MWSUG2016-BB07
Be Prompt — Part Il!

Advanced Prompting Techniques in SAS® Enterprise Guide
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT

With some fairly simple (and some not so simple) programming behind the scenes, you can take basic Enterprise

Guide prompts, that are already pow erful, and make them even more robust. This paper show s many examples on how
to do this as well as how to overcome some challenges to ‘out of the box' prompts. Things like 'verifying' prompt
selections and how to cut and paste values into prompts w ill be illustrated in this presentation.

INTRODUCTION

Suppose w e w ant to prompt for a series of values, both individual values and ranges. EG has prompts that can do
either, but not both at the same time. Well, not right out of the box anyw ay. The first example will look at solving this
problem. Example 2 looks at issues surrounding the verification of values entered into prompts. The third example
examines issues surrounding the implemetation of And/Or prompts. And finally, the last example addresses w ays that
you can cut and paste values into prompts. The data used in this presentation comes from the SASHELP. CLASS dataset
and is used for its simplicity.

EXAMPLE 1: ENTERING A RANGE OF VALUES

In this section, w e are going to create a prompt that allow s you to enter individual values as w ell as a range of values.
So, imagine a prompt that looks like this after you have entered some values.

F

:Bg Specify Values for Project Prompts lﬁ

General Reset group defaults

Select the ages you want... 10-20, 21, 23-30, etc.
10:12 14 16-20|

Figure 1. Prompting for a Range of Values.

Suppose w e are looking for a range of ages, but w e don’t w ant to enter every single age betw een 10 and 20. In the
prompt show n above, w e w ant to get all ages betw een 10 and 20 except 13 and 15. We will create this prompt and call
it Age_2. This is done by taking the follow ing steps:

1. Open the Prompt Manager in Enterprise Guide and select Add.

When the Add New Prompt window opens, supply the name Age_2, and specify w hat you w ant as the
displayed text.

Select the Prompt Type and Values tab.

Use the default value of Text for the Prompt type.

Make the Method for populating prompt: User enters values.

Make the Number of values: Single value.

Text type can be Single line.

n

No o

When finished, the tab should look like Figure 2.

General | Prompt Type and Values |

Frompt type:
[Tex 7]

Method for populating prompt: Mumber of values:

[Llser enters values T] [Single value

Tent type:

[Single line -]

Minimum length: Maxdmum length:

Include Special Values

[7] Al possible values [] Missing values

Default value:

Hirt:

Figure 2.

Select OK to complete the building / editing of the prompt. This prompt creates a macro variable called Age_2.
The next step is to write a program that takes these prompt values and translates theminto values w e can place

in a WHERE statement. The programis broken dow n into several steps:

Find the number of ranges and /or individual numbers.
Convert ranges into consecutive numbers.

Use this list of values to build a WHERE statement

Get the list of valid values (from a table).

Do some data manipulation.

Compare the values chosen in the prompt to the Valid values.

No gk owbdhpRE

Convert all values represented by the prompt selection to a comma separated list of values.

%let prompt = &age 2;

data null ;
c=count("&prompt", ',");
if ¢c=0 then c=count("&prompt", ' ");
check = substr(reverse("&age 2"), 1, 1);
if check = ',' then call symput ('Total’,

else call symput ('Total', left(c+1));
run;
%Zput Total=&total;

* §tep 1: Find the number of individual values and/or ranges.
* values and Ranges can be separated by blanks or commas.

Figure 3. Step 1 in the Program.

Step 1 in the program finds the number of ranges and/or unique values that have been entered through the prompt.
It takes this number and puts it into a macro variable calld &total.

data numbers(keep=number };

array word {&total} & 12 wordl - word&total;
(r' do 1 = 1 to &total unmtil(word{i} = I
word{i} = scan("&age_ 2", 1, B
~ 1if index(word{i}, '-')} = 0 then do:
number =left{word{i}) :
1_ if length(number) = 1 then number='0"!!1left(number);
if number = 0 then output;
“~ end:
/~ if index({word{i}, '-') = 0 then do:
Xx=scan(word{i}, 1, '-"});
y=scan(word{i}, 2, '-"});
do j=x to y;
number=left(j});
2- if length(number) = 1 then number='0'!!1left(number):
if number = 0 then output;
end;
\- end;

K end;

run;

Figure 4. Step 2 in the Program.

The outer loop executes once for each unique value or range. Loop #1 checks to see if there is a dash ‘-‘ in the value
and if there is NOT one, then w e are dealing w ith a unique value and it is output to the NUMBERS dataset. Loop #2
looks to see if there is a dash and if there is, then w e are dealing with a range. This loop w rites out every unique value
represented by the range to the NUMBERS dataset. At the end of Step 2, the NUMBERS dataset

looks like this:

| Eéﬁ Program™ | Z] Log |
MUMBERS -

&9 | Zj Filter and Sort §

% number
10
11
12
14
16
17
18
19
20

D (E0 |~ (O | LN | e | L | | =t

Figure 5. The NUMBERS dataset

The NUMBERS dataset has all the numbers from 10 — 20 except for number 13 and 15. This dataset will be used in the
next step to build a WHERE statement that looks like this...

WHERE AGEin(10, 11,12, 14, 16, 17, 18, 19, 20);
Notice that the variable NUMBER is character.

Step 3 in the program builds a comma separated list of values.

prec sql noprint;
select number into @ list separated by
from numbers;

quit;

%Fput &list;

Figure 6. Step 3 in the program.

View ing the Log show s the results of the %PUT statement.

76 ! gput &list;

10, 11, 12, 14, 16, 17, 18, 19, 20
77

Figure 7. The SAS/Log.

Step 4 in the program uses the &list variable in a WHERE statement to filter the data.

* Step 4: Use the List to build a Where Statement. .

title "List of Ages: &list";
-1 proc print data=sashelp.class;
titlet List of Ages: &list :
where age in(&list) ;
run;

Figure 8. The PROC PRINT step.

Notice the TITLE statement.

The output looks like this...

List of Ages: 10, 11, 12, 14, 16, 17, 18, 19, 20

Obs MName | Sex Age Height Weight
11 | Joyce F 11 1.3 0.5
18 | Thomas | M 11 575 850

7 | Jane F 12 59.8 845

13 | Louise F 12 56.3 L]

6| James | M 12 57.3 230

10 | John M 12 39.0 995
16 | Robert M 12 64.8 1280

4 | Carol F 14 62.8 1025

12 | Judy F 14 64.3 Q0.0

1 | Alfred M 14 69.0 1125

5 | Henry M 14 63.5 1025

15 | Philip M 16 72.0 1500

Figure 9. Prompt results.

EXAMPLE 2: VERIFYING PROMPT VALUES

The next output takes the results of a verification process and displays values selected in the prompt that are NOT
valid. The results of Example 2 are show n below .

These Values were chosen from the Prompt
but were not in the List of Valid Values

Obs | number

1|10

217

318

4|19

5|20

Figure 10. The results of Example 2.

The next thing w e need to do is to create a dataset with the valid values for the prompt. What are the values that are
acceptable? We are going to let all the values of AGE in the CLASS dataset be the valid values of AGE. In other words,
w e are only going to accept values from 11-16 as valid. So, w e are going to use PROC FREQ to get the unique values
of AGE fromthe CLASS dataset. And then w e are going to use a DATA step to convert these

values of AGEto character. The next tw o steps look like this.

proc Treq data=sashelp.class noprint;
tables age / out=freg_out({rename={age=numberj))::;

run:
* Step B Create a Character Variable fTrom the MNumeric Variable. =

data freg_out:
set Tfreg_out({rename=(number=nnumber}}:
number = left({put(nnumber, z2.) } :

run;

Figure 11. Getting a list of valid values.

The next thing w e are going to do is to create a list of INVALID values. Again, these are values entered into the prompt
that are not in the acceptable range. This is done in step 7 in the program.

* Step 7: Compare the Values Chosen in the Prompt with a list of Valid
* Values and generate a Report of NON-Valid wvalues.
-jdata merged(keep=number);
merge freg out{in=valid)
numbers (in=prompt];
by number;
if prompt and not wvalid;
run;
-] proc print data=merged;
title1 'These Values were chosen from the Prompt';
titlez “but were not in the List of Walid Values®;
Tootnoted "“List of WValues Selected in Prompt: &list®;
run;

Figure 12. Step 7 in the program.

Notice the DATA step. It creates a dataset named MERGED of AGE values that are in entered into the prompt, but are
NOT valid. PROC PRINT gives us a report of these values. Notice the titles and footnote.

These Values were chosen from the Prompt
but were not in the List of Valid Values

Obs | number
1|10
2|17
3|18
4|19
5|20

List of Values Selected in Prompt: 10, 11, 12, 14, 16, 17, 18, 19, 20

Figure 13. Invalid Values.

EXAMPLE 3: CREATING AND/OR PROMPT PROMPTS

Suppose you w ant to combine the effects of multiple prompts with AND/OR logic? For instance, let say you to add
AND/OR logic to the Prompt that w e just created. After you select AGE values, you might w ant to consider examining the
values of another variable like HEIGHT. The end result could look something like this...

@ Specify Values for Project Prompts .

X

General

10-12 14 16-20

Select One.

Select the ages you want... 10-20, 21, 23-30, etc.

Beset group defaults

s)

Height

[

<50
=60

Figure 14.

By selecting AND for the second prompt and > 60 for the HEIGHT prompt, You w ould get a list of people within

the AGE range selected and w ho w ere taller than 60 inches.

Go to the Prompt Manager in EG and select Add to start the process of creating a new prompt. Name the prompt

something like And_Or. Supply something for the displayed text like ‘Select One’.

Next, select the Prompt Type and Values Tab and do the follow ing:

Set the Prompt Type to Text.

Make the Number of Values : Single value.
Make the Method for populating prompt: User selects values from a static list.

ISUNESE R

Select Ok.

Select Add, then manually type in And. Select Add again and tyupe in Or.

::H Edit Prom

—

General | Prompt Type and Values |

Prompt type:
| Tet 1. :]

Method for populating prompt: Mumber of values:
[User selects values from a staticlist | 3. | [Single value 2. | -
Minirmum length: Maximum length:

Include Special Values
All possible values Missing values

Append formatted values with unformatted values

Ligt of values:
Unformatted Value Formatted (Displayed) Value Default Add 4
@
-
Allow user to specify additional (unformatted) values i

5. Jox) (oo) [n]

Figure 15.

The next step is to create another prompt and call it Height. The General tab should look like this...

Frrer - =]

General | Prompt Type and Values |
MName:

Height

Displayed text:

Height

Description:

.3

Figure 16.

Select the Prompt Type and Values tab and do the follow ing:

1. Set the Prompt Type to Text.

Make the Number of Values : Single value.

Make the Method for populating prompt: User selects values from a static list.
Select Add, then manually type in A <50. Select Add again and type in >60.
Select Ok .

apr LN

—| Edit
=E%- ¥

General | Prompt Type and Values |

Prompt type:

[Tet 1. |-

Method for populating prompt : Mumber of values:

| User selects values from a static it 3 | [Single value 2| -
Minimum length: Mazimum length:

Include Special Values

All possible values Missing values

Append fomatted values with unformatted values

List of values:
Formatted (Displayed) Value Defaul Add 4,

Unformatted Value

<50 C Getdihe
| = 6l
-

Clear Defauit
' | Movew |
| Move down
Allow user to specify additional (unformatted) values
| |
5. ok || cancel |[Hep |

Figure 17.

After the conclusion of the above steps, there are now two new prompts: And_Or and Height.
Associate these new prompts to the same program by doing the follow ing:

Go to the Process flow window and find the programicon.

Right click on it and select Properties.

Select Prompts from the panel on the left side of the window .
Select Add, then choose the two new prompts .

PODNPR

The Properties window for the program should look something like this...

10

i —— — - 1
E‘@ﬁ Properties for Programl Iﬁ

General Prompts

Resutts

Code Submission

Prompts .)

Summary Project prompts used:
SAS Name Display MName Data Type
Age_2 Select the ages you want... 10-20... Text
And_Or Select One. Teat
Height Height Teat

Mare (F1)... -

oK || Cancel |

Figure 18. The Properties window .
Select Ok, then Ok again to go back to the Process Flow window .

Next open the program and edit it by adding the follow ing program segment. The best place to insert these new steps is
right after “Step 3” in the existing program.

* Step 3b. Augment WHERE statement. =

data null ;
zlet where_B= ;
length where B & 300;

if "&And_or" ne and "&Height" ne
then Where B = "&And or Height &Height";
else Where B = ;
call symput ('Where_B' , Where_B); put WHERE_B;
run;
%put Where B = &Where B; 4—
= Step 4 Use the List to build a Where Statement. =

title "List of Ages: &list";

proc print data=sashelp.class;
titled List of Ages: &list ;
title2 AND/JOR is &And Or";
title3 Height = &Height™;
where age in(&list) &Where B,

run;

Figure 19. Step 3B.

if “And” is selected in the And_Or prompt, and if “>60” is selected in the Height prompt, then the macro variable
&Where_B resoves to:

11

“And Height > 60" ;

If you make the above mentioned selections in the new prompts w hen the programruns, the output w ill look similar to
this...

List of Ages: 10, 11, 12, 14, 16, 17, 18, 19, 20
AND/OR is And

Height = = 60

Obs | Name Sex Age Height Weight
16 | Robert | M 12 648 128.0
4 | Carol F 14 62.8 102.5

12 | Judy F 14 64.3 90.0

1 | Alfred M 14 69.0 1125

5| Henry | M 14 63.5 102.5
15 | Philip M 168 720 150.0

Figure 20. Proc Print output.

EXAMPLE 4: CUT AND PASTE

This section illustrates how you can cut(copy) and paste values from other files, such as Notepad, Word or
spreadsheets into a prompt. Those values are then used to build a WHERE statement in a program. In the next
example, w e are going to copy values out of a spreadsheet.

The spreadsheet contains a list of questionable transactions. We w ant to see if any of these Policy Numbers match
those in our PREMIUMS SAS dataset. Specifically, w e w ant to know if any of the Policy Numbers from the spreadsheet
are making their premium payments.

First, w e w ant to copy the first five policy numbers from the spreadsheet.

A | B C D | E | F G
1 | Obs State Product Paid Policy Number| date received dob
2 1 FL WMC 8.69 20000 15Jan2012 1Feb1917
3 2 FL WMC 396.00 20001 22Mar2012 25Jun1975
4 3 FL WIMR 45.00 20002 22Jan2012 80ct1930
5 4 FL WIMR 348.00 20005 29Jan2012 15Apr1932
] 5FL WMC .00 200101 12Feb2012 25Mar1999
7 6 FL WIMR 225.00 20020 30Apr2012 10Apr1932
g LFL WIR 11 20000 21Jan2012 29Junig2s

Figure 21. The spreadsheet

12

Let’s take a quick look at how this prompt w as created. The follow ing steps w ere taken:
1. Wentto Prompt Manager in EG and selected Add.

Fromthe Add a New Prompt window, selected the General tab.

Supplied a Name, like Cut_and_Paste.

Supplied the text to be displayed at runtime.

Selected the Prompt Type and Values tab.

apr LN

Fromthe Prompt Type and Values tab, the follow ing w as done:
Made the Prompt type: Text.

Made the population method: User enters values.
Made the Number of values: Single value.

Made the Text type: Multi-line text.

Selected OK.

arwn e

Before the Add a New Prompt window closed, it looked like this:

Frompt Type and Yalues

Genera
Frompt type:
[Text 3
Methiod for populating prompt: Mumber of values:
[User enters values Single value 3
e ——

Tent type:

@ulti-line t@ -]

Mazdmum line count:

Minimum length: Mazdmum length:

Mumber of lines displayed:

Default value:

Figure 22.
The tw 0 most important things to do w ith this prompt are circled in in Figure 22.

Before w e fully utilize this prompt in a program, it's a good idea to see w hat this prompt ‘delivers’ to the program.
So, the first thing w e are going to do is associate the prompt with a new program and then test the prompt.

Select File > New - programw hile in EG to create the new program.
Just put this statement in the program editor:

%put &Cut_and_Past;

Close the program. Fromthe Process Flow window , right click the programicon. Rename the program “Prom pts™.
Associate the Cut_and_Paste prompt with the program (see steps at the bottom of page 9.).

13

Run the program and paste the values in the prompt. It should look like this:

I@, Specify Values for Project Prompts P

General Reset aroup defaults

Cut and Paste Your values here

20000 R
20001

20002 |
20005

20010 -

l.m

Figure 23. The Cut and Paste prompt.

Select Run. Then open the Log.

Program” | (=] Log |

port ~ Send Te - Create i @Lng Surmmary F'ru:ujectLu:ug F'ru:uperties
3 (LET _CLIENTPROJECTNAME='Josh.egp’;

& %LET SASPROGRAMFILE=;

T (LET Cut_and Paste = %nrstr (20000

8 20001

9 20002

10 20005

11 20010

12) ;
e —
259 * Comment *;

30 %put &cut and paste;

20000 20001 20002 20005 20010

31

Figure 24. The SAS Log.

Notice the values of &Cut_and_Paste. The next step is to write code that can manipulate these
values to filter data. Go back to the program and add this DATA step.

Prompts -

E@- Program™ ||§] Liog | Efd Output Data|

Save ~ | Run =~ Stop | Selected Server: Local (Connected) = % | Analyze Program ~ | Export = Send To = Create

*%put &cut and paste;
sdata suspicious;
set 'G:\Ben_238ep2015\workshop EG\Premiums';
where policy Number in(&cut_and paste);
run;

Figure 25. Final DATA Step.

14

Notice the WHERE statement. Add a PROC PRINT step, run the program and paste the values
copied from the spreadsheet into the prompt.

Obs| Policy Number state | Premium| date paid Product | year county New County
1 20000 FL 95.00 09JUMZ2012 WMR 2005 HILLS HILLS
2 20000 FL 95.00 19JUL2010 WMR 2003 HILLS HILLS
3 20000 FL 95.00 30JUL2013 WMC 2006 HILLS HILLS
4 20000 FL 95.00 13DEC2009 WMR 2003 HILLS HILLS
5 20000 FL 95.00 28FEB2011 WMR 2004 HILLS HILLS
] 20000 FL 93.00 17SEP2010 WMC 2003 HILLS HILLS
[} 20000 FL 95.00 31MAYZ2012 WMR 2005 HILLS HILLS
8 20000 FL 95.00 09DEC2012 WMC 2006 HILLS HILLS
9 20000 FL 95.00 29MAY2012 WMR 2005 HILLS HILLS

Figure 26. PROC PRINT output.

CONCLUSION

Prompts are fairly simple to create, but have very pow erful effects on your SAS programs. Prompts can also be used in
the Query Builder in Enterprise Guide. The real pow er of prompts can be harnessed w hen their results are
Incorporated into programs. It is the hope of the author that the reader of this paper has learned some valuable
information about how to create and use prompts.

ACKNOWLEDGMENTS

I would like to thank my clients for this past year in posing prompt challenges to me. These challenges have been the
source of inspiration for this presentation. |thank themalso for their patience because I did not alw ays give thema
prompt solution.

CONTACT INFORMATION
If you have any questions or comments, the author can be reached at:
Ben Cochran
The Bedford Group
3224 Bedford Avenue
Raleigh, NC 27607
Work Phone: 919.741.0370
Email: bencochran@nc.rr.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

15

