HMerge with facinfo to obtain provider name, city, state, etc-—--=

69 'd

78 proc sort data=saflib.MS5_plist_g&dateit.;

71 by facid;

72 run;

72 b

CODE LOGIC

It is a simple job and it has two requirements:

1. Create data: Put facility information (6,499 observations), patient information (2,819,069
observation) and measure results (6,423,888 observations) together to create a patient-measure
level data set containing information for patients included in the measure for all facilities. Also,
perform a few data manipulations.

2. Print data: Print patient-measure information by facility in plain text format with file
extension .txt.

Figure 1.2 Original Code Snapshot Two

E\MWSUGL6_BB18\M5_DFC_Patient_Lists_original_MWSUG.sas * =N o=
78 data &measure._ptlist;
79 nmerge saflib.M5_plist_&dateit.{in=a) facinfo (in=infacinfo);
80 by facid;
81 if a and infacinfo;
82 facility=trim{provname}|]", " ||trim{proucity)|]|’, '||state;
83 format ssni1 ssnii.;
8 report_period=strip{year)||" “llstrip{month) || "|lstrip{quarter);
85 run;
a6
87
88 proc sort data= Emeasure._ptlist;
89 by network facid facility surname first_npame ;
98 run;
1
22
93 proc sql;
on celect count{distinct facid) into: numprous
95 from &measure._ptlist;
96 quit;
97
98 %put &numprovs;
29
188 data _null_;
101 length numprousc 39.;
182 numprovsc=strip({&numprovs);
183 call symput{’'numprousc®, numprousc});
184 run;
185
186
187 proc sql;
188 select distinct facid into :prov1l -—:prov&numprovsc notrim
189 from &measure._ptlist;
118 quit;
111
112
113 %do i=1 %to &numprous;
114 FPUL " emmsernnmmernnnwnrn’ GAPFOUEL;
115 data prulevel ;
116 set &neasure._ptlist;
117 vhere facid="&&provii®;
118 call symput {"facility", compress{facility,”'"'});
119
128 run;
121 ZPUL " mmseksemmennrnnerns’ GFacility;
122
123 ods listing file=""&outfile";
124 title "CONFIDENTIAL: Patients included in the &name. measure reported in the';
125 title2 "Quarterly Dialysis Compare-Preview for &month., &year. report.”;
126 title3 "HMMH Certification Humber=&&provai Facility=&facility";
127 options 1s=max ps=85;
128 proc print data=prulevel noobs split=""" uniform;

CODE DESIGN AND STRUCTURE

This code has two parts, one for each subtask. The first part consists of PROCs and DATA steps.
The second subtask is implemented with a %MACRO %do loop that creates and prints out one
data set for each facility. As a result, there are more than 6,000 DATA steps and PROCs
generated by the %MACRO/%DO loop at runtime.

1. Create data: Four PROC SORTs, two DATA MERGEs.
2. Print data: Two PROC SQLs, one DATA NULL , one %MACRO %do loop of 1 DATA step
and ODS/PROC PRINT.

SAS FEATURES

There are many SAS features, including some advanced ones, in this SAS application.

3

DATA STEP MERGE, PROC SQL, PROC SORT;

%MACRO, &&VAR&N, CALL SYMPUT, INTO:, %Do loop; DATA NULL ;

Data type conversion (+0), function COMPRESS(), STRIP(), TRIM();

ODS LISTING, Dynamic titles, PROC PRINT options, etc.

System options: LS, NODATE, NONUMBER, NOCENTER, ERRORS, SOURCE2, MPRINT.

CRITICAL THINKING

Does it need to be so complicated (using so many steps and features)? Is %macro really needed? (Can

the %macro be avoided?) Which features/steps did take most of the runtime? Would the large number of
small DATA steps and PROCs be an efficiency issue? Or is the long runtime due to the large size of the
input SAS data sets? To answer these questions, I inspected the log files of the job along with the SAS
code.

.1 LOG ANALYSIS: OBSERVATION & ESTIMATION

The log file is lengthy. It has more than 45,000 lines. We need to search for the key words ‘real time’ to
see how long each step took. First, let us look at the runtime for task one -- the creation of measure-
patient data set. The facility info data has about 6,600 records. The measure data has about 6.5 million
observations. The patient info data set has about 2.5 million records. The DATA step and PROC SORT
processed these data sets within a few minutes. It is fast to create the measure-patient data set. Since SAS
is so powerful, the sizes of the data sets in this application are not the issue (Please see Figure 2.1 and
Figure 2.2 for details.)

Figure 2.1 Log Snapshot One

LWMWSUIGLE__BELEWMS_DFC_Patient_Lists_ MWSUG (2).1cg
461 HOTE: There were 2819869 observations read from the data set SAFKECGC.PATIEHNTS.
4562 HOTE: The data set SAFLIB.HMS_PLIST_ 2981684 has 6423888 observations and 21 wariables.
463 HMOTE: Compressing data set SAFLIB.HMS_PLIST_ 281684 decreased size by 42._81 percent.

oL cCompressed is 64233 pages;:; un—compressed would require 1108757 pages.
465 HMOTE: DATA statement used (Total process time):

L56 real time 1:-33 .78

G F cpu Ltime 37 .81 seconds

68

69

478 SYMBOLGEH: Macro variable DATEIT resolves to 281684

4F1 HMPRINT{(PRIHNT_LIST): proc sort data=SAFLIB_.HMS_ plist_Zo1604;

572 HMPRINT{(PRINT_LIST): by prouvfs;

4F¥2 HMPRINT(PRINT_LIST): run;

N7y

4F5S HOTE: There were 65423888 observations read from the data set SAFLIB-MS_PLIST_ 201684
475 HOTE: The data set SAFLIB.MS_PLIST_ 2981684 has 6423888 observations and 21 wariables.
477 HMOTE: Compressing data set SAFLIB.HMS_PLIST_281684 decreased size by 42._.88 percent.

LFR cCompressed is 64234 pages; un—compressed would require 1108757 pages.
479 HMOTE: PROCEDURE SO0ORT used (Total process time):

L8O real time 1:36.95

ng1 cpu time 36 .65 seconds

L2

Figure 2.2 Log Snapshot Two

INMWSLIG16_BB18\M5_DFC_Patient_Lists_MWSUG (2).log *

515 HOTE: The data set WORK.HM5_PTLIST has 6423888 obserwvations and 27 variables.
516 HOTE: Compressing data set WORK.HMS_PTLIST decreased size by 51.77 percent.

517 Compressed is 88522 pages; un—compressed would require 183548 pages.
518 HOTE: PROCEDURE SORT used (Total process time):

519 real time 2:47 .55

cza cpu time 1:84._28|

Now let us look at the runtime for task two — the creation of the facility specific patient list files. Every
time a list file was created, one small DATA step and one PROC PRINT were executed. After scanning
the log file, we noticed that the process only used about 5.3 seconds or so per facility.

However, since there were more than 6,000 facilities, the total runtime ended up as about 10 hours. The
stop value of the %DO loop was 6,375 for this case. Therefore, the total run time was about
5.28%6375/(60*60) seconds = 9.35 hours. (Please see Figure 2.3 and Figure 2.4 for details)

4

Figure 2.3 Log Snapshot Three

IMNMWSUGLE__BEB18\MS_DFC_Patient_Lists_MWSUG (2).log
578 HOTE: There were 1484 cbservations read from the data set WORK.HBEg PTLIST.
579 WHERE Z " s
588 HOTE: The data set WORK_PRULEUEL has 1484 observations and 27 wvariables.
581 HOTE: Compressing data set WORHK.PRULEUEL decreased size by 53_.66 percent.

82 Compressed is 19 pages;:; un—-compressed would require 41 pages.
583 HOTE: DPATA statement used (Total process time):

S84 real time 5.28 seconds

S85 cpu time 5.28 seconds

o=

Figure 2.4 Log Snapshot Four

E\MWSUGL6__BB18%M5_DFC_Patient_Lists_MWSUG (2).log

457571 HPRINT{PRIHT_LIST}: ods listing close;

457572 MLOGIC(PRINT_LIST): %D0 loop index wvariable I is now 6376; loop will not iterate again.
457573 HMLOGIC(PRINT_LIST): Ending execution.

457574 294

457575 295

457576

457577 HOTE: SAS Institute Inc., SAS Campus Drive, Cary, HC USA 27513-2414

457578 HOTE: The SAS System used:

457579 real time 18:82:38.96
457588 cpu time 9:49:39 .17
457581

1.2 LOG ANALYSIS: STATISTICS

To get the statistics of the runtime of the SAS application, I developed a simple SAS utility to analyze the
full lengthy SAS log file (457,581 lines in this case). The log analysis utility consists of two

small %macros: %log io search(), %log io data() and a PROC MEANS. (Please see Figure 3.1 for
details.)

Figure 3.1 Log Analysis code
Programmer's File Editor - [log_analysis_MW5UG.sas] E

File Edit Options Template Execute Macro Window Help —

=1 = I P R N Y e =)

*Program name 1log_analysis._sas

2

F1
2 H

3 =By : 1qliuEumich.edu 2888, 2816

4 =Purpose - to process SAS log file to analyze SAS application
5 = H ——structure and performance

6 H

¥ =Input SAS log file

8 >0Dutput : two txt File and two datasets, plus ...

9

18 =MHote internal use only

11 = some lines in step 3 need revision to reflect individual needs
12 ;
13 option mprint;

1n STEP 1 B

15 =% uUsage: —————————— e ——— H
16 »x %log_I0_search{lo [your log Ffile].log,
17 doc=[results txt Ffile]_-txt);

192 %macro log_IO0_search{log=,doc=);

28 %=*if not Tindex{(&log.".') %Hthen Zlet log=&log.=_.log:
21 data _null_;

22 length logname £ logline $288 ;

23 dnfile "&loqg'" filename=Ff end=done ;

28 File ""&doc™;

25 logname=+F;

26 4if logname ne lag{logname) then do;

27 if line then put line ""lines read';
28 put S5 "————— " logname "-—————— -
29 line=a;

38 end;
31 dnput ;
32 1ine = 13

33 output = index({_infile_,"HOTE: The data set") and

34 not index{_infile_,"—— HOTE:x")

35 oy

236 index{_ infile_,"were written to the Ffile")}

a7 H

38 dinput = index{_infile_," " read from") or index{_infile_, "WHERE ') H
39 time = index{_infile_,' time"'} H

48 logline = _infile_;

41 Keep= ifc{input,"INFUT ' ,"0OUTPUT "} ;

42 Kkeep= ifc{input.keep.,"TIHME "y :

43 if dinput or output or time then put keep loglinej;
44 if done then put line ""lines read';

45 run;

46 Zmend;

48 %let log=I:\MWSUG16__ BB18YWHS5_DFC_Patient_Lists_MWSUG.log;
49 Zlet doc=I:WHWSUG1G BEBE18%“M5_ DFC_Patient Lists MWSUG_txt;
58 %log_ I0_search{log=&log.,doc=&doc) ;|

i

8 dnput = index(_infile_,'read Fron') or index(_infile_,'VHERE ') ; gt Ll
39 time = index(_infile ' tine) ; bl input /;
WD logline = infile ; ~ 92 ctine = scan(_infile_,t,"");
W keep= ifc(input,' INPUT *,'OUTPUT') ; o if }nﬂex(ctme,::‘)‘wen do; e
u2 keep= ifc(input keep, ' TIE *) ; % 1F‘cuu!|tc(ct1m! H)Tﬂ then_ctme- ll ||ctine ;
&3 if input or output or tine then put keep logline; :: pndllltlrlﬁllﬂllut(Strlp(Etll!), tine11.2);
B4 if done then put line "lines read”; -
. ” else ntine=ctime+;
:: ;::ﬁn- % if PROCDAT="DATA: * then do; DATA_TINE+ntime; DATA_steps+1; end;
W | ! 9 else if PROCOAT="SORT: * then do;SORT_TIME+ntime; SORT_Steps+1; end;
18 316t YogeT:\INSUGT6_BRTS\IS_DFC. Patient Lists INSUG.Log; o mnﬁii’ d0;S0L_TIHEnkine; SOL_steps1end;
G S1et doceI:\INSUGHS BRIV VEC Patient Lists WSUG.tat; 10 put PROCOAT _inFile_ @46 OBS conmaldl.d ' * @68 DSK "--=" ntinespmssi.2; soptional;
50 %log_I0_search(log=tlog,doc=kdoc) ; 10 ands = =
51 104 Else'input;
52 ansasnss STEP 2 : 105 end;
53 * usage: - 106 else input;
Sk + 310g_10_data(log= [results txt hlg From step 1 above].txt, 107 if done then do;
55 doc=[results txt File].trt); 108 put DATA_steps * DATA steps -- total process time * DATA_TIME=time11.2 ; woptional;
56 H 1M put SORT_steps ™ SORT steps -- total process time “ SORT_TIHE=tinme11.2; *optional;
57 %nacro Log_I0 data(log=,doc=); 118 put SQL_steps " SL steps -- total process time " SOL_TIMEstine11.2 ; woptional
58 data log_runtine_nessy log_runtine(keep= dsn mtine ctine procdat obs); 11 end;
50 length Lognane logline $260 dsn §32 PROCOAT §6; 112
60 retain dsn obs; 113 run;
i1 infile “tlog" filenanesf end~done; 114 %nend;
62 File "tdoc”; *optional; 115 option mprint; .
63 lognane=F; 116 Rlet log=I:\MUSUG16_BB18\NS_DFC_Patient_Lists_MWSUG.txt;
G i logname ne lag(lognane) then do; 117 %let doc=I:\NUSUG16_BB18\MS_DFC_Patient_Lists WWSUG2.txt;
85 if Line then put line “lines read"; 118 %lag 10_data(leg-Elog,doc-tdoc);
(1] put /} '-==--' lognamg '------ s 1;2 o STEP 3
7 Line=p; . "
121 »* sunmarize the results;

68 end; '

we 12 ;
;: lwt & 123 proc means data=log_runtime mean max min sum;
7 indes(_infile_, TIIE HOTE: The data set) [slass procdet daa ;
72 or index{_infile_,"TINE HOTE: DATA statement used (Total process tine):") :gz :a;F:t;: :E:Edat procdatsdsn ;
13 ar index(_infile_,"TIME HOTE: PROCEOURE SORT used (Total pracess time):*) 107 rﬂn' '
Th or index(_infile_,"TINE HOTE: PROCEDURE SQL wsed (Total process time):') 128 ’
& 120 *x ENDSAS wwn;
At

The first macro %log_io_search() uses a DATA NULL step to search through the log file, extract the
key information for each step, and write out them into a txt file. (Figure 3.2)

Figure 3.2 Log Analysis Results Snapshot One

E] :\MWSUG16_BB18\MS5_DFC_Patient_Lists MWSUG.bct

==
————— I:\MWSUG16__BE18\M5_DFC_Patient_Lists HWSUG.log ——-——-
TIME real time 8.10 seconds

TIME cpu time 8.856 seconds

INPUT HOTE: There were 6553 observations read from the data set FACLIB.FACINFO_281681.
INPUT WHERE DFC_report=1;

TIME HOTE: The data set WORK.FACINFO has 6553 observations and 5 variables.

TIME HOTE: PROCEDURE SO0ORT used (Total process time):

TIME real time 8.74 seconds

TIME cpu time 8.856 seconds

INPUT HOTE: There were 6554484 observations read from the data set HMLIB.MS_PATIENT_LIST.

TIME HOTE: The data set WORK.TEMP has 6554484 observations and 14 variables.
TIME HOTE: PROCEDURE SO0ORT used (Total process time):

TIME real time 19.53 seconds

TIME cpu time 18.54 seconds

The second macro %log_io data() again uses a DATA step to search through the output text file
generated from the first step and put the results in a better text format. (Figure 3.3)

Figure 3.3 Log Analysis Results Snapshot Two

E\MWSUG16_BB18\MS_DFC_Patient_Lists MWSUGZ.bet
b-——-I:\MWSUG16_ BB18\M5_DFC_Patient_Lists_HUSUG .txt

[E=%(EeE

SORT: TIME real time 8.74 seconds 6,553 WORK.FAGINFO —---ntime=0:00.74%

SORT: TIME real time 19.53 seconds 6,554,484 WORK.TEHP ---ntime=0:19.53

DATA: TIME real time 27 .88 seconds 6,554,484 SAFLIB.MS5_PLIST_261687 ---ntime=0:27.08
SORT: TIME real time 18.59 seconds 6,554,484 SAFLIB.MS5_PLIST_261687 ---ntime=0:18.59
DATA: TIME real time 26.34 seconds 6,554,484 WORK.HM5_PTLIST ---ntime=08:26_34

SORT: TIME real time 29.15% seconds 6,554,484 WORK.M5_PTLIST ---ntime=08:29_15

SQL : TIHME real time 7.28 seconds 6,554 484 WORK.M5_PTLIST ---ntime=08:67.20

DATA: TIME real time 8.88 seconds 6,554 484 WORK.M5_PTLIST ---ntime=08:00.80

SQL : TIME real time 6.75 seconds 6,558 48Y WORK.M5_PTLIST ---ntime=8:86.75

DATA: TIME real time .21 seconds 1,388 YORK.PRULEVEL ---ntime=8:085.21

PRHT: TIME real time 8.81 seconds 1,388 WORK .PRULEVEL ---ntime=@:808.61

DATA: TIME real time 5.21 seconds 728 WORK .PRULEVEL ---ntime=8:05.21

PRNT: TIME real time 8.88 seconds 728 WORK .PRULEVEL ---ntime=8:00.80

In addition, it puts them into a SAS data set for further analysis. (Figure 3.4)

Figure 3.4 Log Analysis Results Snapshot Three

dsn | PROCDAT | obs | ctime | ntime
i WORK.FACINFO SORT: 6553 0.74 0.74
2 WORK TEMP SORT: 6554484 1353 1853
3 SAFLIB.M5_PLIST_201607 DATA: 6554484 27.00 27
4 SAFLIB.M5_PLIST_201607 SORT: 6554484 18.59 18.59
5 WORK.MS_PTLIST DATA: 6554484 2634 26.34
& WORK.MS_PTLIST SORT: 6554484 2315 25.15
7 WORK MS5_PTLIST SaL 6554484 720 72
3 WORK.MS_PTLIST DATA: 6554434 0.00 o
3 WORK MS5_PTLIST SaL 6554484 675 675

Then PROC MEANS summarizes the runtime of the whole process recorded in the SAS log file. As an
example, the statistics of the M5 job for the 201607 run are shown below (Figure 3.5).
Figure 3.5 Log Analysis Results

PROCDAT dsn N Obs Variable Mean Maximum Minimum Sum
DATA: SAFLIB.M5_PLIST_201607 1 ntime 27.0000000 27.0000000 27.0000000 27.0000000
obs 655448400 655448400 6554484.00 6554484.00

WORK.M5_PTLIST 2 ntime 13.1700000 26.3400000 0 26.3400000

obs 655448400 655448400 6554484.00 13108968.00

WORK.PRVLEVEL 6426 ntime 6.1020090 20.9000000 5.1600000 39211.51

obs 1019.99 6240.00 12.0000000 6554484.00

PRMNT: WORK.PRVLEVEL 6426 ntime 0.0066355 0.0700000 0 42.6400000
obs 1019.99 6240.00 12.0000000 6554484.00

SORT: SAFLIB.M5_PLIST_201607 1 ntime 16.5900000 18.5900000 18.5900000 18.5900000
obs 655448400 655448400 6554484.00 6554484.00

WORK_FACINFO 1 ntime 0.7400000 0.7400000 0.7400000 0.7400000

obs 6553.00 6553.00 6563.00 6553.00

WORK.M&_PTLIST 1 ntime 291500000 291500000 291500000 291500000

obs 6554484 00 6554484 00 655448400 6554484 00

WORK.TEMP 1 ntime 19.5300000 19.5300000 19.5300000 19.5300000

obs 655448400 655448400 6554484.00 6554484.00

SaL: WORK.M5_PTLIST 2 ntime 6.9750000 7.2000000 6.7500000 13.9500000
obs 655448400 655448400 6554484.00 13108968.00

There are 6,428 DATA steps, 3 large ones, and 6,426 small ones. The large data steps only took a few
minutes. And the 6,426 small data steps took more than 10 hours: 39,211/(60*60) seconds =10.89 hours.
The PROC steps took less than a minute.

Based on the statistics shown above, we can tell that the %MACRO/%DO structure is very time
consuming in this application. It posts an efficiency issue. In the next section, we will show the
redevelopment of this application to make it more efficient.

IV. REDEVELOPING THE APPLICATION

Once we have identified the cause of the long runtime, we can redesign the application with efficiency in
mind.

The first area to improve the original SAS application is to reduce the number of steps. Some data steps
and procs can be combined, some steps and the %macro and data sorting can be avoided. SAS view can
be used to replace data set. In addition, we can reduce the size of the log file by getting rid of macro
related lines and fixing invalid data errors. That will make the log file more readable and save some I/O
time as well. Second, and most importantly, for the reporting part, we can use a simple but powerful
technique to avoid the 6,000+ small data steps: We use the SAS BY processing mechanism and DATA
step FILE statement instead of the loops of DATA steps and PROC PRINTs.

Here is the outline of the re-developed SAS application. The new code only contains one PROC SQL
view and one DATA step. There is no %macro/PROC PRINT/SORT. It uses a DATA step FILE
statement with option FILEVAR= to write out facility specific reports.

PROC SQL; CREATE VIEW .. AS ..; QUIT;

DATA ..;
SET ..;
BY FACID;
FN= .. FACID ..;

FILE WRITEOUT FILEVAR= FN ..;
PUT ..;

RUN;
The new SAS application has only about 80 lines. (The original one has about 150 lines.)
Figure 4.1a Redeveloped Code (part 1)

Brogrammer's File Editor - [M5_DFC_Patient_Lists_guinn_RMWSUG.sas] =]
|F|Ie Edit Optlnns Template Execute Macro Window Hel —_ [=
1
2 Prugram Mame: M5_PatLis_sas
3 Purpose = Print faclity patient 1ist for M5 measure for DFC
5 By z 1lgliu@umich.edu 2616—84-25
s
6 Input = 1. measure results— OQDFC.MS_patient_1list
7 = 2. patient info — saflib.patients
8 = 3. facility info — faclib._facinfo_&lookupdt
o
180 output = 4. fFacility patient lists: &outpathiMS_PatList_ 9999990 _1st
41 = 2. SAS dataset —— saflib.M5_plist
1z
12 MHote = A programmer with appropriate permissions must run this code
45 = Make sure output folder has been created.
s
16 F
17
18 =Zdinclude "\ \diskW.DFChxCode\dfc_dateparms_sas™;
19 options 1s=max ps=85 nodate nonumber Source;
28
21 *x——Output for patient lists——sx;
22 libname prlists "\ \diskii\QDFCLPatient_Listshw&refreshdt._ releasex&dateit_ " 3
23 1libname saflib “"“WAdiskisaflib™;
zn
25 x%let outpath=‘\diskZ\QDFChPatient_Lists\&refreshdt._releasex&dateit._;
26 Zlet outpath-—“A\disk\wODFCA\Patient_lists\.quinn_test_outputs; = testing paths;
27 Zlet runbyu—_quinn; * for testing:
28
29 Zlet vars—firsts dialysis_906days age_ge_18 calcium_uncorrected in_facility modality elig_pm
EL
31 =—— put Mesures, Facinfo, and Patinfo together;
22 proc sqlg;
33 \create wview H5_patlst as
3n select a.x.b_x
35 From QDFC._RS pat1ent 1list (keep—patid facid &uvars year month quarter)}
36 left join saflib._patients (keep-patid surname first_name m_initial ssn) b
a7 on a_patid=b.patid
as join faclib_facinfo_&lookupdt (keep—facid network prouname proucity DFC_report state wh
39 on a_facid—c.facid

40 order by a.facid. b_surname. b.first_name. a._gear. a.month:
1 quit;

Figure 4.1b Redeveloped Code (part2)

2regrammer's File Editor - [M5_DFC_Patient_Lists_quinn_MWSUG.sas]
File Edit Options Template Execute Macre Window Help

43 =—— print out pat lists by facility along with some data formatting: fake patient id, formating
un data saflib_M5_plist &dateit _&runby:

us set MS_patlst:

ué by facid;

u7

ug patient_rec_id-_n_:

no _fname=trim{(first_name}||" "[ltrim{m_initial};

L] _facility=trim(provname)]||"* “lltrim(proveitu)| |-, state;

51 Tf montn<1e then _report_period-stripiyear)|| trip(monthy| |- llstrip(quarter):
52 else “report_period=strip{year)| | trip{month }| | “llstrip{quarter}:;
=3

Sn —— in order to put SSH in xxx—xx-x=xx format;

55 ir prxmatEh{""/%d{9}/"".55n) then _ssn1-ssn+B8; else _ssni—_;

56 format _ssn1 ssnii1.

57

58 fn = T&outpath\MS_PatlList_-" || TRIM({facid) -

s9 FILE writeout FILEUAR—_ fn HEADER—newpage LINESLEFT _remain LINESIZE=80 NOTITLES MNOFOOTHOTES;
608

61 = ——if new page then put header lines———;

62 if ramian<11 then put _page_:

63 put @3 Patient_rec_id @15 surname @49 _fname (@64 _ssnl @868 _report_period @181 firsts @118
64 if last.facid then put ""<-——END of FILE-——>";

65

66 drop _: network state proucity dfc_report prouname;

67 return;

68 = ——if new page then put header lines———;

69 newpage =

7a put TCONFIDEHNHTIAL: Patients included in the Adult Uncorrected serum calcium > 10.2 mgr/dL meas
71 put “Quarterly Dialysis Compare-Preview for July, 2616 report.”;

72 put MMM Certification Mumber="" facid “"Facility=-"" _facility;

73 put;

u put @127 “"Patient

75 put @69 'Social™ @165 “First’ @138 “Age’’ @157 “Heets' @172 “‘Meets’ @184 “Eligible

76 put @1 “"Patient ID' @67 “Security’ @81 “'Report’ @88 ""Period” @103 ‘service” @114 "ﬂlalysls =
77 put @3 “"Humber™ @15 ""Last Hame™ @49 “First Hame™ @69 “Humber' @79 “Year HMonth Quarter” @
78 put;

79 return;

80 run;

81

a2

The key SAS features used in the new application is FILE statement and its option FILEVAR=.

'FILEVAR=variable
defines a variable whose change in value causes the FILE statement to close the current output file and open a new one the next time the FILE statement
executes. The next PUT statement that executes writes to the new file that is specified as the value of the FILEVAR= variable.

Restriction: The value of a FILEVAR= variable is expressed as a character string that contains a physical filename.

Interaction: When you use the FILEVAR= option, the file-specification s just a placeholder, not an actual flename or a fileref that has been previously
assigned to a file. SAS uses this placeholder for reporting processing information to the SAS log. It must conform to the same rules as a
fileref.

The new SAS application produces the same results much more efficiently. Moreover, the log file (Figure
4.2) is nice and clean. It lists all the output files orderly. The runtime is 2.25 minutes (Figure 4.3). Can
you believe it? The new application reduced the process time from about 10 hours to about 2 minutes.
Comparing to the original version, it saved 99.6% of the runtime.

Figure 4.2 New Log Snapshot One

EAMWSUIG16_BB18\MS_DFC_Patient_Lists_quinn_MWSUG.log
18787 HOTE: The file WRITEOUT is:

10708 Filename=%%DISKxquinn_test_ outputyMBD_PatList_ 111111 _txt,
10709 RECFM=U,LRECL=256,File Size (bytes)=8,

18718 Last HModified=28Apr2816:28:52:81,

18711 Create Time=28AprZ@16:-16:29:03

18712

18713 HOTE: The file WRITEOUT is:

10714 Filename=%%DISK\wquinn_test_outputy\HBD_FPatlList 2222232 txt,
18715 RECFHM=U,LRECL=256 .File Size (bytes)=98,

187146 Last Modified=28Apr2816:28:52:81,

18717 Create Time=28Apr2B816:16:29:03

ARTAD

Figure 4.3 New Log Snapshot Two

E\MWSUGL6__BB18\M5_DFC_Patient_Lists_quinn_MWSUG.log

59588 NOTE: The data set SAFLIB.M5_PLIST_281687_QUINN has 6554484 observations and 19 variables.
59581 NOTE: Compressing data set SHFKEBG.M5LPLIST_20160?_QUIHN decreased size by 42.28 percent.

59582 Compressed is 86182 pages; un-compressed would require 148966 pages.
59583 HOTE: DATA statement used (Total process time):

59504 real time 2:82_22

59585 cpu time 1:45_83

50586

5o587

50588 176

50589 197

59518 198 EHDSAS ;5555

5O511

50512 HOTE: SAS Institute Inc., SAS Campus Drive, Cary, HGC USA 27513-241%4
GOE13 HOTE: The 5AS System used:

5O51h real time 2:24 .67

LA L cpu time 1:46.53

CACA4EL

V. CONCLUSIONS

This real case study shows us that programming with efficiency in mind can make a great difference:
® 79 lines vs. 150 lines
® | step vs. 6,384 steps
e 22.518,989 vs. 61,852,446 records processed
® (00:02:30 vs. 11:02:17 (hh:mm:ss). Process time saved 99.62%.
Besides raising awareness for programming efficiency and introducing a log analysis utility, this case
study presented two important suggestions to promote the performance of SAS applications.

9

First, developing a better SAS application requires a better understanding of the problem the application
is to solve; once the problem is well understood, the programmer’s problem solving skills help to design
the right algorithm to tackle the problem. This design phase should involve as many knowledge and skills
as possible, such as analytics, modular and parallel, data structure, logic/abstract/model and system
thinking, etc.

Second, the application developer/programmer’s SAS knowledge, experience, and skills also play an
important role in programming efficiency. Here are some general SAS programming tips that can be
usefully to improve application performance: use as fewer steps as possible if applicable; combine
steps/remove unnecessary steps; process only the required variables and observations; avoid complex
macro if you can; use simple/non-macro coding effective techniques; do not fall in love with your
“hammer”, know and pick the right tool to use; be machine, human and computing environment friendly.

REFERENCES

SAS Online Documentations for SAS 9.2, 9.3 and 9.4. (http://support.sas.com/documentation)

ACKNOWLEDGEMENTS

I would like to thank my colleagues at UM-KECC for their support. To name a few: Dr. Thomas Zheng
reviewed and helped present some materials of this paper at a KECC journal club meeting in April 2016.
Ms. Anca Tilea, Ms. Mia Wang and Dr. Thomas Zheng helped organize KECC journal club. Ms. Robin
Padilla, Ms. Karen Wisniewski, Ms. Yating Sun and Ms. Natalie Scholz helped test the redeveloped
application in May 2016. Ms. Megan Turf helped test the log analysis utility. Without the support from
the KECC management team (Ms. Tempie Shearon, Ms. Valarie Ashby, Mr. Jas Sokhal, Ms. Casey
Parrotte, Ms. Sally Sivrais and Dr. Joe Messana), it would not have been possible for this paper to be
presented at the MWSUG conference. Jas and Valarie reviewed the draft slides. Ms. Susan Reimann
directly helped with travel arrangement.

I also want to thank the MWSUG conference 2106 team, especially co-chairs of Beyond the Basic SAS,
Ms. Melissa Ullman and Ms. Andrea Frazier, for answering my email requests when I was traveling
overseas in August 2016.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Lingqun Liu

University of Michigan

Kidney Epidemiology and Cost Center

1415 Washington Heights, Suite 3645 SPH 1
Ann Arbor, MI 48109-2029

Email: lgliu@umich.edu

http://www kecc.sph.umich.edu/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

http://support.sas.com/documentation
mailto:lqliu@umich.edu
http://www.kecc.sph.umich.edu/

