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ABSTRACT 
 
Fixed item parameter calibration (FIPC) has been popular in calibrating the parameters of pretest (new) 
items administered with a computer adaptive test.  In this study, a new FIPC method is proposed. In the 
new approach, the prior for the EM algorithm is computed using only the parameters of operational (scored) 
items and the responses to these items for the new calibration sample. During the EM cycles the prior is 
not updated but fixed in calibrating pretest items. The main advantage of this new method is that any 
potential contamination from poor pretest items (e.g., poor model fit) is eliminated since pretest items are 
excluded from computing the prior during the EM cycles. No commercial software is available to implement 
the new approach so a new SAS® macro named SAS®-FIPC is written in SAS/IML® to calibrate the 
parameters of the pretest items. The calibration results of the new method are compared to the ones from 
the existing methods through a simulation study.   
 
 
INTRODUCTION 
 
Estimating item parameters is one of the most fundamental procedures to maintain the integrity of test 
scores from the item response model framework (Baker & Kim, 2004). In practice, when the parameters of 
pretest (new) items are estimated, their parameter estimates must be put on the same scale as operational 
(scored) items that are already on the base scale, by means of a scale transformation of the estimated 
pretest items to the base scale. It is an unavoidable process for the pretest items to be used as scored 
items in later administrations. Only when item parameters are placed on the same scale, test scores 
computed based on their item parameters are comparable to each other. 
 
The fixed item parameter calibration (FIPC) has been popular for online tests (Paek & Young, 2005). It 
allows for test practitioners to estimate the parameters of pretest items that are embedded among 
operational items and place them on the same sale as the operational items. Unlike separate estimations 
of operational and pretest items which are linked together with a scale transformation (e.g., Stocking & Lord, 
1983), the FIPC method calibrates pretest items with the parameters of operational items fixed at the values 
obtained previously. Therefore, there is no scale indeterminacy issue with the FIPC method.  
 
The success of the FIPC depends on how well the underlying ability distribution is estimated in the current 
group relative to the base group and on how to use the prior density during the calibration process. The 
Marginal Maximum Likelihood Estimation method with EM algorithm (MMLE-EM), most commonly 
employed for the FIPC, estimates the underlying ability distribution (e.g., posterior) in the E-step and use it 
as the prior in the M-step of the EM cycles. In previous studies (e.g., Ban et. al., 2001; Kim, 2006; Wainer 
& Mislevy, 2000), various FIPC methods are classified according to whether the prior for the MMLE-EM is 
updated and how many times it is updated during the EM cycles. As the prior density is properly updated 
through the EM cycles, it approaches the underlying ability distribution relative to the base scale, and the 
estimated parameters of pretest items are placed onto the scale of the operational items (i.e., the base 
scale). 
    
Since the existing FIPC uses not only operational items but also pretest items in updating the prior during 
the EM cycles, it is possible that the underlying density is contaminated when pretest items show poor 
model fit. In reality, many newly developed items are discarded or revised due to their bad model fit. 
Unfortunately, it has not yet been addressed in the literature how a poorly estimated prior density affects 
the calibration results of the FIPC method and how it can be resolved.  
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In this study, a new FIPC method is proposed, in which the underlying ability distribution is estimated prior 
to pretest item calibration according to Mislevy (1984) using only the operational item parameters and the 
responses to the operational items for the current group of examinees used in the calibration, and is fixed 
during the EM cycles. The main advantage of this new method is that any potential contamination from bad 
pretest items (e.g., poor model fit) is eliminated since pretest items are excluded from computing the prior 
density during the EM cycles. So, it is expected that the new FIPC method, in which pretest items with poor 
model fit are excluded from the calibration of the (fixed) underlying density, performs better than existing 
FIPC methods. 
 
 
METHOD 
 
No commercial software is available to implement the new approach so a new SAS® macro named SAS®-
FIPC is written in SAS/IML® to calibrate the parameters of the pretest items. A simulation study was 
conducted to evaluate the accuracy of SAS®-FIPC in recovering the item parameters. In this study, three 
simulation factors were manipulated: the number of examinees, the number of pretest items with poor 
model fit, and the underlying ability distribution. For the number of examinees, 1,000 and 2,000 examinees 
were chosen to represent medium and large testing volumes. A 50-item test was simulated with 10 
operational items and 40 pretest items. Among the 40 pretest items, 0%, 25%, 50%, or 75% of items were 
assumed to have poor model fit. Therefore, including the no model misfit condition, four model fit conditions 
in the pretest items were examined. The following 5 underlying ability distributions were examined: 
�(0, 1�),�(0.5, 1.2�), �(−0.5, 1.2�), �(1, 1.2�), and	�(−1, 1.2�).  
 
The three-parameter logistic model (3PLM) was used when generating item responses. However, pretest 
items with poor model fit are simulated by generating examinee responses using the one-parameter logistic 
model (1PLM). 80 conditions were simulated, in which the 2 X 4 X 5 simulation factors were crossed with 
two different calibration programs: SAS®-FIPC for the new FIPC method (written in SAS/IML®) and 
PARSCALE (Muraki & Bock, 1998). The fixed prior (e.g., underlying ability distribution) was estimated using 
the procedure suggested by Mislevy (1984) and the fixed prior was not updated during the EM cycles. One 
hundred replications were simulated for each of the 80 conditions. 
 
 
GENERATING SIMULATED DATA RESPONSES 
 
The ability parameters of examinees were generated from five sets of normal distributions as mentioned 
previously. To address various ranges of underlying ability distributions, means and standard deviations of 
the distributions were modified within the level of acceptable differentiations. Table 1 shows the descriptive 
statistics of simulated examinee’s true ability (
) distributions for the two sample size conditions. 
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Table 1 . Descriptive statistics for simulated examinee ability parameter 
Condition N Mean SD 

�(0, 1�) 1000 0.022 0.958 

2000 -0.010 1.019 

�(0.5, 1.2�) 1000 0.521 1.120 

2000 0.498 1.100 

�(−0.5, 1.2�) 1000 -0.445 1.113 

2000 -0.494 1.129 

�(1, 1.2�) 1000 1.093 1.180 

2000 1.008 1.178 

�(−1, 1.2�) 1000 -1.012 1.259 

2000 -0.984 1.168 

 

Item parameters were obtained from a large scale standardized mathematics test. Table 2 shows the 
summary statistics for the item parameters used to generate examinee responses. The parameters of 
operational items show a slightly higher item discrimination (a) and lower item difficulty (b) values than 
those for pretest items.  

 

Table 2 . Descriptive statistics for item parameters 

Item 
Item Parameter Mean (SD) 

a b c 

Operational items 0.910 (0.164) -0.128 (0.556) 0.227 (0.080) 

Pretest items 0.766 (0.294) 0.004 (1.145) 0.198 (0.110) 

Overall  0.730 (0.309) 0.037 (1.253) 0.191 (0.116) 
 

 

EVALUATION OF THE OUTCOMES  

 
The results from SAS®-FIPC are compared with those from a commonly used commercial IRT program, 
PARSCALE. Similar calibration parameters were implemented for both programs (e.g., maximum EM 
cycles and the number Newton-Raphson iteration). Outcomes for the two different calibration programs 
were compared by calculating the Mean Bias Error (MBE) and the Root Mean Squared Error (RMSE), 
calculated as follows: 
 
 

MBE	 = � (�����)�
���

� , 
 

RMSE = �� (�����)��
���

� , 

 
where � 	is the true parameter, �! is the estimator of the corresponding parameter, and n is the number of 
replications (= 100). Each parameter estimate was compared with the corresponding true parameter value 
by calculating the deviation and squared deviation, then averaged over replications in computing MBE and 
RMSE, respectively. 
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RESULTS 
 
It was noticed that the number of successful convergences (across replications) in both programs were 
different depending on the conditions. The number of replications with non-convergence results increased 
for both programs as the underlying ability distribution deviated from the �(0, 1�) condition and as the 
number of pretest items with poor fit increased. However, there was no consistent difference in number of 
non-convergence results between the two estimation programs. Only replications that showed successful 
convergence were included when calculating evaluation criteria.  
 
The MBE and RMSE between the true and estimated parameters were averaged over the replications to 
evaluate the performance of SAS®-FIPC and PARSCALE in the recovery of the true parameters. Table 3 
shows that when no pretest items show poor model fit, SAS®-FIPC  generally shows lower MBE and RMSE 
than PARSCALE  in recovering the a, b, and c parameters (although b shows lower mean bias for 
PARSCALE in conditions with low mean ability). As expected, RMSE is lower in the N = 2000 condition 
than in the N = 1000 condition for all item parameters. However, although MBE is smaller in the N = 2000 
condition for a, it is larger in the N = 2000 condition for b and c, especially in the sampling distribution 
conditions with high negative mean. Also, the a and b parameters appear to have lower RMSE in sampling 
distribution conditions with higher positive mean, and higher RMSE in sampling distribution conditions with 
higher negative mean, especially when the parameters are estimated by PARSCALE. 
 

Table 3 . Mean Bias and Mean RMSE when no pretest items with poor fit are present 

Condition N 

Mean Bias Mean RMSE 

SAS®-FIPC PARSCALE SAS®-FIPC PARSCALE 

a b c a b c a b c a b c 

�(0, 1�) 1000 -0.030 -0.059 -0.016 -0.096 0.061 -0.031 0.160 0.342 0.095 0.226 0.486 0.100 

2000 -0.022 -0.085 -0.027 -0.064 0.047 -0.042 0.121 0.310 0.088 0.176 0.476 0.096 

�(0.5, 1.2�) 1000 -0.016 -0.060 -0.006 -0.087 -0.064 -0.024 0.126 0.326 0.093 0.165 0.385 0.097 

2000 -0.004 -0.063 -0.013 -0.057 -0.091 -0.029 0.101 0.285 0.086 0.120 0.322 0.089 

�(−0.5, 1.2�) 1000 -0.056 -0.072 -0.031 -0.098 0.028 -0.038 0.173 0.338 0.090 0.219 0.456 0.093 

2000 -0.042 -0.086 -0.033 -0.065 0.036 -0.045 0.140 0.295 0.081 0.181 0.447 0.088 

�(1, 1.2�) 1000 -0.061 -0.065 0.005 -0.076 -0.109 -0.018 0.131 0.335 0.098 0.146 0.375 0.102 

2000 0.001 -0.054 -0.006 -0.052 -0.110 -0.025 0.091 0.291 0.090 0.108 0.324 0.094 

�(−1, 1.2�) 1000 -0.075 -0.049 -0.029 -0.115 0.029 -0.034 0.196 0.344 0.079 0.232 0.425 0.081 

2000 -0.053 -0.075 0.032 -0.067 0.069 -0.043 0.160 0.320 0.075 0.202 0.454 0.082 

* Note: Bold typed number indicates smaller value in absolute number. 
 

Table 4 shows similar results when 25% of pretest items show poor model fit, in which SAS®-FIPC generally 
show better recovery than PARSCALE across conditions. The RMSE values are generally smaller in Table 
4 than in Table 3 (no items with poor fit) for a and b parameters estimated by SAS®-FIPC, but are larger in 
Table 4 than in Table 3 for a, b, and c parameters estimated by PARSCALE, especially for the b parameter. 
Furthermore, the expected decrease in RMSE with sample size breaks down when b and c parameters are 
estimated by PARSCALE. Also, the effect of sampling distribution condition on RMSE appears diminished 
in Table 4, except for the b parameter when it is estimated by PARSCALE. 
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Table 4 . Mean Bias and Mean RMSE when 25% of pretest items show poor model fit 

Condition N 

Mean Bias Mean RMSE 

SAS®-FIPC PARSCALE SAS®-FIPC PARSCALE 

a b c a b c a b c a b c 

�(0, 1�) 1000 -0.023 0.001 -0.005 -0.166 0.221 -0.018 0.151 0.270 0.086 0.338 0.627 0.127 

2000 -0.020 -0.012 -0.012 -0.147 0.225 -0.035 0.116 0.207 0.072 0.300 0.641 0.136 

�(0.5, 1.2�) 1000 -0.009 -0.048 -0.013 -0.189 0.083 -0.007 0.117 0.315 0.095 0.342 0.502 0.122 

2000 -0.009 -0.065 -0.021 -0.178 0.102 -0.014 0.093 0.278 0.090 0.315 0.515 0.126 

�(−0.5, 1.2�) 1000 -0.053 -0.082 -0.036 -0.153 0.210 -0.020 0.164 0.310 0.093 0.334 0.608 0.132 

2000 -0.038 -0.079 -0.035 -0.088 0.240 -0.043 0.122 0.260 0.080 0.257 0.685 0.147 

�(1, 1.2�) 1000 -0.016 -0.054 0.001 -0.157 -0.116 0.005 0.107 0.342 0.103 0.322 0.331 0.119 

2000 0.005 -0.047 -0.012 -0.122 -0.120 0.002 0.084 0.281 0.092 0.282 0.283 0.119 

�(−1, 1.2�) 1000 -0.064 -0.079 -0.031 -0.166 0.155 -0.005 0.189 0.318 0.078 0.352 0.507 0.126 

2000 -0.054 -0.080 -0.032 -0.049 0.310 -0.029 0.166 0.302 0.074 0.262 0.687 0.135 

* Note: Bold typed number indicates smaller value in absolute number. 
 

Tables 5 and 6 show a similar pattern when 50% and 75% of pretest items show poor model fit. Again, 
SAS®-FIPC shows consistently better item parameter recovery across all of the conditions. Also, RMSE 
appears to decrease as the percentage of poor fit items increases when the item parameters are estimated 
by SAS®-FIPC, but increases with percentage of poor fit items when the item parameters are estimated by 
PARSCALE. In addition, RMSE is smaller in the N = 2000 condition than in the N = 1000 conditions when 
the a, b, and c parameters are estimated by SAS®-FIPC, but is larger in the N = 2000 condition than in the 
N = 1000 condition when b and c parameters are estimated by PARSCALE (although RMSE is still smaller 
in the N = 2000 condition when the a parameter is estimated by PARSCALE). Finally, the b and c 
parameters appear to have lower RMSE in sampling distribution conditions with higher positive mean, and 
higher RMSE in sampling distribution conditions with higher negative mean, when the parameters are 
estimated by PARSCALE, but the effect is reversed when parameters are estimated by SAS®-FIPC. 
However, the a parameters appear to have higher RMSE in sampling distribution conditions with higher 
positive mean, and lower RMSE in sampling distribution conditions with higher negative mean, when the 
parameters are estimated by PARSCALE, but the effect is reversed when parameters are estimated by 
SAS®-FIPC. 
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Table 5 . Mean bias and RMSE when 50% of pretest items show poor model fit 

Condition N 

Mean Bias Mean RMSE 

SAS®-FIPC PARSCALE SAS®-FIPC PARSCALE 

a b c a b c a b c a b c 

�(0, 1�) 
1000 -0.017 0.005 -0.006 -0.260 0.206 0.005 0.147 0.252 0.082 0.435 0.624 0.144 

2000 -0.023 -0.024 -0.017 -0.221 0.209 -0.006 0.109 0.200 0.070 0.380 0.648 0.155 

�(0.5, 1.2�) 
1000 -0.006 0.025 0.004 -0.293 0.135 0.015 0.127 0.251 0.083 0.442 0.481 0.138 

2000 0.002 -0.003 -0.005 -0.268 0.107 0.008 0.095 0.211 0.072 0.414 0.596 0.145 

�(−0.5, 1.2�) 1000 -0.051 -0.019 -0.019 -0.222 0.181 0.005 0.161 0.223 0.068 0.396 0.733 0.150 

2000 -0.044 -0.028 -0.018 -0.179 0.116 0.002 0.127 0.183 0.057 0.356 0.836 0.155 

�(1, 1.2�) 
1000 0.001 0.035 0.018 -0.266 -0.083 0.021 0.108 0.272 0.094 0.427 0.252 0.129 

2000 0.004 0.007 0.002 -0.208 -0.152 0.022 0.085 0.225 0.081 0.378 0.417 0.139 

�(−1, 1.2�) 
1000 -0.058 -0.009 -0.012 -0.237 0.187 0.031 0.177 0.208 0.054 0.410 0.606 0.144 

2000 -0.052 -0.025 -0.016 -0.142 0.199 0.017 0.145 0.171 0.046 0.335 0.807 0.148 

* Note: Bold typed number indicates smaller value in absolute number. 
 

Table 6 . Mean bias and RMSE when 75% of pretest items show poor model fit 

Condition N 

Mean Bias Mean RMSE 

SAS®-FIPC PARSCALE SAS®-FIPC PARSCALE 

a b c a b c a b c a b c 

�(0, 1�) 
1000 -0.028 -0.012 -0.019 -0.332 0.182 0.038 0.144 0.215 0.073 0.480 0.597 0.166 

2000 -0.041 -0.053 -0.028 -0.277 0.203 0.035 0.110 0.181 0.066 0.423 0.690 0.178 

�(0.5, 1.2�) 
1000 -0.008 -0.011 -0.013 -0.356 0.096 0.044 0.115 0.231 0.072 0.485 0.466 0.159 

2000 -0.017 -0.019 -0.016 -0.317 0.024 0.044 0.093 0.190 0.066 0.454 0.614 0.169 

�(−0.5, 1.2�) 1000 -0.074 -0.048 -0.026 -0.296 0.151 0.052 0.165 0.197 0.063 0.450 0.717 0.175 

2000 -0.059 -0.046 -0.024 -0.239 0.122 0.055 0.125 0.158 0.051 0.406 0.802 0.178 

�(1, 1.2�) 
1000 -0.005 0.008 0.003 -0.335 -0.109 0.043 0.104 0.242 0.079 0.466 0.237 0.144 

2000 -0.004 -0.008 -0.012 -0.246 -0.236 0.048 0.084 0.207 0.071 0.404 0.551 0.163 

�(−1, 1.2�) 
1000 -0.071 -0.029 -0.014 -0.317 0.155 0.081 0.161 0.168 0.045 0.463 0.593 0.175 

2000 -0.067 -0.025 -0.018 -0.217 0.148 0.070 0.141 0.142 0.041 0.399 0.829 0.178 

* Note: Bold typed number indicates smaller value in absolute number. 
 

Overall both SAS®-FIPC and PARASCALE estimate parameters of pretest items quite well regardless of 
the number of examinees and the number of items with poor fit. Mean bias and RMSE values did not exceed 
more than 1 in any of the conditions. However, SAS®-FIPC showed consistently better performance in most 
of the simulation conditions, although the difference between the two estimation programs are relatively 
negligible in most conditions. Further research under more various conditions is recommended so that the 
advantages and disadvantages of the two estimation programs are revealed.  
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