
1

MWSUG 2016 – Paper BB15

Anatomy of a Merge Gone Wrong

Joshua Horstman, Nested Loop Consulting, Indianapolis, IN, USA

ABSTRACT

The merge is one of the SAS programmer’s most commonly used tools. However, it can be fraught with pitfalls to the
unwary user. In this paper, we look under the hood of the data step and examine how the program data vector works.
We see what's really happening when datasets are merged and how to avoid subtle problems.

INTRODUCTION

Anyone who has spent much time programming with SAS has likely found themselves needing to combine data from
multiple datasets into a single dataset. This is most commonly performed by using the MERGE statement within a
DATA step. While the merge seems like a relatively simple and straightforward process, there are many traps waiting
to snare the unsuspecting programmer.

In a seminal pair of papers, Foley (1997, 1998) catalogs some 28 potential traps related to merging. These range
from rather mundane oversights such as omitting the BY statement to more esoteric matters relating to the inner
workings of SAS. The latter are far more interesting, and this paper will focus on one such trap: the automatic retain.

A SIMPLE EXAMPLE

THE DATA

Consider the following example. We have two SAS datasets containing data collected in a medical research study.
The DEMOG dataset contains demographic information such as the patient’s age and weight. This information is
recorded only once at the beginning of the study, so there is only one record per patient. The VITALS dataset
contains vital signs measurements such as heart rate. These measurements are recorded at each study visit, so
there can be multiple records per patient.

Both datasets include a patient identification number which provides a unique key to the data. The VITALS dataset
also includes a visit number. The combination of the patient identification number and the visit number uniquely
identifies a particular record.

THE MERGE

We wish to merge these two datasets. We also wish to convert the patient’s weight from pounds to kilograms. We
write the following SAS code:

data alldata;

 merge demog vitals;

 by patient_id;

 weight = weight / 2.2;

 run;

DEMOG Dataset

PATIENT_ID AGE WEIGHT

1 42 185

2 55 170

3 30 160

VITALS Dataset

PATIENT_ID VISIT HEART_RATE

1 1 60

1 2 58

2 1 74

2 2 72

2 3 69

3 1 71

Anatomy of a Merge Gone Wrong, continued

2

As expected, the dataset resulting from the merge contains 5 variables and 6 records. However, a careful inspection
of the WEIGHT variable reveals a serious error. Notice that the value of WEIGHT changes for each record, even
within the same patient. This is clearly not the desired result. In order to explain these strange results, we need to
take a look under the hood of the DATA step and discuss the program data vector.

PROGRAM DATA VECTOR

The program data vector (PDV) is a temporary location in memory that SAS uses during the normal processing of a
DATA step. The structure of the PDV is determined during DATA step compilation. At execution time, data which
are read in using statements such as SET, MERGE, and INPUT are placed into the appropriate locations in the PDV.
DATA step statements that manipulate the values of dataset variables are actually interacting with the PDV. When it
is time for an output record to be written, the contents of the PDV are copied to the output dataset. We’ll walk
through this process step-by-step using our example from above.

COMPILATION

When you submit code to SAS, it runs in two distinct phases: compilation and execution. During the compilation
phase, the program data vector is constructed.

As SAS compiles our example code above, the first statement that affects construction of the PDV is the MERGE
statement. The first dataset listed on the MERGE statement is DEMOG, which includes three variables:
PATIENT_ID, AGE, and WEIGHT. All three are included in the PDV using the same attributes (length, format, label,
etc.) present in the input dataset. The next dataset listed is VITALS, which includes three variables: PATIENT_ID,
VISIT, and HEART_RATE. Since, PATIENT_ID is already on the PDV, only the latter two are added.

Upon the completion of DATA step compilation, the following PDV structure is in place. Note that no actual values
have been written to the PDV yet. That will occur during the execution phase.

Program Data Vector: ALLDATA

Variable Value

PATIENT_ID .

AGE .

WEIGHT .

VISIT .

HEART_RATE .

ALLDATA Dataset

PATIENT_ID AGE WEIGHT VISIT HEART_RATE

1 42 84.0909 1 60

1 42 38.2231 2 58

2 55 77.2727 1 74

2 55 35.1240 2 72

2 55 15.9654 3 69

3 30 72.7273 1 71

Anatomy of a Merge Gone Wrong, continued

3

EXECUTION

As we discuss the execution of the DATA step, it is important to remember that a DATA step is essentially a loop.
The statements in the DATA step are executed repeatedly until certain conditions are met that cause execution to
terminate. One such condition is a SET or MERGE statement that runs out of new records to read from all of the
input datasets listed within the statement. In the meantime, the contents of the PDV are written to the specified
output dataset each time execution returns to the top of the DATA step (unless you override this behavior using
statements such as OUTPUT).

As our example code begins, the first statement to execute is the MERGE statement. Since the DEMOG dataset is
listed first, the first record from DEMOG is read into the PDV. Next, the first record from the VITALS dataset is read.
Since both datasets contain the PATIENT_ID variable, the value from VITALS overwrites what had been previously
read from DEMOG. Fortunately, since PATIENT_ID is a BY variable, it has the same value on both datasets. Once
the MERGE statement has executed for the first time, the PDV looks like this:

Program Data Vector: ALLDATA

Variable Value

PATIENT_ID 1

AGE 42

WEIGHT 185

VISIT 1

HEART_RATE 60

The next statement to execute is our weight conversion. This statement reads the value of WEIGHT from the PDV,
divides it by 2.2, and then writes the result back to the PDV. After this statement executes, we have the following
PDV:

Program Data Vector: ALLDATA

Variable Value

PATIENT_ID 1

AGE 42

WEIGHT 84.0909

VISIT 1

HEART_RATE 60

We have now reached the bottom of the DATA step. Execution returns to the top and the current contents of the
PDV are written to the ALLDATA dataset. So far, everything is proceeding exactly as expected.

AUTOMATIC RETAIN

There is a common misconception that the values in the PDV are reset to missing when execution returns to the top
of the DATA step. This is only true for variables which are assigned values by an INPUT or assignment statement
(unless overridden by a RETAIN statement). For variables read with a SET, MERGE, MODIFY, or UPDATE
statement, the values are automatically retained from one iteration of the DATA step to the next.

In our example, all of the variables on the PDV were read with a MERGE statement, so all values are retained. When
the second iteration of the DATA step begins, the PDV looks just like it did when the first iteration ended.

Next, the MERGE statement executes again. Since the DEMOG dataset does not contain any more records for the
current BY group (PATIENT_ID = 1), nothing is read from DEMOG. There is still one record for the current BY group
in the VITALS dataset, so the values from that record are copied to the PDV. Since nothing was read from DEMOG,
the existing values of AGE and WEIGHT survive. The PDV now has the following state:

Anatomy of a Merge Gone Wrong, continued

4

Program Data Vector: ALLDATA

Variable Value

PATIENT_ID 1

AGE 42

WEIGHT 84.0909

VISIT 2

HEART_RATE 58

Now we come once again to the weight conversion statement. The current value of WEIGHT (84.0909) is read from
the PDV and divided by 2.2, and the result (38.2231) is written back to the PDV. Having reached the end of the
DATA step, the contents of the PDV are written out as the second record of the output dataset.

At last we have uncovered the source of our problem. The value of WEIGHT is read only once for each BY group,
while the weight conversion statement executes once for each iteration of the DATA step. The WEIGHT continues to
be divided by 2.2 repeatedly until the end of the BY group is reached.

CORRECTING THE CODE

Now that we understand what is causing this unexpected behavior, what can we do about it? The safest and most
conservative option is to limit all merges to the required statements and perform additional processing in a separate
DATA step.

data step1;

 merge demog vitals;

 by patient_id;

 run;

data step2;

 set step1;

 weight = weight / 2.2;

 run;

However, it is not always necessary to take such drastic action. This merge can be made to perform as expected
within a single DATA step by simply renaming one of the input variables as follows:

data alldata(drop=weight_lbs);

 merge demog(rename=(weight=weight_lbs)) vitals;

 by patient_id;

 weight = weight_lbs / 2.2;

 run;

As shown below, this modified code produces the output dataset we were expecting. Since WEIGHT_LBS is
retained but not modified, each record within a given BY group will have the same value of WEIGHT.

ALLDATA Dataset - Corrected

PATIENT_ID AGE WEIGHT VISIT HEART_RATE

1 42 84.0909 1 60

1 42 84.0909 2 58

2 55 77.2727 1 74

2 55 77.2727 2 72

2 55 77.2727 3 69

3 30 72.7273 1 71

Anatomy of a Merge Gone Wrong, continued

5

CONCLUSION

Merging datasets is one of the most basic and common functions performed in SAS. However, the underlying
procedure is more complex than it might first appear. It is therefore imperative for an effective SAS programmer to be
equipped with a thorough understanding of the program data vector in order to avoid mistakes like the one discussed
in this paper. See Johnson (2012) for a comprehensive treatment of the program data vector and Virgile (2000) for
additional discussion of the PDV specifically as it relates to merging.

Even the most skilled programmer can sometimes overlook subtle traps like this. Thus, it is advisable to habitually
practice certain programming techniques to defend against these errors. As we have discussed, the surest way to
steer clear of many problems in a merge is to avoid adding additional statements beyond those required for the
merge: the DATA statement, the MERGE statement, the BY statement, possibly a subsetting IF statement, and of
course the RUN statement.

Some may find this practice overly cumbersome. At the very least, one should refrain from modifying the values of
variables in a dataset being merged in the same DATA step unless one can be absolutely certain that no dataset will
ever contain more than one record within a BY group. Creating new variables can generally be done safely since the
values of new variables are not automatically retained across iterations of the DATA step.

REFERENCES

Foley, Malachy J. “Advanced MATCH-MERGING: Techniques, Tricks, and Traps.” Proceedings of the Twenty-
Second Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1997. Paper 39.

Foley, Malachy J. “MATCH-MERGING: 20 Some Traps and How to Avoid Them.” Proceedings of the Twenty-Third
Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1998. Paper 47.

Johnson, Jim. “The Use and Abuse of the Program Data Vector.” Proceedings of the SAS® Global Forum 2012
Conference. Cary, NC: SAS Institute Inc., 2012. Paper 255.

Virgile, Bob. “How MERGE Really Works.” Proceedings of the Pharmaceutical Industry SAS® Users Group 2000
Annual Conference. Chapel Hill, NC: PharmaSUG, 2000. Paper DM12.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Joshua M. Horstman
Nested Loop Consulting
jmhorstman@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

