MWSUG 2016 - Paper AA20

An Introduction to the HPFOREST Procedure and its Options

Carl Nord, Grand Valley State University, Grand Rapids, Ml
Jacob Keeley, Grand Valley State University, Grand Rapids, MI

ABSTRACT

The acquisition of big data into usable formats can be quite a challenge. There is a large emphasis being
placed on the efficiency and scope of data acquisition in many industries. With the increasing amount of
data available to analyse, the best methods for creating predictive models from big data banks is
becoming a desire of many sectors. In particular, sectors where prediction is the sole goal of the model.
Decision tree techniques are a common and effective approach for creating optimal predictive models. A
procedure, the HPFOREST procedure, creates random forests models in a high performance
environment. There is limited amount of information on this procedure, which makes it a prime candidate
for discussion. This procedure allows for a predictive model to be created based on decision tree
methodology. This method of model averaging has been known to produce predictive models that
generalize quite favourably (Breiman, 2001). This paper will include an outline of basic code structure for
the procedure as well as options such as specifying maximum trees, outputting fit statistics, etc. Scoring
new data with a model file and generating helpful figures will be discussed as well.

INTRODUCTION

The interest in this topic was sparked from a lecture on random forests in a survival analysis course. This
course utilized SAS® but in the lecture, the random forest models were not generated in SAS software.
This sparked interest in searching for how to conduct random forests in SAS. The initial search was
surprisingly sparse of information. Most of the information that can be located is found on blogs or SAS
community threads. There is documentation on the HP Forest Node in SAS Enterprise Miner 13.2. While
this is very informative information, the documentation does not cite how to perform a random forest in a
hard-code format. A breakthrough occurred when PROC HPFOREST was discovered. This solution
provided the more intuitive and organized solution that was desired. With all that said, it seemed useful to
generate a paper that points out some of the basics of PROC HPFOREST in the hopes of sparking more
awareness and discussion on this procedure. The topics that will be discussed in this paper include a
very quick mention of the SAS product PROC HPFOREST is available in, basic code format for the
procedure, examples of different model tuning options available, discussion of saving the model file to
score data sets, and also a few useful figures to generate when utilizing random forest models. This
overview should provide users with the basic knowledge to get started with PROC HPFOREST and begin
tuning random forest models.

SAS SOFTWARE FOR PROC HPFOREST

After some searching for information on PROC HPFOREST it seemed necessary to discuss the software
that PROC HPFOREST may be utilized in. The random forest algorithm associated with PROC
HPFOREST is provided through SAS Enterprise Miner. A SAS High-Performance Data Mining license is
also required (“SAS High-Performance Analytics”, 2016). After a good amount of time searching, the
documentation for PROC HPFOREST was found in SAS Enterprise Miner 14.1 High-Performance
Procedures Documentation. This is secure documentation.

The authors utilized the SAS software available from Grand Valley State University. This included SAS
Enterprise Guide 7.1 and SAS Enterprise Miner Workstation 13.2. The authors utilized SAS Enterprise
Guide 7.1 for all the PROC HPFOREST code in the following stages of the paper. It should be noted that
this was only possible with SAS Enterprise Miner being available as well. Enterprise Guide 7.1 does not
have the stand alone capability of running PROC HPFOREST. However, due to the lack of openly
available online documentation, it was useful to be able to utilize this procedure in Enterprise Guide 7.1
as it allowed for quick and easy assessment of procedure options and code structure.



BASIC PROC HPFOREST CODE OUTLINE

This section will outline the basic code for running PROC HPFOREST. This includes the basic code to
define the response variable and predictors. Further options for tuning the random forest model will be
discussed in the next section.

The following provides a generalized code outline for PROC HPFOREST:

proc hpforest data= <data>;
target <response variable> /
level= <binary, nominal, interval>;

input <predictor 1, predictor 2.>/

level= <binary, nominal, ordinal, interval> ;

run;

The TARGET statement defines the response variable. The LEVEL option defines the response variable
as binary, nominal, or interval (continuous). The INPUT statement performs a similar action, just for the
predictor variables. The LEVEL option for the INPUT statement defines the predictors as binary, nominal,
ordinal, or interval.

A question may be how to set up the code if there are multiple predictors of different class. For example,
predictor 1 and predictor 2 are interval, predictor 3 is nominal, and predictor 4 is binary. The following
provides an example of how this situation would be properly coded:

proc hpforest data= <data>;
target <response variable> /
level= <binary, nominal, interval>;

input predictor 1, predictor 2/
level= interval;

input predictor 3/
level= nominal;

input predictor 4/
level= binary;

run;

Each INPUT statement may only be associated with one unique LEVEL option. However, multiple
predictors may be defined for each INPUT statement, as long as they are of the same INTERVAL
specification.



This is a very basic outline of the procedure but a necessary step in the process, simply due to the lack of
online documentation. The next section will delve into more options of the procedure for tuning the
random forest model.

USEFUL OPTIONS IN PROC HPFOREST

This topic of the paper delves deeper into the model tuning options of PROC HPFOREST. Not all of the
options are addressed but the most common are outlined. The following is an example of a more
complete random forest model. Descriptions of the options will be outlined below the code. Note that the
purpose of this section of the paper is to highlight the options associated with this procedure. This model
was not intended to provide a template for optimal fitting.

An automobile developer may have a Miles Per Gallon City target for a new car they are developing.
They want to be able to predict the Miles Per Gallon City based on a number of attributes associated with
the automobile they are developing. Utilizing the SASHELP.CARS data set, the developer decides that
the predictors of MPG_City they want included are as follows:

e Number of Cylinders
¢ Wheelbase Distance
e Size of the Engine
e Weight of the Vehicle
e Length of the Vehicle
e Horsepower
The PROC HPFOREST Code to perform an initial model run for this situation is below:

proc hpforest data=sashelp.cars
maxtrees= 500 vars_to_try=4
seed=600 trainfraction=0.6
maxdepth=50 leafsize=6
alpha= 0.1;
target MPG_City/ level=interval;
input cylinders wheelbase enginesize weight length
horsepower/ level=interval;
ods output fitstatistics = fit;

run;
Overview of various options in SAS Enterprise Miner 14.1 High-Performance Procedures Documentation:

o TRAINFRACTION specifies the fraction of the original observations used for bootstrapping each
tree.

e SEED sets the randomization seed for bootstrapping and feature selection.



o MAXTREES specifies the maximum number of trees.

e VARS TO-TRY specifies the randomized number inputs to select at each node.

e LEAFSIZE indicates the minimum number of observations allowed in each branch.

e ALPHA specifies the p-value threshold a candidate variable must meet for a node to be split.
o MAXDEPTH specifies the number of splitting rules for the nodes.

e PRESELECT indicates the method of selecting a splitting feature.

Also, notice the ODS OUTPUT statement. This provides the model fit statistics in an output data set. This
is where the out of bag average square errors are found in output format. A snapshot example of a subset
of the model fit statistics output is shown in Table 1 below.

NTrees NLeaves PredAll PredOob
1 25 8.71949 13.6515
2 53 8.26232 14.2445
3 76 7.24522 11.6454
4 98 6.67597 10.4466
5 115 6.49442 9.3086

6 138 6.15208 9.1756

Table 1. Example of Fitstatistics output

SAVING AND SCORING A BINARY MODEL FILE

This section of the paper deals with a way of saving the model file for future data set scoring. This was an
interesting portion of code found on a SAS community thread (“Scoring PROC HPForest”, 2015). The
SAVE statement appears in red, indicating an error. However, this code works perfectly. This will save the
model file as a binary image to be utilized to score future data sets or samples.

proc hpforest data=sashelp.cars
maxtrees= 500 vars_to_try=4
seed=600 trainfraction=0.6
maxdepth=50 leafsize=6
alpha= 0.1;
target MPG_City/ level= interval;
input weight length horsepower/ level=interval;
ods output fitstatistics = Titstats;

save File = "FilePath\model fit.bin";

run;



The method to score new data utilizes PROC HP4SCORE along with the saved binary model file. The
topic of scoring data has been a very common question seen on blogs and threads, which makes the
topic relevant to discuss. Sticking with the Miles Per Gallon City example, say that the MPG_ City is
sought to be predicted for a sample of other cars not included in the sashelp.cars data set.

Code to accomplish this utilizing the established model file above is as follows:

proc surveyselect data= other_cars_data

method=srs N=100 out= samp;

proc hpd4score data=samp;
id MPG_City;
score Tile= "FilePath\model fit.bin"
out=scored;
run;
This code will estimate the MPG_ City of cars not included in the sashelp.cars data set utilizing the model

file previously created. The first six observations found in the “out = scored” data set is found in Table 2
below.

MPG_City P_MPG_City _WARN_
18 17.881384632
17 18.104731704
22 22.14511724
23 21.887448092
18 18.228784647
18 18.352983715

Table 2. Example of scored data output

MPG_City is the observed value from the input data set. P_MPG_City is the predicted MPG_City
determined by the saved random forest model.

USEFUL GRAPHICS FROM HPFOREST OUTPUT

There are no direct plot options associated with PROC HPFOREST. However, there are a myriad of
graphics and methods associated with generating optimally tuned random forest models. The following
examples are common figures associated with the random forest modeling process. These figures were
obtained through manipulation of PROC HPFOREST output. Code to generate these figures will be
provided in a code appendix due to its length.

Investigating Average Square Error with Different Number of Variables to Try

With the randomized splitting nature of random forests, a common inspection of model performance
involves observing the average square error associated with different number of variables to try for
splitting. Figure 1 on the next page illustrates this technique for the MPG_ City Model grouped by 2, 3, and
4 variables to try.



Average Square Errar

Number of Trees

Variables to Try Group
ASE3vars_to_try

ASE2vars_to_try

ASEdvars_to_try

Figure 1. Display of Average Square Error by Number of Trees, Grouped by Number of Variables to Try.

Notice in Figure 1 how the lowest Average Square Error is associated with the ASE4vars_to_try group in
this case. Also, this figure is useful as it illustrates how the Average Square Error progresses over the
number of trees utilized. For the ASE4vars_to_try group, the Average Square error flattens out at around
250 trees. A general tip is that when the error flattens, the number of trees to utilize is just after this
flattening occurs. (Breiman, 2001) This is especially useful when very large numbers of trees are being
investigated and computational time is of importance.

Plotting Average Square Error with Different Leaf Size Specifications

The number of observations required in each leaf also effects the average square error of random forest
models. As can be seen in Figure 2, the smallest leaf size of four results in the lowest average square
error.

Average Square Error

MNumber of Trees

Leaf Size Groups ASELeafd ASELeafd ASELeaf16

Figure 2. Display of Average Square Error by Number of Trees, Grouped by Leaf Size.



Predicted by Observed Plot

Another common figure associated with Random Forest Models is a standard Predicted by Observed
plot. These plots assess the generalizability of a model when the predicted values are from a new data
set that is scored through the model. This plot is illustrated in Figure 3 below.

35

30

¥

25

Predicted: MPG_Cit

20

MPG (City)

Figure 3. Predicted MPG City by Observed MPG City from a Scored Data set.

These are three basic plots associated with random forest modeling. There are numerous plotting options
for both optimal model tuning and assessing model generalizability. As a user becomes more familiar with
PROC HPFOREST, more in depth figures regarding variable importance and variance/bias tradeoffs may
be explored.

CONCLUSION

PROC HPFOREST provides a quality method for predictive modeling. The information presented in this
paper provides a solid foundation for pursuing the use of PROC HPFOREST, as well PROC HP4SCORE
for scoring the model. This is especially helpful for individuals not familiar with the HPFOREST NODE in
Enterprise Miner. Interpretability is not one of the strengths of random forests and this paper does not
delve into the nature of random forest methodology, therefore it is highly recommended that individuals
wanting to run PROC HPFOREST study Leo Breiman’s work for more information regarding how the
model is actually fit. As users become more familiar with tweaking the different options available, model
fits should improve. As demonstrated, graphical representations of average square error amongst other
statistics can aid when determining the optimal settings under which to run PROC HPFOREST.

REFERENCES
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
http://doi.org/10.1023/A:1010933404324

SAS High-Performance Analytics Tip #1: How it differs from SAS Grid & SAS In-Memory Analytics. (n.d.).
Retrieved September 8, 2016, from https://communities.sas.com/t5/SAS-Communities-Library/SAS-
High-Performance-Analytics-tip-1-How-it-differs-from-SAS/ta-p/244538

SAS Institute, Inc. SAS Enterprise Miner High-Performance Procedures. Documentation, Version 14.1.
Cary, NC: SAS Institute Inc. (2015).


https://communities.sas.com/t5/SAS-Communities-Library/SAS-High-Performance-Analytics-tip-1-How-it-differs-from-SAS/ta-p/244538
https://communities.sas.com/t5/SAS-Communities-Library/SAS-High-Performance-Analytics-tip-1-How-it-differs-from-SAS/ta-p/244538

Scoring PROC HPForest. (2015). Retrieved September 8, 2016, from
https://communities.sas.com/t5/SAS-Data-Mining/Scoring-PROC-HPForest/m-p/210979#M2981

ACKNOWLEDGMENTS

We would to thank Dr. Robert Downer at Grand Valley State University for encouraging us to pursue
formulating a paper on this topic. Additionally, we would like to thank Dr. Daniel Frobish for inspiring this
topic during his lectures on random forests.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Carl Nord
Grand Valley State University
nordc@mail.gvsu.edu

Jacob Keeley
Grand Valley State University
keeleyj@mail.gvsu.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.


mailto:nordc@mail.gvsu.edu
mailto:keeleyj@mail.gvsu.edu

CODE APPENDIX
Figure 1 Code:
%macro rf(num, num2);

proc hpforest data=cars

maxtrees= 500 vars_to_try=&num

seed=600 trainfraction=0.6

maxdepth=50 leafsize=6 alpha= 0.1;

target MPG_City

/level=interval;

input cylinders wheelbase enginesize weight length

/level=interval;

ods output fitstatistics = fitstats&num2:

run;

%mend rT;

wrf(2,1);
%wrf(3,2);
%rf(4,3);

proc sql;

run;

create table ASE_groups as

select x.ntrees

X.predoob as ASE2vars_to_try,

y.predoob as ASE3vars_to_try,

z._predoob as ASE4vars_to_try

from fitstatsl x, fitstats2 y, fitstats3 z

where X.ntrees = y.ntrees

and x.ntrees

and y.ntrees

z._ntrees

z.ntrees;

horsepower



proc transpose data= ASE _groups out=ASE groupsl;
var ASE2vars_to_try ASE3vars_to_try ASE4vars_to_try;
run;

data ASE_groups2;
set ASE_groupsl;
array RF(1:500) coll- col500;

do NTREES = 1 to 500;
ASE = RF(NTREES);

output;

end;

drop coll-col500 LABEL ;
run;

proc sgplot data=ASE_groups2;

series X=NTREES y=ASE/ group = _name_ ;
LABEL ASE = "Average Square Error"

NTREES "Number of Trees"

_name_ = "Variables to Try Group";

run;

Figure 2 Code:
%macro rf2(num, num2);

proc hpforest data=cars
maxtrees= 500 vars_to_try=4
seed=600 trainfraction=0.6
maxdepth=50 leafsize=&num alpha= 0.1;
target MPG_City
/level=interval;

input cylinders wheelbase enginesize weight length
horsepower

10



/level=interval;
ods output fitstatistics = fitstats&num2;
run;
%mend rf2;
%rf2(4,1);
%rf2(8,2);
%rf2(16,3);
proc sql;
create table ASE Leaf as
select x.ntrees ,
X.predoob as ASELeaf4,
y.predoob as ASELeaf8,
z.predoob as ASELeafl16
from fitstatsl x, fitstats?2 y, fitstats3 z

where x.ntrees = y.-ntrees

and x.ntrees = z.ntrees

and y.ntrees = z.ntrees;
run;

proc transpose data= ASE_Leaf out=ASE_leafl;
var ASELeaf4 ASELeaf8 ASELeafl6;
run;

data ASE_Leaf2;
set ASE Leafl;
array RF(1:500) coll- col500;

do NTREES = 1 to 500;
ASE = RF(NTREES);

output;

end;

drop coll-col500 _LABEL_;
run;

proc sgplot data=ASE Leaf2;

series X=NTREES y=ASE/ group = _name_;

11



LABEL ASE = "Average Square Error"
NTREES = "Number of Trees"
_name_ = "Leaf Size Groups';
run;

12



	Abstract
	Introduction
	SAS SOFTWARE for Proc HPFOREST
	Basic Proc Hpforest code outline
	Useful Options in PROC HPFORESt
	Saving and Scoring a Binary Model file
	Useful Graphics from HPFoREST Output
	Investigating Average Square Error with Different Number of Variables to Try
	Plotting Average Square Error with Different Leaf Size Specifications
	Predicted by Observed Plot

	Conclusion
	References
	Acknowledgments
	Contact Information
	Code Appendix

