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ABSTRACT

This paper is about some new PROCSs for modeling using penalized variable selection and some PROCS
for building models that are a richer description of your data than OLS. The four PROCS we will cover
are: Reg, GLMSelect, QuantReg and QuantSelect. The paper explains theory and gives examples of
SAS® code and output for four PROCS.
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INTRODUCTION

A major goal of regression analysis in has been to determine, from ONE data set, the ONE model that
best describes the relationship between the dependent and independent variables for future data. This
process created ONE line (predicting the conditional mean response). Much of the work involved the use
of maximum likelihood estimation (MLE). Recent advances in computer power allow us to expand this
goal in three ways: First: Model averaging lets us create models with more external validity. Secondly,
penalized regression methods allow us to solve some of the problems of MLE. Finally, quantile
regression creates multiple, not one, conditional estimates of Y.

Maximum likelihood estimation has three major problems:
Collinearity: When the independent variables are collinear, the (3 values are unstable.

Overfitting: When the sample size (N) is not much larger than the number of variables (p) resulting
models will be over fit and will not generalize well to new data.

Parsimony: Einstein said that the goal should be to make everything “as simple as possible, but not
simpler”. Much of model building has focused on the attaining the ideal degree of parsimony. However,
the older methods (e.g. bivariate screening, stepwise selection, forward selection) are flawed. Statistics
given in the output from regression (p values, parameter estimates, R? and so on) were developed for
testing one specific model and are not justified when used multiple times as they are in stepwise.



HOW DID THIS PAPER HAPPEN

This paper started out as a much smaller topic and grew and grew. It started out as a talk about only
PROC QuantReg. QuantReg works fine on its own, if there is a single model that we wish to test and it is
specified a priori. However; if we want to use model selection methods with a QuantReg, we need to
understand PROC QuantSelect.

But PROC QuantSelect requires an understanding of penalized regression techniques like: Ridge,
LASSO, LAR, Weighted LASSO, Elastic Net and Grouped LASSO. These methods are easier to
understand in the more familiar environment of ordinary regression, which led us to PROC GLMSelect,
which is similar to PROC QuantSelect. We suggest a study all four PROCS, and theory, is better than
studying one PROC. PROC GLMSelect can also be used to select variables for PROC GLM and PROC
Mixed but we will not show examples of these in this paper.

Figure 1 one shows the products we examined in creating this paper and some of the advanced, machine
learning, options one can request from the PROCs.

BACKGROUND

Model selection is a difficult and important topic in statistics. Stepwise methods have long been known to
have problems but were used and taught because analysts lacked alternatives for the automatic creation
of parsimonious models.

Model selection, establishing the relationship between Y and elements of a set of X variables, is difficult
for several reasons. A nonlinear relationship between Y and several X is might not show up in the
marginal plot of Y versus X — even in a partial regression plot. Scatterplots show the marginal
relationship between Y and the X variables and cannot show anything about relationships between Y and
several Xs (although co-plots and scatterplot matrices can help). A strong relationship between Y and
one X may be outperformed by a relationship between Y and a group of X variables that are, individually,
poor predictors. A lack of a marginal relationship between Y and an X variable does not mean that it the X
variable is not useful in the model. The X variable might be needed as a moderator, or mediator, in a
model that includes other X variables. In addition, theory often suggests some variables “should” be
related to the dependent variable. In these cases, finding a weak relationship is interesting.

Most unsettlingly, nearly all the results of regression (F and chi-square tests, parameter estimates, p
values and so on), assume that the model is specified beforehand and that is not the case with stepwise
methods. Results are known to be incorrect when stepwise, or other similar methods, are used.

Stepwise algorithms are fast because they are greedy. They make the best choice at each step,
regardless of the effects of future X variables and this is often not the way to find “TRUTH".

All-Subsets regression examines all subsets of the X variables for each particular number of X variables
(best 1 X-variable model, best 2 X-variable model etc.). An advantage of all subsets is that the best set of
two predictors need not include the X variable that was the best one predictor model. However the biases
of all-subsets 3 values are much, much greater than in stepwise. All-Subsets examines 2P cases, so, for
only a relatively small model with 10 independent variables, there are over 1000 models to examine (and
adjust for). The chance of an alpha error is large for that many tests.

The new penalized methods that are discussed in this paper help, only help, find a parsimonious model.
They help by using algorithms that are more stable, continuous and computationally efficient than
stepwise methods. However; thought is still required for three reasons. Firstly; output is still complex.
Secondly; some penalized penalties are more appropriate in a particular situation than others. Thirdly,
any automatic method will be inadequate because (as noted above) there are considerations other than
simple “model fit” to consider. Automatic methods cannot substitute for substantive knowledge and
thought.

Figure 2 starts a story. Hopefully, that story explains some of the logic behind, and steps in, Ridge
regression. We know that OLS can, if the number of variables is large or if the X variables are collinear,
produce highly unstable 3 estimates and this slide starts an illustration of that problem.



In the white box on the left, a data step creates two variables, that are highly correlated, and a Y variable
that is created by the formula Y = 4 + 1X1 + 1X2 + error. A PROC GPlot shows the extreme correlation
between X1 and X2. Finally a PROC Reg builds a model using these two highly correlated X variables.
(It should be noted that correlation and collinearity are not the same and that there can be collinearity
among a set of variables none of which are have a high individual correlation with Y. However, in our
example case, with only 2 independent variables, a high degree of correlation does imply a high degree
of collinearity. A good method for detecting collinearity is condition indexes, available in PROC REG.

The results of the model are shown on the right of Figure 2. In the top box you can see that the model
predicts very well. In the bottom box you can see that neither the X1 nor the X2 variable are significant.
This is a very common occurrence in regression when X variables are correlated. Notice, in the formula
that creates the variable true_Y, that the s for X1 and X2 sumtotwo (1 +1 =2). Inthe parameter
estimates box on the right-hand side the s also sum approximately to two (24.78 + -22.88), though the
values are very different from the {3 in the formula for true_Y.

Pause for a minute and consider this. If the X’X matrix has problems, SAS uses a generalized inverse
and the Bs become unstable. If X1 and X2 are as highly correlated as the plot shows, then we can say
(practically) that X1 IS X2. Since X1 contains the same information as X2, we could re-write the formula
as Y= 2*X1 + 0 X2. We could also re-write the formula as Y= 0X1 + 2*X2.

INTRODUCTION TO THE PROBLEM

Penalized Regression - Introduction to the problem
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Penalized Regression - Introduction to the problem
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The code in Figure 3 manually calculates sum squared error for many different “models”. A characteristic
of all the models is that the values of 1+ 2 sum to two (-10 + 12 =2 and 4 - 2 =2, etc.). Since X1 and
X2 are so correlated, X1 and X2 are really the “same” variable. So, any combination of X1 and X2 where
the Bs add up to the number two should give the same answer. The squared residual number in red
(11.86) is from the SAS PROC Reg. The calculations in Figure 3 (differing only because of rounding) are
approximately the same number. A key conclusion is: in the presence of very high correlations, many

combinations of 8 values will give the same answer.

Since we get the same model result from many different models we have to ask “how do we choose a
model (choose a set of beta values)” from the many models (sets of Bs) that predict equally well.

The logic for answering the question is simple. Consider that if these two models predict about as well:

Y=4+ 1X1+1X2
and

Y =4+101 X1 -99 X2

Occam’s razor can be used to select a model. Occam’s razor suggests that we pick a simpler model and,
in this case, Occam’s razor suggests that we should pick models with small 8 values. Unless there is

evidence to the contrary, it is more likely that Y =4 + 1 X1 +1 X2 than Y = 4 + 101 X1 -99 X2. Applying
Occam'’s razor, models with small § values, models with few Bs and models with lower exponents on the

Xs, are considered simpler and more likely.

We now have a rule for picking models when X variables are correlated and the 3 values are unstable.
When multicollinearity is present, we prefer small Bs. This is an underlying logical reason for Ridge
regression. In the presence of multicoliniarity, we want to shrink 8 values and Ridge will be our method.

As a small digression, it does not make sense to shrink the intercept towards zero and none of the Ridge
stat packages will shrink Bo. Additionally, because X variables often have greatly different units of
measure, all of the packages will standardize the X variables so that shrinkage is applied equally
regardless of the natural units on the X variables. Packages also un-standardize for user convenience.



A FRIENDLY STORY ABOUT RIDGE
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Once upon a time a young statistician was confronted with the problems of multicollinearity as she was
building a model. She knew the regression formula was B = (X’X)1 X’ Y and that (X’X) was the sums of
squares and cross products matrix. “Good” regression problems had (X'X) matrices where the off
diagonal values were small. She knew that when the X variables were highly correlated the (X'X) matrix
had off diagonal values that were large compared to the values on the diagonal.

The common way of describing the multicollinearity problem was “we want small covariates” in (X’X). She
had the idea of rephrasing the problem. She rephrased the problem to “I want variances that are a large
compared to the covariates”.

She tried using (X’X + Al) to add to the diagonal values. Adding Al made the diagonal values larger
relative to the off-diagonal values. This greatly improved the solution, even for small values of A. With her
technique the numbers on the diagonals were larger than the numbers on the off-diagonals.

It is now time to make a useful, though slightly tortured, analogy concerning inverses.

Think of two values 5 and 10. 10 is bigger than 5. The inverse of 10 is 1/10 and is smaller than the
inverse of 5 (1/5). As numbers get bigger, their inverses get smaller and note that (X’'X) - is an inverse.

I will torture this analogy because the inverse of a matrix is not a number but another matrix. If A is greater than
zero (X’X + Al) is “larger than” (X’X) and so (X’X + Al) -1 is smaller than (X’X) 1. As A gets larger,
(X’X + Al)1 gets “smaller” because it is an inverse (sorry about that).

Since the B = (X’X + Al) 1 X'Y , we are multiplying an inverse by a fixed amount (the X'Y). As A gets large
the Bs get small. We have found a way to shrink 3s towards zero and to implement Occam’s razor in
selecting coefficients.

But, nothing is free and there is a complication for this technique. The variances of the s can be
calculated using: var(B-hat) = 02 (X'X) 1 .... where &2 is unknown but can be calculated by RSS(B-hat) /
(N-P) RSS(B-hat) . P is the number of X variables and N is the number of observations.

As A gets larger the inverse decreases and the variance of the s decreases — but only for a while. There
is a hidden upward pressure on the variance that is exerted through the g2 term. As A gets large it will

affect the formula for the Bs and make the Bs move away from the “min. SSE” Bs. As Bs move away from
the “min. SSE” Bs, predicted values of Y become less accurate and RSS goes up. As the Bs move away
from their best value, RSS gets large because the model no longer predicts as well. Eventually the effect



of poor predicting on o2 overwhelms the effect of A on the inverting of the (X'X) and o2 (X'X) -1 increases.
The link between the formulas produces a characteristic U-shaped curve as A increases.

Let us do two thought experiments about the formula (X’X + Al) 1. As A gets close to zero our Al term
disappears and we are left with OLS regression. As A gets large it makes the diagonal of (X’X + Al) -
matrix get large, the inverse small. In the general case, the Bs go to zero because (X’X + Al) is large and
the inverse term in B = (X’X + Al) 2 XY is small. However, it is possible for individual 8 to increase or
decrease or even change sign if A increases but is less than infinity.

There is another way to think about the effect of increasing A. Points, from correlated X variables, can be
thought of as forming a “cylinder” in the hyperspace defined by the X variables. Points from independent
X variables are spread out and form a “dispersed swarm of bees” in the hyperspace defined by the X
variables. The fitted hyperplane, from your model, rests on the observed points in X-space.

If the points form a narrow cylinder, then small changes in observations can allow the plane to tilt. Think
of trying to balance a dinner plate on a rolling pin. However, if the points are spread out in hyperspace then
the hyperplane rest on points that are spread widely apart and the hyperplane is more stable. Think of the
data swarm as supporting the hyperplane in a manner similar to a plate resting on a table. The Al term
can be thought of as spreading out the points in X-space and providing better support for the hyperplane.

In summary; Ridge implements Occam’s razor when it shrinks fs.

ANOTHER VIEW OF RIDGE

Mathematically, B = (X’X + Al) -1 X’ Y can be converted to

SSE; (B) = X, (Y; — Z'}’;ll Xij B)* + AZﬁ’z_ll(ﬂj)Z which is like the OLS formula with a penalty (blue
term) for having large (or for having many) Bs. The second power penalty is easy to optimize using
calculus. The Ridge penalty is often called an L. penalty because of the second power in the exponent of
the penalty term. A is often called the shrinkage parameter. Large (3 values, or models with more 3
values, are interpreted as more complex models and, according to Occam, less likely to occur in nature.

Models with large Bs, and models many Bs, are both penalized by the Ridge technique.

LASSO (LEAST ABSOLUTE VALUES SHRINKAGE AND SELECTION)

The penalty for LASSO is very similar to the penalty formula for Ridge. The LASSO penalty term is the
absolute value of the Bs raised to the first power. The LASSO penalty is often called an L. penalty
because of the first power in the penalty term.

n p-1 p-1
SSE(B)= ) (= D Xy B 42 ) IB)I"
i=1 =1 j=1

Since LASSO has an absolute value penalty, it cannot be easily differentiated. LASSO optimization is
done by operations research techniques (simplex, etc.) and the original algorithms were fairly slow.

Comparing the shrinkage of Ridge to LASSO you can see a few important differences. (3 values in a
Ridge never reach exactly zero (until A= infinity) while LASSO can quickly shrink (3 values to exactly zero..

Some people like LASSO because the (3 values go to exactly zero and are, in LASSO, removed from the
model. These people claim the fact that LASSO sets 8 values to exactly zero is a positive characteristic
for LASSO and these people use LASSO as a replacement for stepwise.

Some people like Ridge regression because, in Ridge, B values do NOT go to zero. These people say
that there is an over-emphasis on the P value in much of statistics. People in this camp feel that the true
purpose of statistics is to estimate an “effect size” and they like Ridge regression because Ridge will
leave relatively unimportant variables in the model with a small 3 values (small effect sizes).



Penalized Regression - Ridge and

Data c01_Sashelp_class_plus)
set sashelp.class;

if sex="F" then cl_sex=1; else cl_sex=0;
Age sex=age*Cl_Sex; run;

RIDGE Example
proc reg data=sc01_Sashelp_class_plus
OutEst=C02 outtest plots=all

ridge=0 to .02 by .001;
model Height = age weight cl_sex Age_sex ;
plot [ ridgeplot ; run; quit;

LASSO Example

proc glmselect data=sashelp.class plots=All;
class sex;

model Height = age weight sex Age*sex /
selection=LASS0O(choose=SBC); run;
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Figure 5

Ridge shrinks the coefficients for large (3 values, the important variables, more than it does small
values. This is correct when the problem is collinearity, since one problem with collinearity is that some
parameter estimates are much too large. However, when the problem is overfitting, this is not the case.
Thus, LASSO is designed to deal with overfitting, (and does not deal that well with collinearity) and Ridge
is designed to deal with collinearity (and does not solve problems of overfitting).

Figure 5 illustrates the difference between [ plots for Ridge and LASSO and shows how easy it is to code
these two techniques. As A increases, the 3 values change — in both Ridge and LASSO. In a Ridge the
values change smoothly and will asymptotically approach zero. In Ridge, unstable 8 values can cross
zero and remain in the model.

LASSO plots are really a series of points connected by lines — where the lines just make the relationship
among the points easier to see. You only interpret LASSO plots at the points where an X variable enters
or leaves the model. As you can see the LASSO plot for age goes exactly to zero. In LASSO, when a 3
value is zero, the variable has been removed from the model.

ADAPTIVE LASSO

Ridge regression shrinks (3 values for important variables more than it shrinks s for unimportant
variables. Lasso shrinks all B values by the same amount. The idea of Adaptive LASSO is to shrink the
Bs for important variables less than the B values for unimportant variables — keeping important variables
in the model “longer”.

Adaptive LASSO is a two-step process because it needs a starting point for the 8s. An OLS regression is
often the starting point for 3 values for Adaptive LASSO (and may therefore be incorrect when there is
collinearity). Shrinkage values are created based on variable importance and final model selection still
takes some skill.



ELASTIC NET

Penalized Regression - Ridge and LASSO and Adaptive Lasso and

The LASSO formula {, Penalty < 1°! Power
ISSE,(B) = Ziw.(Yi — X523 Xy B)P [+ A X521 1B/

The Ridge formula & Penalty < 27 Power

SEA(B) = iy (Y — E02; X, B[+ A 2221 (B))?

Elastic Net formula has two penalties

SE;(B) = Ty (¥i — 00 X, B [+ A, T221 B +A 28218

The £1 part of the formula generates a sparse model.

The £2 (quadratic) part of the formula:
**allows the technigque to be used where P>n
**encourages grouping of variables in the final model
**stabilizes the regularization path.

Figure 6
Elastic Net, as you can see in Figure 6, has both of the L1 and L. penalties.

The L part of the formula allows Elastic Net to create a model with few variables — a sparse model. The
L> part of the formula allows Elastic Net to be used when the number of variables is greater than the
number of observations. This allows Elastic Net to be used in situations, like biological testing, where
there might be thousands of variables and only a few hundred observation.

Elastic Net also overcomes the issue that LASSO has with correlated “groups of X variables”. If your data
set has a group of X variables that are highly correlated (height, weight, shoe size, glove size, etc.),
LASSO will only select one X variable from the group of highly correlated X variables. Elastic Net can
bring several of those correlated X variables into the model and keep them there longer. The L2
parameter also stabilizes the path of the 3 values.

However, Elastic Net has a problem because it has two penalties. Since the Elastic Net has two

penalties, that it applies, a B must overcome two penalties as it enters. Some modelers like the mixture of
the two penalty types but think that applying two penalties is too harsh. SAS has an option that lets you
request a scaling correction to reduce the double penalty but keep many of the positive characteristics of
Elastic Net.

FOREWARD STAGEWISE

Forward Stagewise was important in algorithm development, but is now used only infrequently. Forward
Stagewise picks the same initial X variable as forward stepwise, but it only changes the 3 value by a
small amount and then calculates residuals. If Stepwise said the some beta should be 2, Foreward
stagewise might bring the variable into the model with a B of .5. Foreword Stagewise then picks the X
variable with the highest correlation to the residuals (might be the same variable as previous) and makes
a small change in the B for that variable — then calculates residuals. Forward Stagewise takes many steps
to reach a solution. Variables can be added and removed.



LAR (LEAST ANGLE REGRESSION)

LAR is an improvement on Forward Stagewise and is so fast that it is used, with modifications, as an
algorithm for other techniques. LAR does not take small steps towards a solution but makes a big jump in
a B value. LAR has a speed advantage, because variables are only added to, and not removed from, the
model.

When you are stopping short of a fully saturated model (assume you have 200 X variables in your data
set and you might only want to consider a model a maximum of 50 X variables ) LAR has a definite speed
advantage. Limiting the number of X variables in a model is often done because business people do not
have resources to deal with a 200 variable model. Often, there are a few practical advantages to a
model containing hundreds of variables over a model containing 50 variables. Details of LAR are shown
in Figure 7.

Penalized Regression - Ridge and LASSO and Adaptive Lasso and Elastic Net and

The LAR algorithm exploits the special structure of the lasso problem.
There is a geometric underpinning to LAR and people talk about moving in the space of ).

LAR = Least Angle Regression algorithm:
1) LAR starts with all the B coefficients set to zero as the initial state.
2) LAR finds the X-variable with the highest single variable correlation with Y

3) LAR changes that variable's § value in the direction of the sign of the correlation with Y.

4) Repeatedly, LAR changes the B and calculates residuals after each p increase. LAR
stops when new some X-variable has as high a correlation with the residuals as the X that
has been being changed.

5) LAR increases fis for both variables in a way that keeps them equality correlated with
thre residuals, until a new X-variable has as much correlation with the residuals.

6) Variables are added untii all X-variables are in the model (or it reaches a programmed
max # of variables)

With one modification, this procedure gives the entire path of LASSO B values and this is
useful for graphing. If a non-zero coefficient hits zero, LAR will remove it from the set of x
variables and then re-calculate the *best direction®.

Figure 7

EXTERNAL VALIDITY: MAKING ONE DATA SET LOOK LIKE MANY

It is common knowledge that a model performs best on the data set that was used to create the model.
This means that measures of goodness of fit, like r- squared, are biased upwards on the data set that was
used to create the model. On new data, a model will likely predict less well. There are techniques that will
allow a modeler, with only one data set, to create a model that better generalizes to new data.

If the original data set is large it can be split it into two or three parts. The parts are called: train, test,
validate, if there are three parts. If there are two parts, the data sets are usually call train and test.

The idea is to create a model using the training data and see how well it would generalize by predicting a
data set containing new observations. This works well if the original data set is large enough to split into
two or three parts. If it is not large enough to split, another technique must be used.

A K-fold validation is one technique that is useful for moderately sized data sets. A “fold” is another term
for a “split” and most modelers use a five or 10 split— though there is no great reason for selecting any
number. The idea is to take different subsets of the data, build multiple models and then average the
models.

Each model will develop the model using K-1 parts of the data use one K™ of the data as a test and.
Results of the K different models are averaged (many averaging algorithms exist) to produce a result that
is more generalizable than a model built on the whole data set.



Think a bit more about the issue of small N. If N is moderate (say N=200 observations) a fivefold split will
create a training set with 160 observations and the training set is likely to approximate the next data set
encountered. However a K=5 split produces a test data set that only has 40 observations. It is likely that
this test set can differ from the data to which you wish to generalize. Forty is likely to be too small to be a
good test set.

If N is small (N = 50 observations) a fivefold split will send forty observations to the training data set and ten
observations to the test data set. It is likely that neither of these is sufficiently large to be representative—
even after averaging many different models. There is some theoretical basis for saying a fivefold or a
tenfold split produces models that contain excess numbers of X variables.

Another technique is bootstrapping. There seem to have been many different techniques developed
under the general heading of bootstrap, but descriptions, when given, seem to point to a very similar
algorithm in use.

Most commonly, people talk about the algorithm that follows. Start with a data set with N observations
and pick a sample of size N — allowing replacements. The bootstrap sample will have the same number
of observations as the original data but, on average, only 63.2% of the observations in the raw data will
be in any particular bootstrap sample. Some observations will not be in the sample and some
observations will be in the sample multiple times.

The bootstrap sample is not a better representation of the data than your original data and cannot be
used as a replacement data source for building one model. What is done is to take many bootstrap
samples, build a model on each of the bootstrap samples, and then average the results of the models.
You can create many bootstrap samples from one moderately sized data set.

The next “step up” is to create models that predict use either different parts of the data or different
methods. These are called ensemble techniques. Common ensemble techniques are bagging and
boosting and the “bucket of models” method. This line of model building is described as ensemble
techniques. An ensemble is defined as a group of items viewed as a whole rather than individually.

Ensemble methods are a change from our historical practice of building one best model on a data set.

Figure 8 is a graphic representing an ensemble modeling process. The process of building multiple
models is not as much of a problem today, as it had been in the past, because of the prevalence of
multiple CPU machines. Now models can be created in parallel. Figure 8 shows a bunch of tables
labeled “subsets of observations”. There are a great many methods to take subsets of the master data.
Some techniques will take a subset of the observations and some techniques will take a subset of the
observations and also a subset of the X variables.

Why Model Averaging or Ensemble Models work

Works well with
. ——
parallel processing Master Data

Many Data'sets
are not shown—= Often with
Models must be ) ' ' Bootstrap

independent.

If all models are “the
same” you get no
gain in predictive

Many Models
<are not shown-—

Many Methods to combine

P(X=x) = M! “Px ¢ (1-P)it-x)
(N-x)! * X!)

Y=continuous: Beta is
(weighted??) average of the Betas

Figure 8
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Models are built on each of the subsets and then combined. It is important that the models be as
independent as possible. By “Independent models”, researchers mean that the models misclassify
different observations. If the models all misclassify the same observations, then averaging will not help
model accuracy.

There are many methods used to combine the predictions and some combining algorithms will feed back,
into the model building process, information about how accurate that model had been.

If Y is continuous it is possible to predict a Y using each of the models and then average the Y values. It
is also possible the average the B values from the individual models and use the averaged B values to
predict Y.

If the Y value is categorical (yes, no or High, Med, Low) you can just allow each model to “vote” and pick
the classification that has the greatest number of votes. As a general principle, the more models you
average the better your prediction, especially if the models misclassify different observations.

BAGGING (BOOTSTRAP AGGREGATION)

Bagging is a two-step process, invented in 1996. It is a very common way of creating, and then
combining, models. Itis a general term describing resampling and averaging of predictions over a
collection of bootstrap samples and will reduce prediction variation.

A general description of Bagging (Bootstrap Aggregation) is:

1. Start with a training set S, with N observations, is made up of observations (x1,y1, ...XnYn)

2. Create NS bootstrap samples

For each of the NS samples, fit a model and get an equation that predicts Y from the X vector
Average the predictions from each of the NS bootstrap models.

There are many averaging methods and they can be complex. Two major philosophical schools are:
Bayesian averaging and Frequentist averaging. There are multiple methods within each major
philosophy.

In the past, research into new modeling techniques was primarily statistical. Researchers still must
consider the statistics and also consider the coding and efficiencies of the algorithm they propose as part
of their solution.

QUANTILE REGRESSION

We are now in the second part of the talk. We have finished with section on model selection theory and
will see some examples.

As Figure 9 mentions, OLS minimizes the squared deviation from a fitted line and often uses maximum
likelihood to find B coefficients that minimize the summed squared deviation. Quantile regression
minimizes the weighted sum of the signs of the deviation from the fitted line and the 3 are calculated
using algorithms from operations research.

The plot on the lower left corner of Figure 9, illustrate a 10% quantile calculation. If a point is above the
line, it has a weight of 1. If a point is below the line, it has a weight of -9. In our example we have 10
points at each level of X but this is not a requirement in real life. The red points below the line, are
multiplied by their weights (-9) and the black points above the line are multiplied by their rates (+1). An
operations research technique is used to set the slope of the line to minimize the sum of the weighted
deviation.

You can see that the summed weights of the black points, for any particular X, sum to positive nine and
the sum of the weights for the red points below the line, for any particular X, sum to -9. The blue line, in
this picture, minimizes the weighted sums from the line. The sum of the weighted deviations is zero in
this plot.
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Penalized Regression -

OLS minimizes the Squared
Deviation from a line and uses

Quantiling is NOT sensitive to | P Maximum Likelihood
[
I

outliers in Y (but is affected

(affected by outliers and the
by leverage points

conditional distribution of Y)

or 10t quantile For 20t quantile
+ weight =1 + weight = 2
- Weight =-9 - Weight = -8

ot L]
? 3 e cutiler

Positive Deviation £ vtiiuhis
For any X, E weights = 9*1 =9 =8*2=186

\ Below the line= Negative deviation

For any X, / I weights
L | £ weights=1*98=-9 ‘ =2".8 =16

10% of points are below the line 20% of points are below the line

Figure 9

On the lower right-hand part of Figure 9 we see plot for a 20% quantile regression. The data set is the
same as on the left. The difference between a 10" percentile quartile calculation and a 20t percentile
guartile calculation is the weights. In the 20" percentile calculation, if a point is below the fitted line
weight is -8 if a point is above the fitted line the weight is +2. An O.R. algorithm is used to find B values
that will minimize the sum of the weights.

Looking at Figure 9, we see we can use the same data set to calculate lines for as many percentiles as
we want. You can also see that Quantile regression is not sensitive to outliers, though it is sensitive to
high leverage points.

Figure 10 shows a “compare and contrast” between correct quantile logic and a common
misunderstanding of quantile logic. Focus on the white box in the center. In that box, someone has taken
the bottom 20% of the MARGINAL Y values, put them into a data set, and then done a regression on that
subset of observations. A regression line on a subset based on the marginal Y values is NOT a Quantile
regression. Fitting a regression line to the bottom 20% of the marginal Y values is a mistake. Quantile
regression fits a line bottom 20% of the conditional values of Y and results will be different.

Penalized Regression -

NOT

| Correct | ]\ For 20" quantile | Correct |

For 10t quantile Did not see ad Saw ad many For 20" quantile
+ weight = 1 Did not buy times Did not buy + weight = 1
- Weight = -9 - Weight = -8
L]

ALSO: Do not want a lot of “ties™in Y.

ALSO: Do not want a lot of Y=0. QuantReg
has problems when many “modeling units”
(Customers) have zero sales (product launch)

Figure 10
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EXAMPLES OF THE FOUR PROCS

This paper will now focus on four procedures that allow us to use the techniques we have been
discussing above (Reg, GLMSelect, QuantReg and QuantSelect). These techniques are run in pairs.
As an example, modelers run PROC GLMSelect then any of the following: PROC Reg, PROC GLM or
PROC Mixed. We will use SASHelp.cars as our data set.

Spm @@
@M@ S el S

n
gﬂmioucmao:\:

@ e a

a n
Acura MDY Asia £33 3a7
Acura  REX Type & 2dr Asia 521, 761
Acura  TSX 4dr Asia 524,847
Acura TL 4dr Asla 530,200
Acura 3.5 RL 4dr Azim B33, 014
Acura 3.5 RL w/Mavigation 4ar Asia §41,100
Acira  NSX coupe 2dr manual S Asia §7%, 578
Aud i A4 1.8T 4dr Europa 523, 508

I
=
ol

Audl  A41 8T convertible 2dr Europse 532 506
Audl A4 3.0 adr Europe 20 D46

B ALES A ELEAGa 38 BS e 0
"
(=]
=1

o~ — 62354 5 65 N3 RS ga
L= <l R B R R )

1

2
3
4
3
L]
7
]
k]
L]

Type Freguenecy Origin Fregquenecy Drive
Train Frequency

Eﬁbrid ] I Asia 158
Europe 123 All 82
Sedan Usa 147 Front 226

Sports Rear 110
Truck

Figure 11

MODELERS RUN PROC GLMSELECT - PROC REG
OR PROC QUANTREG 2QUANTREG
-WE WILL REVERSE THE ORDER FOR TEACHING PURPOSES

The procedures with “select” in the name implement penalized regression techniques but do not have
very good diagnostics. Modelers use PROC Reg, PROC Mixed, PROC GLM and PROC QuantReg for
diagnostics and for creating plots.

The workflow to be used, in practice, is to run one of the “select” procedures to identify an interesting
model, or models, and then to rerun those models using PROC Reg, PROC GLM, PROC Mixed or PROC
QuantReg in order to get diagnostics.

This paper will discuss these PROCS in “reverse use” order because we think it might be easier to
understand the PROC:s in this order: PROC Reg, then PROC GLMSelect --- PROC QuantReg and finally
PROC QuantSelect.

SASHelp.cars, will be used in all examples. However, variables used in models will differ in the different
examples. As you can see in the red rectangles in Figure 10, this data has problems (that we will ignore
today). In actuality, the techniques discussed in this paper cannot be used without data cleaning and
thought.
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PROC REG: RIDGE REGRESSION

PROC Reg does Ridge regression
and the syntax required is very
simple.

There is option in PROC Reg
statement that creates Ridge
regression. It is shown in red to the
right. A plot option produces useful
output. This model statement has
eight variables from SASHelp.cars.
We will use these variables many
times in many examples.

Parameter Estimates
Variable Eabsl

Intercept Intercept
EngineSize Engine Size (L)

Cylinders
Horsepower

MPG_City MPG (City)
MPG Highway MPG (Highway)
Weight (LBS)

Wheelbase (IN)

Length (IN)

Procs —Reg (8) GLMSelect QuantReg QuantSelect

Proc Reg Data=sashelp.cars

Plots(maxpoints=100 5000)

OutEst=Needed4RidgePlot

ridge=0 to .02 by .002 ;

Model Invoice = EngineSize Cylinders Horsepower

MPG_City MPG_Highway
Weight Wheelbase length
/lackfit ;

run;quit;

DF B Est. Standard t Value Pr > |t
Error

3148.60 9241.60 0.34 0.7335
-4702.50 1168.91 -4.02 <.0001

1

1

1 2662.93 726.98 3.66 0.0003
1 223.52 11.64 19.20 <.0001
1 -107.36 277.76 -0.39 0.6993 Non-Sig.
1 622.62 272.34 2.29 0.0227

1 6.036 1.41495 4.27 <.0001

1 -542.116 13432 -4.04 <.0001

1

3.7987T1 T3.73 0.05 0.9589 Non-Sig.

Figure 12

A quick examination of names of variables in Figure 12 suggests that several the variables are collinear
and, as expected, some of these variables are not significant.

In this chart the

__Profiles for Sig. Variables

plots for the 2

! B

i

i
=
&
b4
E
2
=
]

Non-Sig. variables

o2 —

uﬁPi’\Hﬂes for ﬁ?' Variables

———— EngrmSize
e ]

“Separate” from

om0 oS

Ridge Parametar
Cyinders Horsapowsr  ——— WPG_Ciy
Vewight Wheslage - Largth

Figure 13
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In Figure 13, the X variables are a mixture of predicting and non-predicting and there are gaps between
the two types of variables.

When variables in the model statement are a mixture of “strongly significant” and “really insignificant
variables”, Ridge regression can produce Ridge plots, with gaps, like the one in Figure 13. This model is
a mixture of significant variables and variables that have no predictive power (plots close to zero). The
Ridge plots suggest that some of these variables can be removed in our efforts to make a parsimonious
model. The usual modeling process is PROC GLMSelect followed by PROC Reg because we want to
take advantage of the diagnostics in PROC Reg.

PROC GLMSELECT

Examples of 4 Procs -Reg GLMSelect (8) QuantReg QuantSelect

Score

54,90 Intercept EngineSize Cylinders
MPG_Highway Weight Wheelbase

5.99 Intercept Horsepower Wheelbase

5.94 Intercept Horsepowel MPG_Highway Weight Wheelbase

5.81 Intercept EngineSize Cylinders MPG_HW;}*
Weight Wheelbase Length

4,92 Intercept EngineSize Horsepower| MPG_Highway Weight
Wheelbase

3,92 Intercept Cylinders [Horsepower|MPG_Highway Weight
Wheelbase

3.80 Intercept EngineSize Cylinders [Horsepower| PG City
MPG_Highway Weight Wheelbase

Intercept EngineSize Cylinders HorsepowerMPG City
MPG_Highway Weight Wheelbase Length

Figure 19

Figure 19 is a different summary of the 100 models that were produced - a model importance chart. This
is a model summary, as opposed to the variable summary in Figure 18.

In Figure 19, we see the “seven variable model”, in red text, was selected fifty-four percent of the time.
This means that from SASHelp.cars, when observations were selected randomly, this model was
determined most of the time as the model that best described the data. This model is relatively insensitive
to outliers in the data.

Figure 19 does not show all of the models that were created, there is not enough space on a PowerPoint
slide for that. However, with this truncated output, you can see that horsepower was selected in all of the
models that we can see. This is consistent with horsepower being selected in all models in the chart in
Figure 18. “Miles per gallon city” (shown in green) appears relatively infrequently this is also consistent
with Figure 18.
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Examples of 4 Procs —-Reg GLMSelect (8) QuantReg QuantSelect

Parameter Estimate Distributions for Inveice
Humber of Samplas = 100

_ Intercept _ Horsepowss WheeBase

[wa 100 30 el
4 m 1 4
10 -
a = ap . -. RCEREN " ——

[ —=t=—re = e
-15000 5000 29000 45000 160 200 40 180
Weight MPG_Highway

:N=1ﬁ' LES: -]

[ — ]
215 528 8IS 1135 -T000 -5000 -3000 -1000

__MPG Gy
4 N=11

800 M0 3300 4500

Figure 20

Figure 20 shows the distribution of the 8 values for the hundred models built.

Examples of 4 Procs —-Reg GLMSelect (8) QuantReg QuantSelect

Coefficient Progression

Coefficient Progression for Invoice Progression of Average Squared Errers by Role for Inveise
Plot of B= as variables enter the model Cresrer|

/ ’_ Comparisons of

Sleler

Validate

Sanda s Cosinent

Fosicept fr efbmtace Jocyirees
Eferi Enquence

Only interpret AT THE POINTS where
variables enter - not between points

Figure 21

Figure 21 shows the coefficient progression for variables entering the model. This example uses model
averaging and the LASSO technique, so SAS produced a LASSO plot. Parameters should only be read
where variables enter/leave the model (red lines) and not at points between (red international no sign).

The chart on the right compares the error in the training and validate data sets. Where the plots for the
training and test data sets start to diverge is common indication of best model.
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QUANTILE REGRESSION S

It is relatively easy to get SAS to produce a Proc QuantReg Data=sashelp.cars
Quantile Regression as can be seen at right. Algorithm=interior
Plots=all

Quantile is an option on the model statement and
all you have to do is list the quantiles you want. Cl=resampling;

i th
Here, we request a 10th pergentlle, a50 Model Invoice = EngineSize Cylinders
percentile and a 90t percentile. Horsepower MPG_City
MPG_Highway We?ght

Figure 22 shows that some of these variables are
Wheelbase length

not significant for any quantile. The figure also
shows that the models produced by quantile regression /quantile = .1 .5 .9
are very different for the different quantiles.

run;quit;

Horsepower is significant and its  value changes by a factor of two between quantile .1 and .9.
Wheelbase is significant and its B value changes by a factor of two. “Miles per gallon highway”, while not
significant, has (3 values that vary greatly. Change in s for “MPG Highway” and “MPG City” could be
caused by either, or both, of two reasons. The change could be caused by the parameter estimates
being different for the different quantiles or because the two MPG figures are highly collinear and,
therefore, parameter estimates are inherently unstable. In a “real” analysis only one of these variables
would be used, unless there was interest in the effect of one, conditioned on the other. In that case, one
might use the difference between them as a predictor.

L AL AN

We use QuantReg e ﬂl-l!ll:llﬂ-ﬂg has‘l'-!- P wlhm
by Quantile

B values for different Quantiles are different:

Parameter Estimates Quantile=.1 Parameter Estimates Quantile=5 Parameter Estimates Quantile=.9

Farameter DF Estimate Pr=[f Farameter DF  Estimate Pr = |t Farameter DF Esfimate Pr> |f|
Intercept 1 751.5983 09168 Intercept 1 -302.685 09520 W Intercept 1 1131057 0.3449
EngineSize 1 -24818% 0.0279 EngineSize 1 -4585 34 <0001 EngineSize 1 -3244.87 0.1587
Cylinders 1 1582503 00193 Cylinders 1 2249790 <0001 Cylinders 1 3307171 00016
Horsepower 1 1102486 <0001 Horsepower 1 169.8368  <.0001 Horsepower 1 241.7681 |<.0001
MPG City 1 -324288 02573 | MPG_City 85550 0.5857 | MPG_City 1 260.8456 0.4901
MPG HWay 1 5653884 00150 [JMPG_HWay 1 4418109 00026 MMPG_Hway 1 2727960 04152
Wlght 1 5.0836 0.0oo2 Waight B.5756 < 0001 Weight 1 8.1504 <.0001
Wheealbase 1 -205891 0.0587 Wheelbase 293968 0.0019 M Wheslbase 1 -445084 00013
Length -43.8742  D.4381 Length 44,1013  0.3018 W Length -138.519 01250

Figure 22

The idea that makes Quantile Regression so attractive is that the different Quantiles can represent
different types of people - different market segments.

The exciting idea is that Quantile Regression, on sales data set, could let us produce equations for
people who buy very little of our product (10t percentile buyers) and people who buy a lot of our product
(90t percentile buyers). This can help in creating more effective marketing campaigns. Additionally, this
technique is not limited to business and can be applied a number of scientific disciplines.
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Examples of 4 Procs -Reg GLM Select QuantReg (8) QuantSelect

Beta Values are
different:

The Effect OF A
Variable on Y
DIFFERS
for different
Quantiles

.sgsru B EREE .

Betas by quantile - 3 levels
Intercept EngineSize Cylinders HP

If all plots are FLAT
you do not need to
do Quantile Analysis.

Figure 23

The table in Figure 22 is difficult to interpret. There are a lot of numbers to read and the numbers are
spread over several pages.

SAS created the output in Figure 23 to make it easier on modelers. Figure 23 shows plots of the § (Y
axis) values by Quantile (X axis). Remember, the model only requested three quartiles and modelers are
only allowed to look at points, on the plot, immediately above the quantile “mark” on the X axis (see red

rectangles). Our code requested three quantiles and there are only three points to be read on each of
these plots.

If the B values are all equal, if the plots are flat, the effect of the X variable on the Y variable is the same
for all Quantiles. A modeler does not need to do quantile analysis if the plots are flat over all the quantiles.

This paper does not show much in the way of diagnostics on this model and the model has non-
significant variables so this example is presented as a teaching tool. It is not presented as an example of
best practice in modeling. It only allows us to discuss features of these plots.

Many of these variables seem to have constantly increasing Bs. Looking at cylinders (left most plot —
bottom left section), it seems that cylinders is associated with increasing invoice price across all quantiles.
It seems that people buying expensive cars are willing to pay more for having more cylinders. People

buying inexpensive cars do not care about the number of cylinders. These plots provide a great amount
of information.

As was mentioned before, the Examples of 4 Procs -Reg GLM Select QuantReg (8) QuantSelect
i ” We use QuantReg because QuantReg has

select” procedures do not horsprsinr dgpeeer ancin b

have an abundance of e ——

diagnostics. i =

Qﬂuantile':,l . Auanﬂlec.s
A modeler must run PROC
GLM, PROC Reg, PROC
QuantReg or PROC Mixed in
order to get diagnostics.

This slide shows some of the
existing diagnostics for PROC
QuantReg.

Figure 24
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PROC QUANTREG FOR ONE X VARIABLE

This is a second example for PROC QuanttReg
and it uses only one X variable, though that X
variable is raised to the first, second and third
power.

Figure 25 shows, the s differ substantially among

the three quantiles. Also notice the truncation
effect caused by a SAS option being ignored by
the author. As you create interactions the labels
for the interaction that longer and there is an
option that lets you set the length of the variable.
Truncation occurred automatically.

Exam
Parameter Estimates Quantile=.2
Parameter DF
Intercept
Horsepower

Estimate

-5496.62

204.85
-0.6312
0.0013

Horsepowe*Horsepower

Horsep*Horsep*Horsep 1

Proc QuantReg data=Sashelp.cars
plots=all;

model

Invoice
= Horsepower

Horsepower*Horsepower
Horsepower*Horsepower*Horsepower
.2 .5 .8;

/quantile

;run; quit;

les of 4 Procs —Reg GLM Select QuantReg (1) QuantSelect

Example #3

95% Confidence Limits
-22108.04 1127.7037
37.2019 557.9058
-2.1522 0.4135
-0.0003 0.0030

Parameter Estimates Quantile=.5
Parameter DF
Intercept 1

Horsepower T 'Wﬁﬁw 1
Horsepowe*H. .cpower 1

Horsep*Horsep*Horsep 1

Estimate
-8383.68
238.10
-0.62
0.0013

95% Confidence Limits
-22234.25 -3237.565
150.6738 528.6331
-1.5808 -0.1827
-0.0004 0.0024

Parameter Estimates Quantile=.8
DF
Intercept 1
Horsepower 1

Parameter Estimate
9487.819
-#0 7372
Horsepowe*Horsepower ﬂ“:'nﬁ'lﬂonmfﬂ's
Horsep*Horsep*Horsep 1 -0.0005

Figure 25

Examples of 4 Procs -Reg GLM Select QuantReg (1) QuantSelect

€Quantile=.2> b

Lots of
Diagnostics
By Quantile

95% Confidence Limits
-11048.58 39814.257
-351.2826 280.1286
-1.8874 2.3078
-0.0020 0.0018

Proc QuantReg
Data=SasHelp.Cars

plots=all; Estimated Pirmll.rbyﬂunmml‘:hllnv-\tn

Wit 95% Confidance Lir
aaf

o
Invoice

e

i/

Horsepower

Be ok .

z
H
= Horsepower - /'

<
Horsepower*Horsepower

Figure 26

H

[
Horsepower % .
e €

*Horsepower

TS 800w MOS0 OWEIHOrSE

BB
B §

Foa
lquantile = .2 .5 .8; £

srun;
quit;

Figure 26 shows some diagnostics that can come out of PROC QuantReg and also the profile plots.

If there is only one X variable PROC QuantReg will automatically create a profile plot, (Figure 27). Similar

plots can be produced for models with more than one X variable but require coding and SAS graphics.
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Examples of 4 Procs —Reg

GLM Select QuantReg (1) QuantSelect

Proc QuantReg
Data=Sashelp.cars
plots=all;

model

Invoice
= Horsepower

150000

100008

Inwite

Horsepower
*Horsepower
50000
Horsepower
*Horsepower
*Horsepower
lquantile = .2 .5 .8;
srun; quit;

Fit by Quantile for Inwoice

Can make cool plots of
Prediction by Quantile

100

Automatically done
IF
Only ONE X variable

00 o
Horsepomer

Quantis 0z

as

Figure 27

PROC QUANTSELECT

This example uses QuantSelect and the LASSO
penalization method to create Quantile models
with eleven X variables.

Figure 28 shows that the 10th percentile and 50th
percentile models do not look very much like the
90th percentile model.

This slide, and output like it from other data sets,
has raised doubts about the ability of an OLS
model, with just one equation, to effectively model
how X variables affect a Y variable. We can see that
the number of X-variables differs for different
quartiles and this suggests that OLS models with
just “one line” might not be the most informative
models.

Proc QuantSelect Data=sashelp.cars
Plots=all ;

partition fraction(Validate=0.3) ;
Class origin
Model

DriveTrain type /split;

Invoice
Origin DriveTrain Type

EngineSize Cylinders
Horsepower

MPG_City MPG_Highway
Weight Wheelbase length
/quantile .1 .5 .9

Selection=LASSO ;
run; %put _user_;
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Examples of 4 Procs -Reg GLM Select QuantReg QuantSelect (11)
SQIQt:tion ?ummary Quantllel.E -

=

[ me  Dmams  Dwoes oo

pe— [ ey p— —— —

pr— a | rmams ooowe | ssaor

PSR p—

Selection Summary Quantile=.9

Step Effect Number AIC \alidation
Entered Effects ACL
In

Intercept 1 5000.04 5000.05 5003.75 4295.40

Quantiles Horsepower z 4543.80 454393 455131 179303
have:

Origin Eur 8ps 444433 444445 445551  1757.21

DriveTrain 442884 442888 444368 173579

Type Spart 439632 430652 441487  1699.89

2) different Type Hybri 437654  4376.82  4308.80° 163840

numbers of Origin USA 437850  4378.88 440448 163373

variables Type Truck 4371000 437239 440158 161404
Optimal Value OFf Criterien

1) different
variables

Figure 28

mples of 4 Procs -Reg GLM Select Qu.

= Quantile= .1 (Low Price)
Parameter Estimates Quantile = 0.1 w < G tant Piats

Parameter DF  Estimate Standardized = Average Check Loss >
Estimate Q 0.9 i i

Intercept 1 -328538684 0 Estimate Standardized

Horsepower 1 0.452251 Estimate

MPG_City 1 4.251502 0.001323 -7522.500000 0

Weight 1 .0.577858 -0.025836 Origin Europe 9546.000000  0.239979 Quantile= .5 (Med Price)
Origin USA -477.000000  -0.013024 i e

DriveTrain Rear 3040.250000  0.073914 | - Average Check Loss >

Eatimate 11560 0.052998 = =

0 19086 0.307875

0.240468 -5067.000000  -D.071224

0.560198 190.050000 [ 0.779987 — | Quantile= .9 (High Price) | |
< Coefficient Plots

0.5
Parameter DF Estimate Standardized

Average Check Loss >

Figure 29

Figure 29 (left) shows the B values for the different quantiles and we can see that the coefficient for
horsepower is fairly different for the three quantiles.

Figure 29 (Right) gives a very high level view of some of the charts that are produced in PROC
QuantSelect. While these pictures are small, you can see that the charts are not very similar. This
supports the idea that modeling the mean response to an X vector, using OLS, might not adequately
describe the underlying process in the data.
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Examples of 4 Procs -Reg GLM Select QuantReg QuantSelect (11)

13 %oput user §

GLOBAL QRSNUMBYS 1 # of By groups

GLOEAL QRSNUMBYTAUS 3 # of By groups * Number of quantiles
GLOBAL QRSIND1T1 Weight Horsepower

GLOBAL QRSIND1 Weight Horsepower

GLOBAL QRSIND Weight Horsepower Model for first By group

GLOBAL QRSIND1T2 Horsepower Origin_Europe Cylinders

GLOBAL QRSIND1T3 Horsepower Origin_Europe DriveTrain_Rear Type Hybrid Type Sports

GLOBAL SYSRANDOM 21502001

GLOBAL QRSNUMTAUS 3 Macro Variables contain “"";:'"M“'"b';‘
GLOBAL GRSMODT1 Weight Horsepower Selected Models ':ﬂ'"':""‘
GLOBAL QRSMODT2 Horsepower Origin_Europe Cylinders

GLOBAL QRSMODT2 Horsepower Origin_Europe DriveTrain_Rear Type_Hybrid Type_Sports
GLOBAL QRSEYINUMTAUS 3

GLOBAL QRSNUMMACROEYS 1 Number of Quantiles in first By group
GLOBAL QRSINDT1 Weight Horsepower

GLOBAL QRSINDT2Z Horsepower Origin Europe Cylinders

GLOBAL QRSINDT2 Horsepower Origin_Europe DriveTrain_Rear Type_ Hybrid Type_Sports
GLOBAL QRSMOD1T1 Weight Horsepower

GLOBAL QRSMOD1 Weight Horsepower

GLOBAL QRSMOD Weight Horsepower

GLOBAL QRSMOD1T2 Horsepower Origin_Europe Cylinders

GLOBAL QRSMOD1T3 Horsepower Origin_Europe DriveTrain_Rear Type_Hybrid Type_Sports

Figure 30

Modelers will want to avoid typing by having PROC QuantSelect “communicate” the selected model
structure to other PROCs. SAS allows this “communication between PROCSs"” via automatically created
Macro variables. Figure 30 shows a list of the variables that were created in this example. These are
created to allow a programmer to use PROC QuantSelect to create a number of models and then store
the model structure (variables) in macro variables.

As a second step, a SAS programmer would use macro programs, to loop over all of these macro
variables, and use other PROC to create diagnostics for each model. The programming will be a bit tricky
but doing this can reduce typing and errors. .

Examples of 4 Procs -Reg GLM Select QuantReg QuantSelect (5)

Proc QuantSelect Data=sashelp.cars Proc QuantSelect Data=sashelp.cars Plots=all ;
Plots=all ; partition fraction(Validate=0.2) ;
partition fraction(Validate=0.3) ; class origin DriveTrain type /split;
class origin DriveTrain type /split;
Model Invoice = Meodel Invoice =
Origin
DriveTrain
Type
EngineSize EngineSize
Cylinders
Horsepower Horsepower
MPG_City MPG _City
MPG_Highway
Weight

Weight
Wheelbase Wheelbase
Length
Iquantile = .1 .5 .9 Iquantile = .1 .5 .9
Selection=LASS50 ; Selection=LAS50 ;
rumn; rumn;
%put _user_; %put _user_;

Figure 31

Figure 31 shows the code for a second example of PROC QuantSelect. It has the same options as the
previous example but has fewer (only 5) X variables.
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Examples of 4 Procs -Reg GLM Select QuantReg QuantSelect (5)

Seloction Summary Guantilo = .1 Selection Summary Quantile = .5
Step Effect Effect # AlIC Validati

Step Effect # AlC Validation

Entered Removed Effects on Entered Effects ACL
In ACL In

0 |mboropt 1 4473.10 1699.47 | Intercept 1 5200,25 4988,78
1 Weight 2 4319.46 1245.06 1 Horsepower 2 4820.61 3024.03*

* Optimal Value Of Criterion
2 Horsepower 3 4168.83 974.01

Selection Summary Quantile=.9
o Weight 2 4167.60 969.63 |giep Effect # Effects AIC Validation
4  Wheelbase 3 4146.37 951.40 Entered In AcL

. /] Intercept 1 5028.09 2993.16

5 Weight 4 4146.44 908.66 1 Horsepower 2 4494.55* 1810.23*

“ Dptimal Value Of Criterion

* Optimal Value Of Criterion

o Models for diffe t
Selection stopped at a Sl

local minimum of the are VERY different:

Validation ACL criterion.

S
Figure 32

Figure 32 shows the “selection summary” tables for the three different quantiles.

You can see, from the summary tables, that the modeling process differs for the three different quantiles.
In this example, the process for creating a model for the 10t percentile is more complicated than the
process for the 50t or the 90t percentile.

The fact that different processes are used to create models for different quantiles lends support to the idea
that OLS, with only one model equation that predicts ONE conditional mean response, is not rich enough
to describe the true relationship between a set of X variables and Y.

Examples of 4 Procs -Reg GLM Select QuantReg QuantSelect (5)

Examples of 4 Procs -Reg GLM Select QuantReg QuantSelect (5)
p prerm———

Parameter Estimates Quantile = .1

i il Parameter DF Estimate Std. Estimate

1=

. 2 Models for

* Quantile = 1 | Quantile= .5 . -Quantile =9 e R 1 7044 L

3 independent vari < Only 1 Variable |z ~Only 1 Variable - Horsepower Quantiles 114,14 0.449310

ol N H =S i= - Woeight are VERY 1.41 0.056379

Wheelbase difforont: -239.86 -0.104540

Parameter Estimates Quantile = .5

Parameter DF Estimate Std. Estimate
Intercept 1 -8002.58 o
Horsepower 1 168.39 0.662850

Parameter Estimates Quantile = .9

Parameter DF Std. Estimate
Intercept 1 o
Horsepower 1 1.065601

Figure 33

In Figure 33, the left-hand slide shows how the profile plots differ along the three requested quartiles and
the right-hand chart shows how the (3 values differ among the quartiles

CONCLUSION

This is been an overview of penalized regression in SAS. These new techniques are exciting and have
potential to improve modeling efforts with relatively little additional coding work. It is expected that there
will be a need for more skilled analysts to implement these techniques.
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This paper is intended to show how several different statistical procedures are related to each other and
how they might be used. The idea is that a modeler uses a select procedure to find a parsimonious model
and then a follow-up procedure to produce diagnostics.

We plan that this paper is the leadoff paper, and an overview paper, for a small series of papers on penalized
regression and Quantile regression. If you like this paper you might want to look for others in the series.
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