
1

MWSUG 2016 - Paper AA25

An Animated Guide: Deep Neural Networks in SAS® Enterprise Miner
Russ Lavery, Bryn Mawr, PA

ABSTRACT
Recent advances in algorithms and hardware (the GPU chip) have made it possible to build neural nets
that are both deeper and wider than had been practical in the past. This paper explores the theory, and a
bit of the practice, associated with the building of deep neural networks in SAS® Enterprise Miner.

INTRODUCTION
Neural networks
got that name
because of their
similarity to the
way neurons work
in the human body.
Any web research
session on this
subject returns
mentions of
neurons, so a
small anatomy
lesson might be
worthwhile.

A cell is not a
piece of
undifferentiated
jelly. Cells have
structure and parts
of cells have
specific functions.

Figure 1

The cell has a nucleus that contains the DNA and it has parts that connect the cell body to other cells.
Dendrites are long stringy parts of the cell that take inputs. Axons send outputs to other cells. Your body
is an incredibly deep neural network and one of your nerve cells can have hundreds of thousands of
connections to other cells.

An input to the cell, maybe the feeling of a touch or sensing of a color through your eyes, comes in
through a dendrite. Cells have many dendrites and a cell can receive many simultaneous inputs. The
individual inputs are summed (“summed” is used in the same way that a mathematician would use the
word) in a specialized part of the cell located adjacent to the start of the Axon. This specialized part of the
cell, called the Axon Hilllock, sums the different inputs and if the inputs exceed some threshold the Axon
Hillock sends an electrical signal down the Axon towards other cells (the cell “fires”).

At the end of the Axon, the electrical signal is converted into a chemical signal that leaves the cell. A
chemical signal bridges the gaps (the synapses) to other cells.

2

The important things to recognize are: 1) the huge numbers of connections between nerve cells and 2)
the function of the Axon Hillock. It’s job is to sum the different inputs, some of which might increase the
chance of sending out a signal and some of which might decrease the chance of sending out a signal,
and then to decide if it should send an electrical discharge down the Axon.

Figure 2 shows a
small neural net
but the
characteristics of
the small neural
net are present in
larger nets as well.

Nodes to the left
are sometimes
called “early”
nodes.

A neural net can
predict either
binary or interval
data and this net is
trying to predict
someone’s weight
from their sex, age
and height.

Figure 2

 A network has three types of nodes. Networks have input nodes and there are three nodes in this input
layer. Networks have internal (often called hidden) nodes and layers. This net has two hidden/internal
layers. The first hidden layer has three nodes and the second layer has two nodes. Networks have an
output layer and this network has one node in the output layer.

The network in figure 2 is a feedforward node. Each node in a layer, to the left, is connected to every
node in the layer immediately to its right. There are no connections backwards between nodes, so no
arrows point to the left. Finally there are no connections between nodes in the same layer.

Inside each node is a function (represented by the letter f in the circles). These functions are referred to
as activation functions, transfer functions or simply transforms. The functions are usually nonlinear and
common ones are linear, logistic, hyperbolic tangent and Gaussian. The fact that individual transfer
functions are non-linear makes the whole neural network non-linear. A neural network has the ability to
separate groups (and that is what predicting a binary Y is doing) with a boundary that is very curved and
irregular.

The basic process above is to take the values of a person’s sex, age and height and enter them into the
input nodes. The input variables are often standardized to remove the effects of different measurement
units. The standardized values of sex, age and height are multiplied by the weights (the red Ws) and the
result is passed on to the internal nodes. Each internal node receives many inputs. Some people think of
neural network weights as being similar to the beta coefficients in a regression. Neural net weights, like
regression beta values, are measures of how much impact an X variable has on the Y variable. Arrows
indicate how values are combined. At the right side of the network, the sum of weighted inputs (after
going through all the nodes) is compared to a known Y value and an error is calculated. The back
propagation algorithm then takes the derivative of the error with respect to each of the weights and uses
that derivative to adjust the weights to produce a smaller error.

3

Think of each person’s sex, age and height entering this network - the three variables enter
simultaneously - one person at a time. For the first person read, the weights are set to random numbers
and they produces large errors. After each observation is processed, the weights are adjusted to reduce
the error and after many (often several thousands) subjects are processed, the weights can predict the Y
value with small error. A second pass is needed, using the final weights, to score all the observations.

If a reader looks at the top node in the first internal layer s/he can see that it has inputs from sex, age and
height as well as from a 1 (coming from a yellow box). The one is called a bias term and it is used to
adjust the summed values from the input node so that the result, after adding in the weighed bias, has a
value that does not “overload” the transform function. Overloading is most easily explained by thinking of
the activation function as being a Gaussian transform – a bell shaped transform. The input to the
activation function is the Z value (the summed weighted inputs from previous nodes) for the Gaussian
and the output of the transform is the height of the bell above that value of Z. If Z is +3, the transform
returns a value close to zero. If Z is +8, the transform also returns a value close to zero. After a Z value
exceeds a certain absolute value, the transform returns, for practical purposes, the same value and is
both “overloaded” and no longer sensitive to small/moderate changes in Z. The bias is used to “move”
the value of Z back to a value where the transform function is more sensitive to changes in Z.

Inside the node, the inputs are summed and then pushed through the function in the middle of the node to
produce an output value for the node. I think of each node as holding two numbers: an input number and
an output number. An input number is the weighted sum of all of the values coming in from the left and
the weighted bias. An output value is the one number that is a result of applying the transform function
(also called activation function) to the summed weighted input values (the input number).

In early research, the activation functions were often just step functions. If the summed weighted input
values was not above a certain level (a cutoff number), no value (or maybe a zero) was passed on to
nodes to the right. Now, most nodes use smooth S shaped functions (or maybe bell-shaped) and they
always pass on some value to nodes to the right – though the value may be small.

Given enough nodes, and layers, you can model any data set to any desired level of accuracy – though it
might take a very long time if the data set is large.

If you feed, into the network, an X variable that has no predictive power (e.g. a code for “blue eyes” vs
“not blue eyes” in our problem of predicting weight) the neural net will eventually assign weights of zero to
eye color. If you have enough data, and enough time to wait for the algorithm to run, a neural net will
remove non-predicting variables by setting their weights to zero. However including a lot of silly variables
as inputs will make the neural net run longer and possibly increase the chance of it finding a local optima.

4

Figure three shows
some of the
activation functions
that researchers
use.

Linear is often
used to connect
the last hidden
layer to the output
layer and functions
like regression. It
is often used as “a
combiner”

Hyperbolic tangent
and Gaussian
activations are also
commonly used in
other parts of the
network.
Figure 3

Figure 4 facilitates
a discussion of
why non-linear
functions are so
commonly used.

Biologists think
that frogs’ brains
contain two neural
networks to help it
find flies to eat.

One network
matches the size
of the object to the
size of an ideal fly.
The other network
matches the “flying
behavior” to that of
an ideal fly.

Figure 4

5

This paper will next discusses how a frog might use a Gaussian function to evaluate several potential
meals. The choices are: a small fly (red picture border and arrows), a large fly (blue picture border and
arrows), a bird (green picture border and arrows) and a moose (blue picture border and arrows). The
activation functions are mound shaped and the X value (horizontal value) generated by each object are
“object distance from ideal”. Close to the ideal points, the function returns a large value (it “fires”). There
is a cut-off value, shown as a horizontal line on the function, at which point the frog decides if “eat=True”
or “eat=False” (or “activate” vs “not activate”, “fire” vs “not fire”).

For the small fly (red picture border and arrows), both the size and flying behavior are close to the ideal.
Both networks return a large, “above the cut-off”, value and so “lunch is served”. For the large fly, the
size is a bit off-putting, though the flying behavior is close to the ideal (see blue arrows). Both networks
return large values and the frog would likely attack. Because of the non-linear shape of the activation
function, the networks are sensitive to small changes in the area of the “ideal”.

For the bird, the size and behavior are both wrong (see green arrows) and the networks return two low
values. For the moose, both the size and behavior are very wrong (see black arrows) and the networks
return two low values. Because of the non-linear shape of the activation functions, the values returned for
the bird and moose are similar. This makes sense, because, once the frog had decided that an object is
“not lunch” it does not need to make fine evaluations of “how much not lunch” an object might be.
Because of the shape of the non-linear activation function, the networks are NOT-sensitive to small
changes far from the “ideal”.

Figure 3 shows a
larger net, though
far from being a
very large net
these days. You
can see there are
lots of connections
between lots of
nodes.

Neural nets are
used in digital
cameras to identify
faces of people in
a picture.

Much exciting work
is being done in
visual recognition
using neural
networks.

Figure 3

There was, and to some extent still is, a criticism of deep neural nets that they are black boxes – that the
results can be very good but no one can understand how the results are created. Recent research has
made that statement less true. Visual recognition research has allowed people to peek inside of neural
nets and discover some exciting findings. This paper will discuss the internal processes of neural
networks using pictures as the research issue.

It seems that early layers in the net identify basic visual building blocks; like edges going from light-to-
dark or dark-to-light. Nodes farther to the right, in the net, can create higher level abstractions. Nodes in

6

the middle of a neural net might identify parts of faces, like ears or noses. Nodes to the far right of the
neural net can reconstruct faces and even recognize people.

WAYS TO USE SAS TO CREATE A NEURAL NETWORK
SAS Enterprise Miner has four ways to do neural nets.

DMNeural uses bucketed principal components as X variables and can predict a binary or interval Y.
HPNeural is designed as a high performance modeling tool. It will access memory across multiple cores
and multiple computer nodes. It is not good for deep neural nets because it does not provide protection
against the problem of vanishing or exploding gradients. Auto Neural conducts limited searches to help
you find a better network architecture. It will try different numbers of layers, nodes as well as different
activation functions.

Neural network is the SAS work horse for doing neural nets and will process a deep neural network. It
provides the most control and most power of the choices that SAS provides. In order to do a deep neural
net you must have Enterprise Miner installed, but it is easy to code a PROC Neural in the SAS display
manager once you have installed Enterprise Miner.

A PROCESS FOR CRATING EFFECTIVE NEURAL NETWORKS
Good Neural Network results are the result of a multi-step (multi-node?) process and this paper will
examine some of the other steps. Good neural network results come from a process and the process
before the neural net is important. Steps in a good process might be:

Sampling can reduce the time to train a neural net and quick run times are always desirable. A researcher
must balance the desire for quick run times with the fact that training a complex neural network to do a
complex task requires lots of training data. To some extent, the quality of the results depends on the
quality, and amount, of the training data.

Programmers usually want to create partitioned data sets to allow SAS to automatically report on how
well the neural net performs on data that is different from the training data.

Consulting with business experts, and doing exploratory modeling, can reduce the number of variables
that must be feed into the neural net. Often having fewer, and higher quality, input variables reduces
training time and improves the results.

An analyst might want to impute missing values or transform data before passing it into a neural net.
Neural nets are highly non-– linear but transforms of the X variables can reduce training time.

A programmer might want to remove outliers because they can reduce model accuracy.

A neural net usually needs a data mining database (DMDB) catalog entry and a researcher might need to
run PROC DMDB be before her neural net will run.

Finally, in a neural net project, an analyst might also want to use other modeling nodes. It might be that
the neural net is not the best technique for any particular use case.

A “COCKTAIL PARTY LEVEL” HISTORY OF NEURAL NETWORKS

The seminal article for neural nets was written by Donald Hebb in 1949. He wrote about neurons in the
body and said, “when an Axon of cell A is near enough to excite cell B, and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.” Hebb was hypothesizing that “neurons that fire
together wire together” and his article was the start of an explanation of how neurons are involved in
learning and memory.

Efforts to make computers work like human cells started soon after Hebb’s article. People were doing
research using computers and electrical circuits in the 1950s. In 1963 Vapnik and Chervonenkis
discovered the idea of the support vector machine.

7

A book, in 1963, threw a major monkey wrench into neural net research. Papert and Minsk, in their book
titled “Perceptrons”, demonstrated that a single node can classify successfully only if the Y classes in the
data are linearly separable. They also proved that a single layer perceptron could not learn the logical
XOR function. The inability to learn the XOR function was seen as a major, and general, flaw in neural
networks and machine leaning. Research interest plummeted.

Interest was revived when, in 1974, Paul Werbos invented a training method called backward
propagation. This allowed for the creation of multi-node and multi-layer neural nets, though it ran into a
problem called “the vanishing gradient” when applied to large nets.

Restricted Boltzmann machines were invented by Smolensky in 1986 but became important in the early
2000s as Geoffry Hinton applied them to machine learning and the creation of Deep Neural Networks.

In 1981 Hubel and
Wiesel won a
Nobel Prize for
work on neuronal
activities and
vision. They had
embedded an
electrode in a cat
brain and struggled
to measure some
sort of neuronal
activity driven by
pictures projected
in front of the cat.

Their first signal
came when the cat
saw a straight line
as they changed
slides.

Figure 4

It turns out that lines, or edges, might be important for both animal vision and for computer vision. In
figure 3 we can see that early layers in the artificial neural net seem to be detecting lines of varying types.

Research into vision is particularly amenable to discovering what’s going on in the inner layers of the
neural net. This paper will discuss some image recognition tasks, and logic, as a way of building
familiarity with the neural net internal process.

8

In figure 5 we get
some idea of how
pictures are coded.

In this figure we
see how early
number recognition
research was
coded. Numbers
were written on an
input area that had
been divided into a
9 x 9 grid (one can
obtain better
results if coding is
at a pixel level but
this is hard to put
on a ppt).

Each cell was
coded as to dark
vs light.

Figure 5

The 81 cells were arranged in an 81 x 1 input vector that could be sent to a neural net with 81 input
nodes. The number “2” in the middle of the slide, will lead a reader to recognize that numbers might need
pre-processing adjustment for position, and size. Above is a basic process for number recognition. State-
of-the-art vision technology, attempting to recognize people and objects in photographs, will input each
pixel level - coded for multiple colors - and the input vector will be much larger.

Early nodes in the
network assemble
the pixels into
things like: vertical
edges (see right),
horizontal edges,
angles or types of
circles. Later
nodes will
assemble those
edges into
numbers.

The neural net
here would not be
able to input an 81
variable input
vector. With only
four output nodes it
would also be
unable to correctly
identify 10 digits.

Figure 6

9

The technologies
used to recognize
digits can be
transferred into
more complicated
problems like
recognizing faces.

Parts of faces can
be decomposed
into simpler
geometric shapes
and the shapes
built up into things
like eyes and
noses and mouths.

Here we see
“partial circles”
being recognized
in numbers and
geometric shapes
being “found” on
photographs.

Figure 7

Some early software made histograms of “elements found” and compared the observed histogram
frequency to some ideal histogram. You can imagine that the software said, “ two cat ears, fur, two eyes
with slits, one long wavy tail and about twenty-four whiskers matches the histogram frequency for cat”.
Some flexibility is required because, as you can see from these pictures of movie stars above, not all
pictures show all the components associated with a type of animal. Both of these, professionally
photographed, movie stars appear to have only one ear.

Algorithms used in deep neural networks

A fairly deep dive into the algorithms involved in neural nets will help make some of the vocabulary more
clear. Some detailed, and worked out examples, will be very helpful to anyone studying this field.

This example is taken from “A Step by Step Backpropagation Example” by Matt Mazur and can be found
at: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example. Full details are in the appendix
of this paper.

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example

10

BACK PROPIGATION: AN EXAMPLE

In figure 8 we see
some of the
notation that we
will use later on in
the paper and in
the appendix.

This is a small
neural net with two
input nodes, two
hidden nodes and
two output nodes.

It performs a
binary
classification and
will assign
probabilities of
being a “top” or
“bottom”.

Figure 8

For the observation currently being processed, input node one has a value of .05 and input node two has
a value of .10. Please remember that nodes, in other layers, have an input value, an activation function
and an output value and this leads to our naming convention. HNT–in stands for hidden node top path
input. HNT-out stands for hidden node top path output. In this neural net, since the output nodes have
an activation function, output nodes also contain two values.

B1 and B2, in the white ovals, are bias variables. The weights of the bias variables, in any real neural net,
will also be trained to minimize the prediction error. We will not do that training in this example.

11

Figure 9 shows
forward
propagation.

Initially all the
weights are
assigned,
randomly, to
numbers close to
zero and the
numbers in this
slide are not
unreasonable.

Forward Prop
starts by taking the
input values and
multiplying them by
their weights and
sending them onto
the next node to
the right.

Figure 9

The .3775 in HNT-in is the sum of the weighted inputs to that node. The calculation for the .3775 is shown
in a yellow box in figure 9. The transform used inside all of these nodes is shown in the white box on
figure 9 and is 1 / (1+ exp(-x)). HNT-out is: 1 / (1+ exp(-.3775)). If the process is repeated for all of the
other nodes a reader can re-create the input values and output values of the hidden and output nodes.

This is supervised learning and the observation also has an observed probability (this number is the result
of a human rating and was contained in the training data file) of being a “top” of .01. This observation has
a probability of being a “bottom” of .99. The predicted value for being a top is .7514 in the error
component for top .2748. A similar process allows us to calculate the error associated with bottom. If we
sum the two errors we get the total error- for this observation and for these weight values.

Now we now want to adjust the weights, in a very logical manner, so as to reduce the total error.

A neural network used to start with randomly assigned, near-zero, weights. The algorithm would read an
observation and adjust the weights. Prediction errors for the first several thousand observations would
be large, but that was not important. What was important was the final rules after many thousands of
“training cycles”. In a second step, the whole data set could be “scored” by applying the final derived
rules. Neural networks can be sensitive to starting weights and, now, there are several techniques that
can replace, and improve on, a “random assignment of starting weights”,

Adjusting the weights is called “training the neural network” and often uses a process called “back
propagation” (AKA back prop). Back propagation involves taking the partial derivatives of the error with
respect to each of the weights. This involves using a calculus technique called the chain rule. In the
paper itself, we will not show all of the steps because several steps are repetitive. However, in the
appendix we will paste, into the paper, all of the steps for a backward propagation so that an interested
reader can reproduce the work. It is hoped that the example in the appendix is a valuable part of the
paper.

12

The paper will start
by training weight
five (W5), the
weight in the gold
box. W5 affects
ONT-in and,
through the
activation function,
it also affects ONT-
out and thereby
error.

The white box in
figure 10 shows
the chain of
derivatives we
must
follow/calculate.

As you can see in
the white box, we
must calculate
three terms.

Figure 10

 Figure 11 shows
the calculation of
the first term in the
equation on Figure
10 We calculate
the partial
derivative of the
total error with
respect to ONT –
out.

The value of this
term is .7414.

Note that changing
the value of W5
only affects one
error term – the top
error.

Figure 11

13

Figure 12 shows
the calculation of
the second term of
the equation. In
this step we move
“our number” “back
through” the
transform – back
through the
activation function.

 The second term
of the equation has
the value .1868.

Figure 12

Figure 13 shows
the calculation of
the third required
term and, in the
large white box, a
reader sees the
multiplication of the
three terms
together.

This calculates that
the partial
derivative of the
total error with
respect to W5 is
.082167.

Figure 13

14

Figure 14 shows
the final
adjustment to W5.

Our formula
suggests that we
should adjust W5
by .082167041 but
this is likely to be
too strong an
adjustment.

An adjustment this
large is likely to
cause the
algorithm to
overshoot the
optimal and create
a situation where
the algorithm
oscillates wildly.

Figure 14

To avoid oscillation, back prop applies what is called a learning factor – the .5 in the equation. Because
we set the learning factor to .5, back prop applies just half of the adjustment that our formula suggests.
This smaller adjustment will result in the algorithm taking more steps to reach the optimal solution but
software designers were willing to pay that price to decrease the chance of unstable oscillations.
Enterprise Miner allows a user to change the value of the learning parameter.

Informally speaking, the .1868 and the .7414 are “characteristics” of the top output node. If a formula
“goes” through output node top, these numbers do not need to be recalculated. Therefore; when
adjusting W6, most of the work is already done. Details of adjusting W6 are left to the appendix.

The training for W7 and W8 proceeds with steps similar to those in the example shown for W5. Details of
those adjustments are left to the appendix as well. Please note that adjusting weights W5 to W10 would
only affect one of the two error terms.

Adjusting the weights for W1, W2, W3 and W4 will be a different process from that of adjusting the
weights W5 through W8. The process of adjusting W1, W2, W3 and W4 will be more complicated than
adjusting W5 through W8 because changing W1, W2, W3 or W4 affects both of the error terms.

15

Figure 15 shows
how changing W1
affects both of the
error terms. The
top white box
shows that the
partial derivative
formula is very
similar to the one
we used before.

We want to be
sure to follow the
yellow arrow
downward to see
how total error has
two error
components; top
and bottom.

Figure 15

The two error components will have make the resulting process a bit more complicated. It will have two
parts.

The new process for adjusting weights will have two components – one that recognizes the effect of a
weight on the top error and one that recognizes the effect of changing a weight on the bottom error.

Figure 16 is
intended to
emphasize the
three-step process
that we must again
follow as we adjust
weights.

Fortunately, much
work has been
done.

Numbers that were
described as
“characteristics of
the output nodes”
will be used in
these new
formulas.

Figure 16

16

Figure 17
emphasizes that
there are two error
terms ONT and
ONB) that must be
accounted for as
we take the partial
derivative through
HNT.

The number
coming back to the
output side of HNT
is .0364. To take
that partial
derivative through
the transform, in
reverse order,
results in the
number
.241300700

Figure 17

Figure 18 shows
the three-part
formula in
mathematical
terms (as partial
derivatives) and
also in numerical
form.

The goal is to
adjust W1 in a
manner that
reduce the error
and W1 could be
adjusted by
.00438568.

However this might
be too strong an
adjustment.

Figure 18

17

Adjusting by .00438568 might lead to overcorrection and wild oscillations. It is, generally, a better
practice to take smaller steps toward the goal than to take large steps and overshoot the goal. Instead of
adjusting by .00438568, Enterprise Miner will apply a learning factor (here .5) to reduce the size of the
adjustment. In this example, the algorithm will only make half the suggested correction in hopes of
creating a more stable approach to our goal.

Note: this is a basic example of back prop and back prop is a hot area of research. Some newer
algorithms will monitor changes in error as learning progresses and, dynamically, adjust the learning rate.
These newer algorithms will “take bigger steps” towards the solution when possible.

The calculations for adjusting W2 to W4 are similar to those shown above and are left to the appendix.

THE RESTRICTED BOLTZMAN MACHINE (RBM)
The fact that back proposition involves the chain rule, and many multiplications, limited the depth of
neural networks for several years. As networks got deeper the back prop algorithm had to multiply more
and more terms. Generally those terms were close to zero and the repeated multiplication of small terms
would drive the result of the calculation down close to machine accuracy.

The formulas used above were calculating the gradient, the slope of the error shape, with respect to the
different weights. When the formula drove the derivative of a weight to zero, the formula “told the
algorithm” that there was no chance of improving the error by adjusting that weight. Applying the above
algorithm to deep nets made for long training times and unstable answers. Nets were limited in depth until
the application of the Restricted Boltzmann machine (RBM) to neural networks.

A Restricted Boltzmann Machine has the advantage of giving the network good starting weights that are
not close to zero. A Restricted Boltzmann Machine avoids the problem of the vanishing gradient.

A RBM breaks a
Deep Neural
Network into many
two-layer networks
(see right).

The first of the two
layers is called the
input layer and the
second layer, the
one on the right, is
called the hidden
layer.

The two-layer
network is trained
so that the second
layer simply
reproduces the
values in the first
layer.

Figure 19

18

In figure 20 a
reader can see the
next step in the
RBM. The process
is to freeze weights
between the input
layer and hidden
layer 1 and shift
the RBM one layer
to the right.

The RBM tries to
make the hidden
layer 3 reproduce
the values in the
hidden layer 2.
This process
continues until all
the layers have
been trained

Figure 20

After all the layers
have been trained,
all their weights
are unfrozen and
the whole network
is trained.

Early algorithms
randomly
assigning starting
weights close to
zero and this
exacerbated the
“vanishing gradient
problem”.

Weights from the
series of two-layer
RBM training steps
provide good, non-
zero starting
weights for training
of the network.
Figure 21

This technique avoids the vanishing gradient and has allowed researchers to use deeper and wider nets.

19

EXAMPLE 1: A NEURAL NETWORK ON HARD TO SEPARATE CLUSTERS
Figure 22 shows
the one of the
example problems
that will be
developed in this
paper.

This example is
from SAS online
documentation.

A neural network
will be used to
separate these
three groups.

The process will be
to run PROC
Neural in the SAS
Display Manager.
Proc Neural
requires a DMDB
catalog entry.
Figure 22

PROC DMDB
creates a catalog
entry containing
metadata on the
variables in the
data set.

Think of PROC
DMDB is adding
information to what
one sees when
running a PROC
Contents.

Proc Contents
shows “data about
the data”.

Figure 24

20

Figure 25 shows
the PROC Neural
code with
explanations for
the statements.

SAS code to create
this data set will be
included in the
appendix so an
interested reader
can conveniently
run this example.

In the paper, we
will skip to output
to show how well
this neural net
performed.

Figure 25

Figure 26 shows
the results of the
PROC Neural.

There were no
misclassifications.

This is exciting
performance on a
highly non-linear
data set.

Figure 26

21

PROC Neural
creates output data
sets and a
programmer that
wants to build a
PROC Neural into
a larger project
must understand
the output.

The output from
the PROC Neural
will likely be input
to some future
steps.

Figure 27

As this figure
suggests,
interpreting the
contents of output
from PROC Neural
can be difficult.

E_ values depend
on the method
used in the Deep
Neural Network.

After much
research, I have
not been able to
find a definition of
U_.

Figure 28

22

Rings was the
input data set and
was not changed.

Figure 29

EAMPLE 2: PREDICTING LOAN DEFAULTS

This new example
will try to predict
loan defaults. This
data set is shipped
with SAS
Enterprise Miner
and an interested
reader easily can
run this code.

To the right, please
see the use of
PROC DMDB to
create a catalog
entry for use by
PROC Neural.

Figure 30

23

This PROC Neural
call is fairly
complicated and
extends over two
slides. The red
boxes group
similar types of
commands.

PROC Neural
allows a one to
specify the number
of CPUs to which
s/he has access
and to allow
multithreading.

We are asking for
three hidden layers

Hidden layer1 has
36 nodes. Hidden
layer 2 has 24
nodes and hidden
layer 3 has two
nodes.

Figure 31

This figure shows
the coding of the
RBMs. Each of the
red boxes is an
RBM and run in a
sequence.

The boxes will
freeze and un-
freeze appropriate
hidden layers.

Figure 32

24

Since an interested reader can run this code, some output will be skipped and final results will be shown.

Of the 1189
defaulters on the
loan PROC Neural
identified 309, or
26%.

Importantly, No
alternative
architectures were
explored and the
naively created
node still correctly
classified 85% of
the people.

This example
would be a good
starting point for a
reader wishing to
play with neural
networks

Figure 33

SUMMARY
SAS PROC Neural is a very powerful modeling tool and analysts should consider some study of Deep
Neural Networks.

ACKNOWLEGMENTS
Thanks to all the great people at SAS Tech Support.

CONTACT INFORMATION:

Your comments and questions are valued and encouraged. Contact the author at:
Russ Lavery, Contractor
Bryn Mawr, PA
russ.lavery@verizon.net
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

***************** APPENDIX ***************

The appendix has three sections:
1) Code for the separate three groups example (the “rings” example)

2) Code for the predict delinquency example

3) All PowerPoint slides for the back propagation

25

1) code for the separate three groups example (the “rings” example)

Data Rings;
infile datalines truncover firstobs=3;
input Horiz 2. vert 2. Class_of_Y 1. @@;
datalines;
Horiz Vert Class_of_Y
1234567890
 2 9 0 2 10 0 3 8 0 3 9 0 3 10 0 3 11 0 4 7 0 4 8 0 4 9 0
 4 10 0 4 11 0 4 12 0 5 6 0 5 7 0 5 8 0 5 9 0 5 10 0 5 11 0
 5 12 0 5 13 0 6 5 0 6 6 0 6 7 0 6 12 0 6 13 0 6 14 0 7 4 0
 7 5 0 7 6 0 7 13 0 7 14 0 8 4 0 8 5 0 8 14 0 8 15 0 8 8 1
 8 9 1 8 10 1 9 3 0 9 4 0 9 15 0 9 7 1 9 8 1 9 9 1 9 10 1
 9 11 1 10 3 0 10 4 0 10 15 0 10 16 0 10 6 1 10 7 1 10 8 1 10 9 1
10 10 1 10 11 1 10 12 1 11 2 0 11 3 0 11 16 0 11 17 0 11 6 1 11 7 1
11 11 1 11 12 1 11 13 1 12 2 0 12 3 0 12 16 0 12 17 0 12 4 1 12 5 1
12 12 1 12 13 1 12 14 1 13 1 0 13 2 0 13 16 0 13 4 1 13 13 1 13 14 1
13 8 2 13 9 2 14 1 0 14 2 0 14 16 0 14 4 1 14 13 1 14 7 2 14 8 2
14 9 2 14 10 2 15 1 0 15 2 0 15 16 0 15 4 1 15 13 1 15 14 1 15 8 2
15 9 2 6 2 0 16 3 0 16 16 0 16 17 0 16 4 1 16 5 1 16 12 1 16 13 1
16 14 1 17 2 0 17 3 0 17 17 0 17 6 1 17 7 1 17 11 1 17 12 1 17 13 1
18 3 0 18 15 0 18 16 0 18 6 1 18 7 1 18 8 1 18 11 1 18 12 1 19 3 0
19 4 0 19 14 0 19 15 0 19 7 1 19 8 1 19 9 1 19 10 1 19 11 1 20 3 0
20 4 0 20 15 0 20 16 0 20 8 1 20 9 1 20 10 1 21 4 0 21 6 0 21 14 0
21 15 0 22 4 0 22 5 0 22 14 0 23 6 0 23 7 0 23 9 0 23 10 0 23 12 0
23 13 0 24 4 0 24 5 0 24 6 0 24 12 0 24 13 0 24 14 0 25 6 0 25 7 0
25 8 0 25 11 0 25 12 0 25 13 0 26 6 0 26 7 0 26 8 0 26 9 0 26 10 0
26 11 0 26 12 0 27 6 0 27 7 0 27 8 0 27 9 0 27 10 0 27 11 0 28 7 0
28 8 0 28 9 0
;
run;

PROC DMDB batch data=Rings
 out=DMDB_Rings
 dmdbcat=DMDB_CatRings;
 var Horiz vert ;
 class Class_of_Y;
 target Class_of_Y;
run;

proc catalog catalog=work.DMDB_CatRings;
contents;
run;quit;

proc SGPlot data=Rings;

PROC SGPLOT DATA = Rings;
 Scatter X = horiz Y = vert
 /group=Class_of_Y;
 YAXIS LABEL = 'Some equal interval variable' ;
 XAXIS LABEL = 'Some Other equal interval variable';
 TITLE 'Plot of the Circles (Rings) Training Data';
 INSET 'No Linear Boundary Exists'/ POSITION = TOPRIGHT BORDER;
RUN;

/*PROC GPlot data=Rings;*/
/* plot Vert*Horiz=Class_of_Y /haxis=axis1 vaxis=axis2;*/
/* symbol c=black i=none v=dot;*/
/* symbol2 c=red i=none v=square;*/
/* symbol3 c=green i=none v=triangle;*/

26

/* axis1 c=black width=2.5 order=(0 to 30 by 5);*/
/* axis2 c=black width=2.5 minor=none order=(0 to 20 by 2);*/
/* title 'Plot of the Circles (Rings) Training Data';*/
/*run;quit;*/

PROC Neural data=Rings
 dmdbcat=DMDB_CatRings
 random=789;
 input HORIZ VERT / level=interval id=i;
 target Class_of_Y / id=o level=nominal;
 hidden 3 / id=h;
 prelim 5;
 train;
 score out=out outfit=fit;
 score data=Rings out=gridout;
 title 'MLP with 3 Hidden Units';
run;

proc print data=fit noobs label;
 var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_;
 where _name_ = 'OVERALL';
 title2 'Fits Statistics for the Training Data Set';
run;

proc freq data=out;
 tables f_Class_of_Y*i_Class_of_Y;
 title2 'Misclassification Table';
run;

2) code for the predict delinquency example

title "Home Equity and Defaults";
libname DeepL "E:____Conferences_2016\dATA_2_USE";
options nocenter;
ods listing;
proc contents data=DeepL.HmEq_home_equity varnum;
run;

proc print data=DeepL.HmEq_home_equity (obs=10);
run;

DATA HmEq_home_equity_Use;
 SET DeepL.HmEq_home_equity;
 RUN;QUIT;

PROC DMDB batch data=HmEq_home_equity_Use
 out=DMDB_HmEq
 dmdbcat=DMDB_Cat_HmEq;
 var /*bad*/ LOAN MORTDUE VALUE /*REASON JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC;
 class bad Job Reason;
 target bad;
run;

*** TRAIN 3 LAYER AUTOENCODER;
*two kinds of statements - actions and options;
options fullstimer;
title "3 layer Neural Network";
PROC Neural data=HmEq_home_equity_Use
 dmdbcat=DMDB_Cat_HmEq
 graph;
 performance compile details cpucount=4 threads= yes; /* ENTER VALUE FOR CPU COUNT */
 nloptions MaxIter=10000; / DO NOT EXCEED NUMBER OF PHYSICAL CORES

27

*/
 /* DEFAULTS: ACT= TANH COMBINE= LINEAR */
 /* IDS ARE USED AS LAYER INDICATORS - SEE FIGURE 6 */
 /* INPUTS AND TARGETS SHOULD BE STANDARDIZED */
 /*we have 13 variables, so I will recude the number of nodes down from the numbers in the recognize
numbers example*/
 archi MLP hidden= 3;
 hidden 36 / id= h1;
 hidden 24 / id= h2;
 hidden 2 / id= h3 act= linear;
 input LOAN MORTDUE VALUE /*REASON JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC
 / id= i level= int std= std;
 target bad / act= logistic id=t level= ordinal ;
 /* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */
 initial random= 123;
 prelim 10 preiter= 10;

 /* TRAIN LAYERS SEPARATELY */
 /*freeze i->h1*/ /*train the first layer*/
 freeze h1->h2;
 freeze h2->h3;
 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze i->h1;
 thaw h1->h2; /*train the second layer*/
 train technique= congra maxtime= 10000 maxiter= 10000;

 freeze h1->h2;
 thaw h2->h3; /*train the thirs layer*/
 train technique= congra maxtime= 10000 maxiter= 10000;

 /* RETRAIN ALL LAYERS SIMULTANEOUSLY */
 thaw i->h1;
 thaw h1->h2;
 thaw h2->h3;

 train technique= congra maxtime= 10000 maxiter= 1000;

 code file= ''; / ENTER SCORE CODE FILE PATH - SAME AS LINE 412 */

 score out=HmEq_out outfit=HmEq_fit;
 score data=HmEq_home_equity_Use out=HmEq_gridout;
 title 'complex MLP ';
run;

proc print data=HmEq_fit noobs label;
 var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_;
 where _name_ = 'OVERALL';
 title2 '3 layer Fits Statistics for the Training Data Set';
run;quit;

proc freq data=HmEq_out;
 tables f_bad*i_bad;
 title2 '3 LAYER Misclassification Table';
run;

3) all PowerPoint slides for the back propagation

28

z

29

30

Back Propagation for Weight 5

31

32

Back Propagation for Weight 6

33

34

35

Back Propagation for Weight 7

36

37

Back Propagation for Weight 8

38

39

40

Back Propagation for Weight 1

41

42

Back Propagation for Weight 2

43

44

Back Propagation for Weight 3

45

46

Back Propagation for Weight 4

47

	Abstract
	introduction
	ways to use SAS to create a neural network
	a process for crating effective neural networks
	a “cocktail party level” history of neural networks
	back propigation: an example
	the restricted boltzman machine (RBM)
	example 1: a neural network on hard to separate clusters
	eample 2: predicting loan defaults
	summary
	Acknowlegments Thanks to all the great people at SAS Tech Support.
	CONTACT INFORMATION: Your comments and questions are valued and encouraged. Contact the author at: Russ Lavery, Contractor Bryn Mawr, PA russ.lavery@verizon.net

