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ABSTRACT  
Recent advances in algorithms and hardware (the GPU chip) have made it possible to build neural nets 
that are both deeper and wider than had been practical in the past. This paper explores the theory, and a 
bit of the practice, associated with the building of deep neural networks in SAS® Enterprise Miner. 

INTRODUCTION  
Neural networks 
got that name 
because of their 
similarity to the 
way neurons work 
in the human body. 
Any web research 
session on this 
subject returns 
mentions of 
neurons, so a 
small anatomy 
lesson might be 
worthwhile.   

A cell is not a 
piece of 
undifferentiated 
jelly. Cells have 
structure and parts 
of cells have 
specific functions.    

 
Figure 1  

The cell has a nucleus that contains the DNA and it has parts that connect the cell body to other cells. 
Dendrites are long stringy parts of the cell that take inputs.   Axons send outputs to other cells. Your body 
is an incredibly deep neural network and one of your nerve cells can have hundreds of thousands of 
connections to other cells.  

An input to the cell, maybe the feeling of a touch or sensing of a color through your eyes, comes in 
through a dendrite. Cells have many dendrites and a cell can receive many simultaneous inputs.  The 
individual inputs are summed (“summed” is used in the same way that a mathematician would use the 
word) in a specialized part of the cell located adjacent to the start of the Axon. This specialized part of the 
cell, called the Axon Hilllock, sums the different inputs and if the inputs exceed some threshold the Axon 
Hillock sends an electrical signal down the Axon towards other cells (the cell “fires”).  

At the end of the Axon, the electrical signal is converted into a chemical signal that leaves the cell.  A 
chemical signal bridges the gaps (the synapses) to other cells.  
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The important things to recognize are: 1) the huge numbers of connections between nerve cells and 2) 
the function of the Axon Hillock.  It’s job is to sum the different inputs, some of which might increase the 
chance of sending out a signal and some of which might decrease the chance of sending out a signal, 
and then to decide if it should send an electrical discharge down the Axon. 

Figure 2 shows a 
small neural net 
but the 
characteristics of 
the small neural 
net are present in 
larger nets as well. 

 

Nodes to the left 
are sometimes 
called “early” 
nodes.  
 
A neural net can 
predict either 
binary or interval 
data and this net is 
trying to predict 
someone’s weight 
from their sex, age 
and height.   

  
Figure 2  

 A network has three types of nodes.  Networks have input nodes and there are three nodes in this input 
layer. Networks have internal (often called hidden) nodes and layers. This net has two hidden/internal 
layers.  The first hidden layer has three nodes and the second layer has two nodes. Networks have an 
output layer and this network has one node in the output layer. 

The network in figure 2 is a feedforward node. Each node in a layer, to the left, is connected to every 
node in the layer immediately to its right. There are no connections backwards between nodes, so no 
arrows point to the left. Finally there are no connections between nodes in the same layer.  

Inside each node is a function (represented by the letter f in the circles).  These functions are referred to 
as activation functions, transfer functions or simply transforms. The functions are usually nonlinear and 
common ones are linear, logistic, hyperbolic tangent and Gaussian. The fact that individual transfer 
functions are non-linear makes the whole neural network non-linear.  A neural network has the ability to 
separate groups (and that is what predicting a binary Y is doing) with a boundary that is very curved and 
irregular. 

The basic process above is to take the values of a person’s sex, age and height and enter them into the 
input nodes. The input variables are often standardized to remove the effects of different measurement 
units.  The standardized values of sex, age and height are multiplied by the weights (the red Ws) and the 
result is passed on to the internal nodes.  Each internal node receives many inputs.  Some people think of 
neural network weights as being similar to the beta coefficients in a regression.  Neural net weights, like 
regression beta values, are measures of how much impact an X variable has on the Y variable. Arrows 
indicate how values are combined. At the right side of the network, the sum of weighted inputs (after 
going through all the nodes) is compared to a known Y value and an error is calculated. The back 
propagation algorithm then takes the derivative of the error with respect to each of the weights and uses 
that derivative to adjust the weights to produce a smaller error. 
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Think of each person’s sex, age and height entering this network - the three variables enter 
simultaneously - one person at a time.  For the first person read, the weights are set to random numbers 
and they produces large errors.  After each observation is processed, the weights are adjusted to reduce 
the error and after many (often several thousands) subjects are processed, the weights can predict the Y 
value with small error. A second pass is needed, using the final weights, to score all the observations. 

If a reader looks at the top node in the first internal layer s/he can see that it has inputs from sex, age and 
height as well as from a 1 (coming from a yellow box).  The one is called a bias term and it is used to 
adjust the summed values from the input node so that the result, after adding in the weighed bias, has a 
value that does not “overload” the transform function.  Overloading is most easily explained by thinking of 
the activation function as being a Gaussian transform – a bell shaped transform.  The input to the 
activation function is the Z value (the summed weighted inputs from previous nodes) for the Gaussian 
and the output of the transform is the height of the bell above that value of Z.  If Z is +3, the transform 
returns a value close to zero. If Z is +8, the transform also returns a value close to zero.  After a Z value 
exceeds a certain absolute value, the transform returns, for practical purposes, the same value and is 
both “overloaded” and no longer sensitive to small/moderate changes in Z.  The bias is used to “move” 
the value of Z back to a value where the transform function is more sensitive to changes in Z.     

Inside the node, the inputs are summed and then pushed through the function in the middle of the node to 
produce an output value for the node. I think of each node as holding two numbers: an input number and 
an output number. An input number is the weighted sum of all of the values coming in from the left and 
the weighted bias. An output value is the one number that is a result of applying the transform function 
(also called activation function) to the summed weighted input values (the input number). 

In early research, the activation functions were often just step functions. If the summed weighted input 
values was not above a certain level (a cutoff number), no value (or maybe a zero) was passed on to 
nodes to the right. Now, most nodes use smooth S shaped functions (or maybe bell-shaped) and they 
always pass on some value to nodes to the right – though the value may be small. 

Given enough nodes, and layers, you can model any data set to any desired level of accuracy – though it 
might take a very long time if the data set is large. 

If you feed, into the network, an X variable that has no predictive power (e.g.  a code for “blue eyes” vs 
“not blue eyes” in our problem of predicting weight) the neural net will eventually assign weights of zero to 
eye color. If you have enough data, and enough time to wait for the algorithm to run, a neural net will 
remove non-predicting variables by setting their weights to zero. However including a lot of silly variables 
as inputs will make the neural net run longer and possibly increase the chance of it finding a local optima. 
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Figure three shows 
some of the 
activation functions 
that researchers 
use. 

 

Linear is often 
used to connect 
the last hidden 
layer to the output 
layer and functions 
like regression.  It 
is often used as “a 
combiner” 

 

Hyperbolic tangent 
and Gaussian 
activations are also 
commonly used in 
other parts of the 
network.  
Figure 3  

 

Figure 4 facilitates 
a discussion of 
why non-linear 
functions are so 
commonly used. 

 

Biologists think 
that frogs’ brains 
contain two neural 
networks to help it 
find flies to eat.   

 

One network 
matches the size 
of the object to the 
size of an ideal fly.  
The other network 
matches the “flying 
behavior” to that of 
an ideal fly.   

 
Figure 4  
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This paper will next discusses how a frog might use a Gaussian function to evaluate several potential 
meals.  The choices are: a small fly (red picture border and arrows), a large fly (blue picture border and 
arrows), a bird (green picture border and arrows) and a moose (blue picture border and arrows).  The 
activation functions are mound shaped and the X value (horizontal value) generated by each object are 
“object distance from ideal”.  Close to the ideal points, the function returns a large value (it “fires”).  There 
is a cut-off value, shown as a horizontal line on the function, at which point the frog decides if “eat=True” 
or “eat=False” (or “activate” vs “not activate”, “fire” vs “not fire”). 

For the small fly (red picture border and arrows), both the size and flying behavior are close to the ideal.  
Both networks return a large, “above the cut-off”, value and so “lunch is served”.  For the large fly, the 
size is a bit off-putting, though the flying behavior is close to the ideal (see blue arrows). Both networks 
return large values and the frog would likely attack.  Because of the non-linear shape of the activation 
function, the networks are sensitive to small changes in the area of the “ideal”. 

For the bird, the size and behavior are both wrong (see green arrows) and the networks return two low 
values. For the moose, both the size and behavior are very wrong (see black arrows) and the networks 
return two low values.  Because of the non-linear shape of the activation functions, the values returned for 
the bird and moose are similar.  This makes sense, because, once the frog had decided that an object is 
“not lunch” it does not need to make fine evaluations of “how much not lunch” an object might be. 
Because of the shape of the non-linear activation function, the networks are NOT-sensitive to small 
changes far from the “ideal”. 

 

Figure 3 shows a 
larger net, though 
far from being a 
very large net 
these days. You 
can see there are 
lots of connections 
between lots of 
nodes. 

 

Neural nets are 
used in digital 
cameras to identify 
faces of people in 
a picture.  

 

Much exciting work 
is being done in 
visual recognition 
using neural 
networks. 

 
Figure 3  

There was, and to some extent still is, a criticism of deep neural nets that they are black boxes – that the 
results can be very good but no one can understand how the results are created. Recent research has 
made that statement less true.  Visual recognition research has allowed people to peek inside of neural 
nets and discover some exciting findings. This paper will discuss the internal processes of neural 
networks using pictures as the research issue. 

It seems that early layers in the net identify basic visual building blocks; like edges going from light-to-
dark or dark-to-light. Nodes farther to the right, in the net, can create higher level abstractions. Nodes in 
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the middle of a neural net might identify parts of faces, like ears or noses. Nodes to the far right of the 
neural net can reconstruct faces and even recognize people. 

WAYS TO USE SAS TO CREATE A NEURAL NETWORK  
SAS Enterprise Miner has four ways to do neural nets. 

DMNeural uses bucketed principal components as X variables and can predict a binary or interval Y.  
HPNeural is designed as a high performance modeling tool. It will access memory across multiple cores 
and multiple computer nodes. It is not good for deep neural nets because it does not provide protection 
against the problem of vanishing or exploding gradients.  Auto  Neural conducts limited searches to help 
you find a better network architecture. It will try different numbers of layers, nodes as well as different 
activation functions. 
 

Neural network is the SAS work horse for doing neural nets and will process a deep neural network.  It 
provides the most control and most power of the choices that SAS provides. In order to do a deep neural 
net you must have Enterprise Miner installed, but it is easy to code a PROC Neural in the SAS display 
manager once you have installed Enterprise Miner. 

A PROCESS FOR CRATING EFFECTIVE NEURAL NETWORKS  
Good Neural Network results are the result of a multi-step (multi-node?) process and this paper will 
examine some of the other steps. Good neural network results come from a process and the process 
before the neural net is important. Steps in a good process might be: 

Sampling can reduce the time to train a neural net and quick run times are always desirable. A researcher 
must balance the desire for quick run times with the fact that training a complex neural network to do a 
complex task requires lots of training data. To some extent, the quality of the results depends on the 
quality, and amount, of the training data. 

Programmers usually want to create partitioned data sets to allow SAS to automatically report on how 
well the neural net performs on data that is different from the training data.  

Consulting with business experts, and doing exploratory modeling, can reduce the number of variables 
that must be feed into the neural net. Often having fewer, and higher quality, input variables reduces 
training time and improves the results.  

An analyst might want to impute missing values or transform data before passing it into a neural net. 
Neural nets are highly non-– linear but transforms of the X variables can reduce training time.  

A programmer might want to remove outliers because they can reduce model accuracy.  

A neural net usually needs a data mining database (DMDB) catalog entry and a researcher might need to 
run PROC DMDB be before her neural net will run.  

Finally, in a neural net project, an analyst might also want to use other modeling nodes. It might be that 
the neural net is not the best technique for any particular use case. 

A “COCKTAIL PARTY LEVEL” HISTORY OF NEURAL NETWORKS  
 
The seminal article for neural nets was written by Donald Hebb in 1949. He wrote about neurons in the 
body and said, “when an Axon of cell A is near enough to excite cell B, and repeatedly or persistently 
takes part in firing it, some growth process or metabolic change takes place in one or both cells such that 
A’s efficiency, as one of the cells firing B, is increased.” Hebb was hypothesizing that “neurons that fire 
together wire together” and his article was the start of an explanation of how neurons are involved in 
learning and memory. 

Efforts to make computers work like human cells started soon after Hebb’s article. People were doing 
research using computers and electrical circuits in the 1950s. In 1963 Vapnik and Chervonenkis 
discovered the idea of the support vector machine.  
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A book, in 1963, threw a major monkey wrench into neural net research. Papert and Minsk, in their book 
titled “Perceptrons”, demonstrated that a single node can classify successfully only if the Y classes in the 
data are linearly separable. They also proved that a single layer perceptron could not learn the logical 
XOR function. The inability to learn the XOR function was seen as a major, and general, flaw in neural 
networks and machine leaning.  Research interest plummeted. 

Interest was revived when, in 1974, Paul Werbos invented a training method called backward 
propagation.  This allowed for the creation of multi-node and multi-layer neural nets, though it ran into a 
problem called “the vanishing gradient” when applied to large nets. 

Restricted Boltzmann machines were invented by Smolensky in 1986 but became important in the early 
2000s as Geoffry Hinton applied them to machine learning and the creation of Deep Neural Networks. 

In 1981 Hubel and 
Wiesel won a 
Nobel Prize for 
work on neuronal 
activities and 
vision. They had 
embedded an 
electrode in a cat 
brain and struggled 
to measure some 
sort of neuronal 
activity driven by 
pictures projected 
in front of the cat.  

 

Their first signal 
came when the cat 
saw a straight line 
as they changed 
slides. 

 
Figure 4  

It turns out that lines, or edges, might be important for both animal vision and for computer vision. In 
figure 3 we can see that early layers in the artificial neural net seem to be detecting lines of varying types. 

Research into vision is particularly amenable to discovering what’s going on in the inner layers of the 
neural net.  This paper will discuss some image recognition tasks, and logic, as a way of building 
familiarity with the neural net internal process. 
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In figure 5 we get 
some idea of how 
pictures are coded.  

 

In this figure we 
see how early 
number recognition 
research was 
coded.  Numbers 
were written on an 
input area that had 
been divided into a 
9 x 9 grid (one can 
obtain better 
results if coding is 
at a pixel level but 
this is hard to put 
on a ppt).   

Each cell was 
coded as to dark 
vs light. 

 
Figure 5  

The 81 cells were arranged in an 81 x 1 input vector that could be sent to a neural net with 81 input 
nodes. The number “2” in the middle of the slide, will lead a reader to recognize that numbers might need 
pre-processing adjustment for position, and size. Above is a basic process for number recognition.  State-
of-the-art vision technology, attempting to recognize people and objects in photographs, will input each 
pixel level - coded for multiple colors - and the input vector will be much larger. 

Early nodes in the 
network assemble 
the pixels into 
things like: vertical 
edges (see right), 
horizontal edges, 
angles or types of 
circles. Later 
nodes will 
assemble those 
edges into 
numbers.   

The neural net 
here would not be 
able to input an 81 
variable input 
vector.  With only 
four output nodes it 
would also be 
unable to correctly 
identify 10 digits. 

 
Figure 6  
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The technologies 
used to recognize 
digits can be 
transferred into 
more complicated 
problems like 
recognizing faces.  

 

Parts of faces can 
be decomposed 
into simpler 
geometric shapes 
and the shapes 
built up into things 
like eyes and 
noses and mouths. 

Here we see 
“partial circles” 
being recognized 
in numbers and 
geometric shapes 
being “found” on 
photographs.  

 

Figure 7  

Some early software made histograms of “elements found” and compared the observed histogram 
frequency to some ideal histogram.  You can imagine that the software said, “ two cat ears, fur, two eyes 
with slits, one long wavy tail and about twenty-four whiskers matches the histogram frequency for cat”.  
Some flexibility is required because, as you can see from these pictures of movie stars above, not all 
pictures show all the components associated with a type of animal. Both of these, professionally 
photographed, movie stars appear to have only one ear. 

Algorithms used in deep neural networks  

A fairly deep dive into the algorithms involved in neural nets will help make some of the vocabulary more 
clear.  Some detailed, and worked out examples, will be very helpful to anyone studying this field. 

This example is taken from “A Step by Step Backpropagation Example” by Matt Mazur and can be found 
at:  https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example.  Full details are in the appendix 
of this paper. 

  

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example
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BACK PROPIGATION: AN EXAMPLE  
 

In figure 8 we see 
some of the 
notation that we 
will use later on in 
the paper and in 
the appendix.  

 

This is a small 
neural net with two 
input nodes, two 
hidden nodes and 
two output nodes.   

 

It performs a 
binary 
classification and 
will assign 
probabilities of 
being a “top” or 
“bottom”. 

 
Figure 8  

For the observation currently being processed, input node one has a value of .05 and input node two has 
a value of .10.  Please remember that nodes, in other layers, have an input value, an activation function 
and an output value and this leads to our naming convention.  HNT–in stands for hidden node top path 
input. HNT-out stands for hidden node top path output.  In this neural net, since the output nodes have 
an activation function, output nodes also contain two values.  

B1 and B2, in the white ovals, are bias variables. The weights of the bias variables, in any real neural net, 
will also be trained to minimize the prediction error. We will not do that training in this example. 
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Figure 9 shows 
forward 
propagation. 

 

Initially all the 
weights are 
assigned, 
randomly, to 
numbers close to 
zero and the 
numbers in this 
slide are not 
unreasonable.  

Forward Prop 
starts by taking the 
input values and 
multiplying them by 
their weights and 
sending them onto 
the next node to 
the right.  

 
Figure 9  

 

The .3775 in HNT-in is the sum of the weighted inputs to that node. The calculation for the .3775 is shown 
in a yellow box in figure 9. The transform used inside all of these nodes is shown in the white box on 
figure 9 and is  1 / (1+ exp(-x)).   HNT-out is: 1 / (1+ exp(-.3775)). If the process is repeated for all of the 
other nodes a reader can re-create the input values and output values of the hidden and output nodes.  

This is supervised learning and the observation also has an observed probability (this number is the result 
of a human rating and was contained in the training data file) of being a “top” of .01.  This observation has 
a probability of being a “bottom” of .99.  The predicted value for being a top is .7514 in the error 
component for top .2748. A similar process allows us to calculate the error associated with bottom.  If we 
sum the two errors we get the total error- for this observation and for these weight values.  

Now we now want to adjust the weights, in a very logical manner, so as to reduce the total error. 

A neural network used to start with randomly assigned, near-zero, weights.  The algorithm would read an 
observation and adjust the weights.   Prediction errors for the first several thousand observations would 
be large, but that was not important.  What was important was the final rules after many thousands of 
“training cycles”.  In a second step, the whole data set could be “scored” by applying the final derived 
rules.  Neural networks can be sensitive to starting weights and, now, there are several techniques that 
can replace, and improve on, a “random assignment of starting weights”,   

Adjusting the weights is called “training the neural network” and often uses a process called “back 
propagation” (AKA back prop).  Back propagation involves taking the partial derivatives of the error with 
respect to each of the weights. This involves using a calculus technique called the chain rule.  In the 
paper itself, we will not show all of the steps because several steps are repetitive. However, in the 
appendix we will paste, into the paper, all of the steps for a backward propagation so that an interested 
reader can reproduce the work.  It is hoped that the example in the appendix is a valuable part of the 
paper. 
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The paper will start 
by training weight 
five (W5), the 
weight in the gold 
box. W5 affects 
ONT-in and, 
through the 
activation function, 
it also affects ONT-
out and thereby 
error.  

The white box in 
figure 10 shows 
the chain of 
derivatives we 
must 
follow/calculate.   

As you can see in 
the white box, we 
must calculate 
three terms. 

 
Figure 10  

 

 Figure 11 shows 
the calculation of 
the first term in the 
equation on Figure 
10 We calculate 
the partial 
derivative of the 
total error with 
respect to ONT – 
out. 

The value of this 
term is .7414. 

Note that changing 
the value of W5 
only affects one 
error term – the top 
error. 

 
Figure 11  
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Figure 12 shows 
the calculation of 
the second term of 
the equation. In 
this step we move 
“our number” “back 
through” the 
transform – back 
through the 
activation function. 

 

 The second term 
of the equation has 
the value .1868. 

 
Figure 12  

 

Figure 13 shows 
the calculation of 
the third required 
term and, in the 
large white box, a 
reader sees the 
multiplication of the 
three terms 
together.   

 

This calculates that 
the partial 
derivative of the 
total error with 
respect to W5 is 
.082167. 

 

 

 
Figure 13  
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Figure 14 shows 
the final 
adjustment to W5.   

Our formula 
suggests that we 
should adjust W5 
by .082167041 but 
this is likely to be 
too strong an 
adjustment.  

 

An adjustment this 
large is likely to 
cause the 
algorithm to 
overshoot the 
optimal and create 
a situation where 
the algorithm 
oscillates wildly. 

 
Figure 14  

To avoid oscillation, back prop applies what is called a learning factor – the .5 in the equation. Because 
we set the learning factor to .5, back prop applies just half of the adjustment that our formula suggests.  
This smaller adjustment will result in the algorithm taking more steps to reach the optimal solution but 
software designers were willing to pay that price to decrease the chance of unstable oscillations.  
Enterprise Miner allows a user to change the value of the learning parameter. 

Informally speaking, the .1868 and the .7414 are “characteristics” of the top output node.  If a formula 
“goes” through output node top, these numbers do not need to be recalculated.  Therefore; when 
adjusting W6, most of the work is already done. Details of adjusting W6 are left to the appendix. 

The training for W7 and W8 proceeds with steps similar to those in the example shown for W5. Details of 
those adjustments are left to the appendix as well.  Please note that adjusting weights W5 to W10 would 
only affect one of the two error terms. 

Adjusting the weights for W1, W2, W3 and W4 will be a different process from that of adjusting the 
weights W5 through W8.  The process of adjusting W1, W2, W3 and W4 will be more complicated than 
adjusting W5 through W8 because changing W1, W2, W3 or W4 affects both of the error terms. 
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Figure 15 shows 
how changing W1 
affects both of the 
error terms. The 
top white box 
shows that the 
partial derivative 
formula is very 
similar to the one 
we used before.  

 

We want to be 
sure to follow the 
yellow arrow 
downward to see 
how total error has 
two error 
components; top 
and bottom.   

 

  
Figure 15  

The two error components will have make the resulting process a bit more complicated. It will have two 
parts. 

The new process for adjusting weights will have two components – one that recognizes the effect of a 
weight on the top error and one that recognizes the effect of changing a weight on the bottom error. 

Figure 16 is 
intended to 
emphasize the 
three-step process 
that we must again 
follow as we adjust 
weights. 

 

Fortunately, much 
work has been 
done.   

 

Numbers that were 
described as 
“characteristics of 
the output nodes” 
will be used in 
these new 
formulas. 

 
Figure 16  
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Figure 17 
emphasizes that 
there are two error 
terms ONT and 
ONB) that must be 
accounted for as 
we take the partial 
derivative through 
HNT.   

 

The number 
coming back to the 
output side of HNT 
is .0364.  To take 
that partial 
derivative through 
the transform, in 
reverse order, 
results in the 
number 
.241300700 

 
Figure 17  

 

Figure 18 shows 
the three-part 
formula in 
mathematical 
terms (as partial 
derivatives) and 
also in numerical 
form. 

 

The goal is to 
adjust W1 in a 
manner that 
reduce the error 
and W1 could be 
adjusted by 
.00438568. 

 

However this might 
be too strong an 
adjustment. 

 
Figure 18  
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Adjusting by .00438568 might lead to overcorrection and wild oscillations.  It is, generally, a better 
practice to take smaller steps toward the goal than to take large steps and overshoot the goal. Instead of 
adjusting by .00438568, Enterprise Miner will apply a learning factor (here .5) to reduce the size of the 
adjustment. In this example, the algorithm will only make half the suggested correction in hopes of 
creating a more stable approach to our goal. 

Note: this is a basic example of back prop and back prop is a hot area of research.  Some newer 
algorithms will monitor changes in error as learning progresses and, dynamically, adjust the learning rate.  
These newer algorithms will “take bigger steps” towards the solution when possible.  

The calculations for adjusting W2 to W4 are similar to those shown above and are left to the appendix. 

THE RESTRICTED BOLTZMAN MACHINE (RBM)  
The fact that back proposition involves the chain rule, and many multiplications, limited the depth of 
neural networks for several years. As networks got deeper the back prop algorithm had to multiply more 
and more terms. Generally those terms were close to zero and the repeated multiplication of small terms 
would drive the result of the calculation down close to machine accuracy.   

The formulas used above were calculating the gradient, the slope of the error shape, with respect to the 
different weights. When the formula drove the derivative of a weight to zero, the formula “told the 
algorithm” that there was no chance of improving the error by adjusting that weight.  Applying the above 
algorithm to deep nets made for long training times and unstable answers. Nets were limited in depth until 
the application of the Restricted Boltzmann machine (RBM) to neural networks. 

A Restricted Boltzmann Machine has the advantage of giving the network good starting weights that are 
not close to zero. A Restricted Boltzmann Machine avoids the problem of the vanishing gradient. 

A RBM breaks a 
Deep Neural 
Network into many 
two-layer networks 
(see right).  

 

The first of the two 
layers is called the 
input layer and the 
second layer, the 
one on the right, is 
called the hidden 
layer. 

 

The two-layer 
network is trained 
so that the second 
layer simply 
reproduces the 
values in the first 
layer. 

 
Figure 19  
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In figure 20 a 
reader can see the 
next step in the 
RBM. The process 
is to freeze weights 
between the input 
layer and hidden 
layer 1 and shift 
the RBM one layer 
to the right.  

 

The RBM tries to 
make the hidden 
layer 3 reproduce 
the values in the 
hidden layer 2. 
This process 
continues until all 
the layers have 
been trained 

 
Figure 20  

 

After all the layers 
have been trained, 
all their weights 
are unfrozen and 
the whole network 
is trained. 

 

Early algorithms 
randomly 
assigning starting 
weights close to 
zero and this 
exacerbated the 
“vanishing gradient 
problem”. 

Weights from the 
series of two-layer 
RBM training steps 
provide good, non-
zero starting 
weights for training 
of the network.    
Figure 21  

This technique avoids the vanishing gradient and has allowed researchers to use deeper and wider nets. 
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EXAMPLE 1: A NEURAL NETWORK ON HARD TO SEPARATE CLUSTERS 
Figure 22 shows 
the one of the 
example problems 
that will be 
developed in this 
paper. 

 

This example is 
from SAS online 
documentation. 

A neural network 
will be used to 
separate these 
three groups. 

The process will be 
to run PROC 
Neural in the SAS 
Display Manager.  
Proc Neural 
requires a DMDB 
catalog entry.  
Figure 22  

PROC DMDB 
creates a catalog 
entry containing 
metadata on the 
variables in the 
data set.  

 

Think of PROC 
DMDB is adding 
information to what 
one sees when 
running a PROC 
Contents. 

 

Proc Contents 
shows “data about 
the data”. 

 
Figure 24  

 



20 

Figure 25 shows 
the PROC Neural 
code with 
explanations for 
the statements. 

 

SAS code to create 
this data set will be 
included in the 
appendix so an 
interested reader 
can conveniently 
run this example. 

 

In the paper, we 
will skip to output 
to show how well 
this neural net 
performed. 

 
Figure 25  

 

Figure 26 shows 
the results of the 
PROC Neural.  

 

There were no 
misclassifications.  

 

This is exciting 
performance on a 
highly non-linear 
data set. 

 
Figure 26  
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PROC Neural 
creates output data 
sets and a 
programmer that 
wants to build a 
PROC Neural into 
a larger project 
must understand 
the output.  

 

The output from 
the PROC Neural 
will likely be input 
to some future 
steps.  

 
Figure 27  

 

As this figure 
suggests, 
interpreting the 
contents of output 
from PROC Neural 
can be difficult. 

 

E_ values depend 
on the method 
used in the Deep 
Neural Network. 

 

After much 
research, I have 
not been able to 
find a definition of 
U_. 

 

 
Figure 28  
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Rings was the 
input data set and 
was not changed. 

 
Figure 29  

 

EAMPLE 2: PREDICTING LOAN DEFAULTS  
 
This new example 
will try to predict 
loan defaults. This 
data set is shipped 
with SAS 
Enterprise Miner 
and an interested 
reader easily can 
run this code. 

 

To the right, please 
see the use of 
PROC DMDB to 
create a catalog 
entry for use by 
PROC Neural. 

 
Figure 30  
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This PROC Neural 
call is fairly 
complicated and 
extends over two 
slides. The red 
boxes group 
similar types of 
commands.  

PROC Neural 
allows a one to 
specify the number 
of CPUs to which 
s/he has access 
and to allow 
multithreading. 

We are asking for 
three hidden layers 

Hidden layer1 has 
36 nodes.  Hidden 
layer 2 has 24 
nodes and hidden 
layer 3 has two 
nodes. 

 

Figure 31  

 

This figure shows 
the coding of the 
RBMs. Each of the 
red boxes is an 
RBM and run in a 
sequence.   

The boxes will 
freeze and un-
freeze appropriate 
hidden layers. 

 
Figure 32  
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Since an interested reader can run this code, some output will be skipped and final results will be shown. 

Of the 1189 
defaulters on the 
loan PROC Neural 
identified 309, or 
26%. 

Importantly, No 
alternative 
architectures were 
explored and the 
naively created 
node still correctly 
classified 85% of 
the people. 

This example 
would be a good 
starting point for a 
reader wishing to 
play with neural 
networks 

 
Figure 33  

 

SUMMARY  
SAS PROC Neural is a very powerful modeling tool and analysts should consider some study of Deep 
Neural Networks. 
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***************** APPENDIX *************** 

The appendix has three sections:  
1) Code for the separate three groups example (the “rings” example) 

2) Code for the predict delinquency example  

3) All PowerPoint slides for the back propagation 
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1) code for the separate three groups example (the “rings” example) 

Data Rings; 
infile datalines truncover firstobs=3; 
input  Horiz 2. vert 2. Class_of_Y 1. @@; 
datalines; 
Horiz Vert Class_of_Y 
1234567890 
 2   9   0   2  10   0  3   8   0  3   9   0  3  10   0  3  11   0  4   7   0  4   8   0  4   9   0 
 4  10   0  4  11   0  4  12   0  5   6   0  5   7   0  5   8   0  5   9   0  5  10   0  5  11   0 
 5  12   0  5  13   0  6   5   0  6   6   0  6   7   0  6  12   0  6  13   0  6  14   0  7   4   0 
 7   5   0  7   6   0  7  13   0  7  14   0  8   4   0  8   5   0  8  14   0  8  15   0  8   8   1 
 8   9   1  8  10   1  9   3   0  9   4   0  9  15   0  9   7   1  9   8   1  9   9   1  9  10   1 
 9  11   1 10   3   0 10   4   0 10  15   0 10  16   0 10   6   1 10   7   1 10   8   1 10   9   1 
10  10   1  10  11   1 10  12   1 11   2   0 11   3   0 11  16   0 11  17   0 11   6   1 11   7   1 
11  11   1 11  12   1 11  13   1 12   2   0 12   3   0 12  16   0 12  17   0 12   4   1 12   5   1 
12  12   1 12  13   1 12  14   1 13   1   0 13   2   0 13  16   0 13   4   1 13  13   1 13  14   1 
13   8   2 13   9   2 14   1   0 14   2   0 14  16   0 14   4   1 14  13   1 14   7   2 14   8   2 
14   9   2  14  10   2 15   1   0 15   2   0 15  16   0 15   4   1 15  13   1 15  14   1 15   8   2 
15   9   2  6   2   0 16   3   0 16  16   0 16  17   0 16   4   1 16   5   1 16  12   1 16  13   1  
16  14   1  17   2   0 17   3   0 17  17   0 17   6   1 17   7   1 17  11   1 17  12   1 17  13   1 
18   3   0  18  15   0 18  16   0 18   6   1 18   7   1 18   8   1 18  11   1 18  12   1 19   3   0 
19   4   0 19  14   0 19  15   0  19   7   1 19   8   1 19   9   1 19  10   1 19  11   1 20   3   0 
20   4   0 20  15   0 20  16   0 20   8   1 20   9   1 20  10   1 21   4   0 21   6   0 21  14   0 
21  15   0 22   4   0 22   5   0 22  14   0 23   6   0 23   7   0 23   9   0 23  10   0 23  12   0 
23  13   0 24   4   0 24   5   0 24   6   0 24  12   0 24  13   0 24  14   0 25   6   0 25   7   0 
25   8   0  25  11   0 25  12   0  25  13   0 26   6   0 26   7   0  26   8   0 26   9   0 26  10   0 
26  11   0  26  12   0 27   6   0 27   7   0 27   8   0 27   9   0 27  10   0 27  11   0 28   7   0 
28   8   0  28   9   0 
; 
run; 
 
PROC DMDB batch data=Rings 
   out=DMDB_Rings 
   dmdbcat=DMDB_CatRings; 
   var Horiz vert  ; 
   class Class_of_Y; 
   target Class_of_Y; 
run; 
 
proc catalog catalog=work.DMDB_CatRings; 
contents; 
run;quit; 
 
 
 
proc SGPlot data=Rings; 
 
PROC SGPLOT DATA = Rings; 
  Scatter X = horiz Y = vert  
    /group=Class_of_Y; 
  YAXIS LABEL = 'Some equal interval variable' ; 
  XAXIS LABEL = 'Some Other equal interval variable'; 
  TITLE 'Plot of the Circles (Rings) Training Data'; 
  INSET 'No Linear Boundary Exists'/ POSITION = TOPRIGHT BORDER; 
RUN; 
 
 
/*PROC GPlot data=Rings;*/ 
/*  plot Vert*Horiz=Class_of_Y /haxis=axis1 vaxis=axis2;*/ 
/*  symbol c=black i=none v=dot;*/ 
/*  symbol2 c=red i=none v=square;*/ 
/*  symbol3 c=green i=none v=triangle;*/ 
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/*  axis1 c=black width=2.5 order=(0 to 30 by 5);*/ 
/*  axis2 c=black width=2.5 minor=none order=(0 to 20 by 2);*/ 
/*  title 'Plot of the Circles (Rings) Training Data';*/ 
/*run;quit;*/ 
 
PROC Neural data=Rings 
 dmdbcat=DMDB_CatRings 
 random=789; 
 input HORIZ VERT  / level=interval id=i; 
 target Class_of_Y / id=o level=nominal; 
 hidden 3 / id=h; 
 prelim 5; 
 train; 
 score out=out    outfit=fit; 
 score data=Rings out=gridout; 
 title 'MLP with 3 Hidden Units'; 
run; 
 
proc print data=fit noobs label; 
  var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_; 
  where _name_ = 'OVERALL'; 
  title2 'Fits Statistics for the Training Data Set'; 
run; 
 
proc freq data=out; 
 tables f_Class_of_Y*i_Class_of_Y; 
 title2 'Misclassification Table'; 
run; 
 

2) code for the predict delinquency example  

title "Home Equity and Defaults"; 
libname DeepL "E:\____Conferences_2016\dATA_2_USE"; 
options nocenter; 
ods listing; 
proc contents data=DeepL.HmEq_home_equity varnum; 
run; 
 
proc print data=DeepL.HmEq_home_equity (obs=10); 
run; 
 
DATA HmEq_home_equity_Use; 
 SET DeepL.HmEq_home_equity; 
 RUN;QUIT; 
 
PROC DMDB batch data=HmEq_home_equity_Use 
   out=DMDB_HmEq 
   dmdbcat=DMDB_Cat_HmEq; 
   var /*bad*/ LOAN MORTDUE VALUE /*REASON  JOB*/ YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC; 
   class bad Job Reason; 
   target bad; 
run; 

*** TRAIN 3 LAYER AUTOENCODER; 
*two kinds of statements - actions and options;  
options fullstimer; 
title "3 layer Neural Network"; 
PROC Neural data=HmEq_home_equity_Use 
    dmdbcat=DMDB_Cat_HmEq 
    graph; 
    performance compile details cpucount=4  threads= yes; /* ENTER VALUE FOR CPU COUNT */  
    *nloptions MaxIter=10000;                                                    /* DO NOT EXCEED NUMBER OF PHYSICAL CORES 
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*/ 
    /* DEFAULTS: ACT= TANH COMBINE= LINEAR */ 
    /* IDS ARE USED AS LAYER INDICATORS - SEE FIGURE 6 */ 
    /* INPUTS AND TARGETS SHOULD BE STANDARDIZED */ 
 /*we have 13 variables,  so I will recude the number of nodes down from the numbers in the recognize 
numbers example*/ 
    archi MLP hidden= 3;  
    hidden 36 / id= h1;  
    hidden 24 / id= h2; 
    hidden 2 / id= h3 act= linear; 
    input LOAN MORTDUE VALUE  /*REASON   JOB*/  YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC 
         / id= i level= int std= std;  
    target bad / act= logistic id=t level= ordinal ; 
    /* BEFORE PRELIMINARY TRAINING WEIGHTS WILL BE RANDOM */ 
    initial random= 123;  
    prelim 10 preiter= 10;  
 
    /* TRAIN LAYERS SEPARATELY */ 
   /*freeze i->h1*/ /*train the first layer*/  
    freeze h1->h2;  
    freeze h2->h3;  
    train technique= congra maxtime= 10000 maxiter= 10000; 
 
    freeze i->h1;  
    thaw h1->h2;  /*train the second layer*/ 
    train technique= congra maxtime= 10000 maxiter= 10000; 
  
    freeze h1->h2;  
    thaw h2->h3;  /*train the thirs layer*/ 
    train technique= congra maxtime= 10000 maxiter= 10000; 
 
   
    /* RETRAIN ALL LAYERS SIMULTANEOUSLY */    
    thaw i->h1; 
    thaw h1->h2;  
    thaw h2->h3; 
  
    train technique= congra maxtime= 10000 maxiter= 1000; 
 
     *code file= '';     /* ENTER SCORE CODE FILE PATH - SAME AS LINE 412 */ 
 
 score out=HmEq_out    outfit=HmEq_fit; 
 score data=HmEq_home_equity_Use out=HmEq_gridout; 
 title 'complex MLP '; 
run; 
 
proc print data=HmEq_fit noobs label; 
  var _aic_ _ase_ _max_ _rfpe_ _misc_ _wrong_; 
  where _name_ = 'OVERALL'; 
  title2 '3 layer Fits Statistics for the Training Data Set'; 
run;quit; 
 
proc freq data=HmEq_out; 
 tables f_bad*i_bad; 
 title2 '3 LAYER Misclassification Table'; 
run; 

 

3) all PowerPoint slides for the back propagation 
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Back Propagation for Weight 5 
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Back Propagation for Weight 6 
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Back Propagation for Weight 7 
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Back Propagation for Weight 8 
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Back Propagation for Weight 1 
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Back Propagation for Weight 2 
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Back Propagation for Weight 3 
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Back Propagation for Weight 4 
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