

1

Paper SA-08 - 2015

Are You Missing Out?
Working with Missing Values to Make the Most of What is not There

Arthur L. Carpenter, California Occidental Consultants

ABSTRACT
Everyone uses and works with missing values, however many SAS® programmers are unaware of the variety of tools,
options, and techniques associated with using missing values. Did you know that there are 28 types of numeric missing
values? Did you know that the numeric missing value (.) is neither the smallest or largest possible numeric missing value?
Are you aware of the System options, DATA step functions, and DATA step routines that specifically deal with missing
values? Do you understand how the macro null value is the same, and different from DATA step missing values? Are you
aware that observations with missing classification variables may or may not be excluded from analyses depending on the
procedure and various options?

This paper explores various aspects of the world of missing values. The above questions and others are discussed. Learn
more about missing values and make sure that you are not missing out.

KEYWORDS
Missing Value, CALL MISSING, MISSING Function, MISSING System option, MISSTEXT, null value

INTRODUCTION
In the SAS programming language when a data value is unknown we mark it as such using what is known as a missing value.
There are two basic types of missing values; one for numeric variables, and one character variables. Character missing
values are designated using a blank
 (‘ ‘) and numeric missing values are typically designated with a dot (.). As placeholders for unknown values, missing
values are automatically taken into consideration (are not used) when calculating statistics and for levels of classification
variables.

In assignment statements, missing values can be designated by specifying a . for numeric variables,
and a blank for character variables. For numeric variables the dot (.) should not be quoted [see the
assignment statement for the variable WRONG in the box to the right], as this will result in either a
character to numeric conversion or the creation of a character variable.

Arithmetically numeric missing values are essentially minus infinity (i.e. super small). Missing values are therefore smaller
than any non-missing value, and any arithmetic operations performed on a missing value will result in a missing value.
Most numeric functions that operate on lists of values, such as the MEAN and STDERR functions, will automatically ignore
missing values.

There are a number of functions and options that have been specifically created for working with missing values. In
addition a number of procedures have internal methods for handling missing values in various situations.

MORE ON NUMERIC MISSINGS
Although we usually think of a period (.) as the only symbol used for a numeric missing value, there are actually 28 different
numeric missing values. In addition to the period, which is most commonly used, numeric missing values can also be
designated by preceding each of the 26 letters of the alphabet (a through z) as well as the underscore with a period. These

x=.;
wrong='.';
name=' ';

2

different values can then be used to distinguish between different kinds of missing values, such as a dropped sample as
opposed to a sample that was not taken.

These special missing values can be directly coded on incoming data by placing a dot in front of the letter to be used to
indicate the missing value. You can use the same notation to indicate the special missing value in your code. Here the IF
expressions are testing for the three potential types of missing values of the numeric variable AGE.

When a PROC PRINT is executed for the data set
PATIENTS we see the two special missing values
capitalized and without the dot.

If the MISSING statement is used, the incoming values do not have

to have the preceding dot in the data. Otherwise the
remainder of the code including the output of a
procedure such as PROC PRINT is the same.

Including the use of letters and the underscore there
are 28 different possibilities for numeric missing values.
Although all essentially take on a value of minus
infinity, there is a hierarchy associated with the 28
numeric missing values. This hierarchy can become
critical when comparisons between them are made. In

terms of size (sort order) the traditional missing value (.) is neither the smallest nor the largest of the 28 types of numeric
missing values. The ._ is smallest, and is the only missing value smaller than (.). The largest numeric missing value is .z.

Suppose we want to subset for all valid dates in a data set. The WHERE clause or subsetting IF statement might be written
as where date > .; . However, this expression would only eliminate two of the 28 potential types of numeric missing
values (. and ._). The other 26 are greater than . and would be included. In order to guarantee that all numeric missing
values are eliminated, the expression should be written as where date > .z; . Conversely, if you are searching for the
smallest numeric value, (._) is smaller than the traditional missing (.).

FUNCTIONS AND ROUTINES
While some functions can accept missing values as arguments and still return the correct value, there are a number of
functions and routines that have been written to specifically work with missing values.

data patients;
input name $ age;
if age=.y then note='Too young for study';
else if age=.o then note='Too old for study';
else if age=.u then note='Unreported age';
datalines;
Sam 25
Sally .u
Tom .y
run;

data patients;
missing o u y;
input name $ age;
if age=.y then note='Too young for study';
else if age=.o then note='Too old for study';
else if age=.u then note='Unreported age';
datalines;
Sam 25
Sally u
Tom y
run;

3

Taking Missing into Consideration
Since arithmetic calculations involving missing values always result in a missing value, functions that receive a variable list of
numeric values in order to calculate a result like a statistic, including functions such as MEAN, MEDIAN, STD, ignore missing
values and return a value as if the missing value had not been included. This allows us to calculate a statistic without first
determining which if any of the arguments are missing.

The three variables A, B, and C, in the example to the left have been given
values, however B is missing. The LOG shows that the N and MEAN
function have correctly taken the missing value into consideration,
however the equation that calculates the mean directly (MEAN_VAL2)
results in a missing value.

Unlike an assignment statement, which results in a missing value when operating on a missing value, the SUM statement

does not. This is because the SUM statement
calls the SUM function behind the scenes, and
like the MEAN and N functions shown above, the
SUM function will ignore missing values when
calculating a total.

In this example the structure of the expression
that calculates VAL2 is most like the way that the
DATA step handles the SUM statement used to
calculate VAL3.

The DIVIDE function performs division, but is designed to both accept and correctly handle resultant missing values. This
includes division by zero as well as noting the
differences between having a missing value in the
numerator as opposed to being in the denominator.
It does this by returning different types of missing
values. These include: .I (positive infinity), .M (minus
infinity), and ._ (either the numerator or the
denominator contains a ._).

data tryit;
array list {3} a b c (2 . 4);
n_val1 = n(a,b,c);
n_val2 = n(of list{*});
mean_val1 = mean(of a b c);
mean_val2 = (a+b+c)/3;
put (_all_) (=);
run;

a=2 b=. c=4 n_val1=2 n_val2=2 mean_val1=3 mean_val2=.

data testsum;
input x;
retain val1 val2 0;
val1 = val1 + x;
val2 = sum(val2,x);
val3 + x;
datalines;
2
.
4
run;

data showdivide;
input n d;
q1 = n / d;
q2 = divide(n,d);
datalines;
2 4
2 0
-2 0
2 .
2 .i
2 .m
run;

4

Replacing Missing Values
The MISSING system option and TABULATE’s MISSTEXT option (both described below) can change the way a missing value is
displayed, but neither will replace the missing value with another value in the data. Because they tend to be less efficient,
we should try to avoid when possible the use of IF-THEN/ELSE statements. Fortunately there are a number of alternatives.

In this example IF-THEN/ELSE is used to detect a missing value. For demonstration purposes new variables are created
here, but we could have just have easily replaced the value of X.

Notice that we do
not get the same
answer for the two
logical expressions.
If there is a
possibility that non-
standard missing
values might be
used, it is NOT
sufficient to use

X=. as the logical expression.

The IFN and IFC functions are ideally suited for this type of logical assignment. IFN returns numeric values and IFC returns
character values. The first argument of both of these functions is a logical expression. If that expression is true the value

of the second argument is returned, if false the value of the third argument, and if it
evaluates to missing the fourth argument is returned. The code shown here will assign all
numeric missing values of X to 0.

The COALESCE function is designed for the task of replacing missing values with

another value. The COALESCE function returns the
first non-missing value that it encounters in its list of
arguments. In this example Y will take on the value
of zero whenever X is missing. Of course you could
replace the missing with any other value, not just
zero.

When you do want to replace the missing with zero ,
you could also use the SUM function as shown here.
Missing values are ignored and non-missing values

will not be altered.

If you need to construct a binary (0,1) value based on your

incoming data you can take
advantage of the fact that SAS
considers false to be 0 and true to
be 1. Missing values are
considered to be false, therefore
we can easily convert missing
values to 0 (false). This is most
easily accomplished by using a
double logical negation.

data replace;
input x;
y = coalesce(x,0);
z = sum(x,0);
datalines;
1
.
.a
run;

data binary;
input x;
y = ^^x;
datalines;
0
2
-2
.
.a
run;

data logic;
input x;
if x=. then y = 0; else y=x;
if x < .z then z=0; else z=x;
datalines;
1
.
.a
run;

x = ifn(x,x,x,0);

5

Detecting Missing Values - MISSING
The MISSING function determines if the argument contains a missing value (numeric or character). This function returns a
0 (not missing) or a 1 (missing), and since it can be used on either a numeric or character value, it can be used when a

variable type is unknown such as after a PROC TRANSPOSE. In this example the
DO block will be executed if the variable VAR3 is not missing.

The MISSING function anticipates a single argument, however it is not unusual to see programmers incorrectly use it with a
list of variables. Two or more comma separated variables will cause an error, however
if connected with an AND or OR, as it is here, the argument is seen as a logical
expression. If both variables are numeric the result will be either TRUE or FALSE, 1 or 0, either way the MISSING function
will return a 0. If either X or Y is character the expression will be incorrect syntactically since a comparison operator is not
present.

Counting Missing Values
The CMISS and NMISS functions can be used to count the number of missing values in a list of values. Each of these
functions can have from one to as many arguments as needed. NMISS counts the occurrences of any of the 28 types of

numeric missing values (character values are converted to numeric
first). CMISS counts character and numeric missing values (this
includes values with zero length). Both functions will return a zero if
no missing values are found. In the PROC PRINT shown here, CMISS is
used in a WHERE clause to cause PRINT to list only those observations
with one or more missing values in the selected variables.

In the following example these two functions are used together to return the total number of missing values (numeric and
character) on the PDV. The variable list abbreviations, _NUMERIC_ and _CHARACTER_, are used to list all variables of
each type. In these function calls
a non-missing constant has also
been included to make sure that
each function has at least one
argument. Of course since TOTMISS is numeric, there will always be at least one numeric variable.

The NMISS function expects numeric arguments, however since the CMISS
function will handle either numeric or character arguments. The
previous calculation of TOTMISS could be simplified using only CMISS.

Setting values to Missing
While the MISSING function determines if a value is missing, the CALL MISSING routine can be used to set one or more
values to missing. The arguments to this routine can be numeric, character, or both, and when preceded with the

keyword OF the argument can be an array call. In
the CALL MISSING routine shown in this example all
the elements of the array ANNUAL are set to missing.
There is no need to step through the array one
element at a time.

if missing(var3) then do;

retain totmiss 0;
totmiss = nmiss(of _numeric_,1) + cmiss(of _character_,'a');

retain q1-q4 .;
array annual {4} q1-q4;
if first.year then call missing(of annual{*});

proc print data=missdemo.clinics;
var symp diag proced;
where cmiss(symp, diag, proced);
run;

retain totmiss2 0;
totmiss2 = cmiss(of _all_);

ncnt=missing(x or y);

6

SYSTEM OPTIONS
The MISSING system option allows you to specify a character to display other than the period (.). Like all system option
settings, once specified the replacement value remains in effect, persists, until the end of the SAS session, job, or until
reset.

The data set SHOWMISS has three observations and two missing values, the special missing value .f and a standard missing
value. The MISSING option will not change how a missing value is read or how it is used in an expression; however, it does

change how the missing value is
displayed. Here the MISSING system
option is given the value of ‘X’ (the
use of the quotes is optional on the
OPTIONS statement.

Examination of the PROC PRINT
results shows that special missing
values (.f) are not replaced; however,
the missing value for Joe’s age has
been replaced with an X.

Because you are limited to a single character when using the MISSING system option, it is often far more flexible to write
and use a user-defined format to recode missing values (see the PROC FORMAT examples a bit later in this paper).

MISSING CLASSIFICATION VARIABLES
Throughout SAS, when classification variables are missing, their associated observation is excluded from the analysis. This is
true for procedures with explicit CLASS statements, such as PROC TABULATE, MEANS, and PROC GLM, as well as for those
with implicit classification variables, such as PROC FREQ and PROC REPORT. Sometimes this is the behavior that you want;
however, often it is important that these observations not be removed. The MISSING option allows missing values to be
valid levels of the classification variable.

In the data set MISSDEMO.CLINICS the classification variables RACE and SEX do not have any missing values, however the
variable SYMP has 12 missing values out of 80 observations. In the current versions of SAS (9.3 and later) both of the

tables generated by this FREQ step reflect the correct number of
observations (SYMP has 68, while RACE*SEX has 80), however in earlier
versions the missing values of SYMP could affect the number of
observations in the second table (both could have 68).

The MISSING option can be used with most procedures that have either implicit or explicit classification variables. This
option can be used on a CLASS statement or on the PROC statement. When used on the PROC statement the option applies
to all the classification variables; however, when it is used on the CLASS statement it is only applied to those specific
classification variables. In PROC FREQ the MISSING option can also be used as an option on the TABLES statement, and in

PROC REPORT it can appear on the DEFINE statement. Including the
MISSING option on the TABLE statement forces the inclusion of all
observations regardless of the version of SAS and the presence of missing
values.

data showmiss;
input name $ age;
datalines;
Fred 15
Sally .f
Joe .
run;
options missing=X;
title1 'MISSING Text is: X';
proc print data=showmiss;
run;

proc freq data=missdemo.clinics;
 table symp race*sex;
 run;

proc freq data=missdemo.clinics;
 table symp race*sex/missing;
 run;

7

While the FREQ procedure determines observations to be included in a table using only the classification variables used in
that table, this is not necessarily true for other procedures. When tables are generated by PROC TABULATE, all the
classification variables are examined, and any observation with a
missing classification variable is eliminated from all the tables – even
those that do not utilize the classification variable with the missing

value. This is demonstrated by including two classification variables
(WEIGHT_STATUS and SMOKING_STATUS) that do not even appear
within any TABLE statement.

Simply applying a MISSING option to the classification variables that are
not used is sufficient to change the counts for the table that uses the
other classification variables. This shows that in TABULATE the unused
classification variables influence the counts of unrelated tables!

Placing the MISSING option on the PROC statement would apply the
option to all classification variables. Again the counts would change,
because now missing values of CHOL_STATUS and BP_STATUS would
also be included in the table.

proc tabulate data=sashelp.heart;
class chol_status bp_status
 weight_status smoking_status;
var weight;
table chol_status all, all bp_status*weight=' '*n;
run;

class chol_status bp_status ;
class weight_status smoking_status/missing;

8

REASSIGNING MISSING VALUES
As SAS programmers we are used to seeing missing values displayed as dots in our reports, however most of those for
whom the report is designed are not. This means that most of the time when we create reports the missing values must
be replaced by some other symbol. We have already seen a several of ways to do this. For special numeric missing
values such as .A, only the upper case letter is displayed and often a footnote can be provided as way of explanation. For
the standard numeric missing dot, the MISSING system option can be specified. But these are not our only options.

In TABULATE Output
When using PROC TABULATE you can replace missing calculated values
through the use of the MISSTEXT option. The TABULATE table
demonstrated here shows that there are no observations, and hence
missing values for Males of Race 4 and Females of Race 5.

Including the MISSTEXT= option on the TABLE statement allows us to
replace the missing values with specified text. Here they are to be
replaced with a zero (0).

Although the zero is appropriate for the N, it is less than desirable for the
mean weight. Fortunately we can further refine this table with a user
defined format.

Using User Defined Formats
User defined formats offer us a great deal of flexibility and control in what
is to be displayed. In the TABULATE example shown to the right we
would like to replace the zero associated with the mean weight with six
dashes (the zero is still to replace the missing values of N).

The VALUE statement
names the format

(MISSWT.) and defines the mapping for the
incoming values. In this format missing is
mapped to 6 dashes while everything else
maps to a 6.2 format. The format is then
associated with the mean through the use of
the asterisk (*).

proc tabulate data=missdemo.clinics;
 class race sex;
 var wt;
 table race
 ,sex*wt=' '*(n=' ' mean=' ')
 /box='Mean Weight'
 misstext='0';
 run;

proc format;
 value misswt
 . = '------'
 other=[6.2];
 run;

table race
 ,sex*wt=' '*(n=' ' mean=' '*f=misswt.)
 /box='Mean Weight'
 misstext='0';

9

Missing Values and User Defined Formats in REPORT
The formatting techniques shown in the previous section can also be used
in PROC REPORT. However there is one case where the detection of a
missing value by the format is different. In the report shown to the right
the missing values in the report have been replaced with dashes using the
same format (MISSWT.) that was used in the TABULATE example.

What if we would like to replace the missing RACE in the RBREAK
summary line with text? Following the example of filling missing values

using a format we
could create the
format $MISSRACE.,
where a missing value
is mapped to the
word ‘All’. This
format is then applied
to the character
grouping variable
RACE.
Unfortunately this does not work! We get the same table as before!
Missing values on summary lines are not handled the same, as other
values, when applied to a format.

Instead we need to change the value to a something that is non-

missing and map the format to that value rather than to missing. Since it never appears
in the data, the solution code shown here uses a lower case ‘x’. A compute block is then

added to the REPORT step
which resets the value on the
summary line from missing to
‘x’. The remainder of the step remains unchanged.

Collapsing Data Using the UPDATE Statement
If a data set contains multiple observations per BY group, and you would like to
collapse the data to one observation per BY group and at the same time replace
missing values with non-missing values (when available), the UPDATE statement
can be used. In this example the initial data set (WORK.HAVE) has a series of
variables that contain a mixture of missing and non-missing values. We want to
collapse the data set into one row per BY group and at the same time save the
latest non-missing value for each variable of interest.

proc format;
 value $missrace
 ' ' = 'All';
 run;
proc report data=missdemo.clinics
 nowd;
 column ('Race' race) proced,wt;
 define race / group ' '
 f=$missrace.;
 define proced / across;
 define wt / mean ' '
 f=misswt.;
 rbreak after / summarize;
 run;

proc format;
 value $missrace
 'x' = 'All';
 run; compute race;

 if _break_='_RBREAK_' then race='x';
endcomp;

10

An approach using assignment statements requires the user to know and use variable names. Here the COALESCE
function is used to return the first non-
missing value of the arguments.
Because the incoming value (TEMPx) is
listed first, the latest non-missing
value will be stored. This approach
requires the user to know and code
the various variables. The coding can
be simplified using the UPDATE
statement.

The resulting data set (WANT1) will have one observation for each BY group,
which in this case is each level of the ID variable.

The UPDATE statement assumes that the first data set listed is the primary data
set and that the second data set is a transaction data set whose observations are used to ‘update’ the primary. The BY
statement is used to identify (presumably to the row level) the rows to which the transactions are to be applied. Missing
values in the transaction data set are ignored and non-missing values replace values in the primary. In this application the
same data set is used in both roles.

The first occurrence of HAVE places the BY group variables onto the PDV first. Notice that no observations are read from
this usage. The second usage of HAVE is as the transaction data set.
During compilation the variables VAR-1 – VAR_3 are added to the PDV.
During the execution phase of the DATA step, each observation is read as a
transaction. It is at this time that missing values are replaced by non-
missing values and observations are essentially collapsed. The resulting
data set is the same as was achieved in the DATA step using the COALESCE
function, however the coding is substantially easier.

This technique was suggested by @Tom in a SAS Forums thread.

MACRO LANGUAGE NULL VALUES
The macro language does not support the concept of a missing value. While a macro variable can take on the value of a
blank or a period, these values are not treated as missing values by the macro language. Unlike data set variables, a macro
variable can take on a null value; that is, the macro variable can store nothing. This is generally not possible for variables on
a data set.

When working with null macro variables the syntax may at first look odd to the DATA step programmer. The %IF statement
shown here is considered to be standard syntax for comparing a macro variable (&CITY)
to a null value. Notice that there is nothing between the equal sign (comparison
operator) and the %THEN. Since DATA step comparisons must have something on the
right of the comparison operator, this statement form often makes newer macro programmers uneasy.

Acceptable alternative forms of this same comparison can include the use of the %LENGTH and %STR functions. Since the
macro variable can contain nothing the %LENGTH function can return a
zero, and this can also be used to detect a null value in a macro
variable.

Although it generally works correctly, using quotes to satisfy the need to have ‘something on the right side of the

comparison operator’ is
not considered good

%if &city= %then %do;

%if "&city"="" %then %do;
%if &city = %str() %then %do;

%if %length(&city) = 0 %then %do;

data want1(keep=id var_:);
 set have(rename=(var_1=temp1 var_2=temp2 var_3=temp3));
 by id;
 retain var_1 var_2 var_3 .;
 if first.id then call missing(of var_1 var_2 var_3);
 var_1 = coalesce(temp1,var_1);
 var_2 = coalesce(temp2,var_2);
 var_3 = coalesce(temp3,var_3);
 if last.id then output want1;
 run;

data want2;
 update have (obs=0 keep=id)
 have;
 by id;
run;

http://communities.sas.com/people/Tom?view=profile

11

programming practice. The quotes are parsing characters in the DATA step, but not so in the macro language. To do
something similar without stepping out of the macro world, you could use one of the macro quoting functions to put
‘something to the right of the equals sign’. Here the %STR function is used (with nothing between the parentheses).

Although commonly used, Chung and King (2009) showed that each of the previous comparisons can fail under various
circumstances. Their tests show that the most
robust test of a null value uses a combination of
%SUPERQ and the %SYSEVALF functions.

SUMMARY
We encounter missing values on an ongoing basis. We need to know the basics of how to detect and use them, but we
also need to be well versed in various tools within SAS are used to detect, count, convert, and utilize missing values.
These tools are many and varied, and it is a part of our job to be able to use them effectively – if only to make sure that we
are not missing out.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes; five books, two chapters in Reporting from the Field, and numerous papers and
posters presented at SAS Global Forum and SAS user conferences. Art has been using SAS since 1977 and has served in
various leadership positions in local, regional, and national user groups.

Art is a SAS Certified Advanced Professional Programmer, and through California Occidental Consultants he teaches SAS
courses and provides contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

View my paper presentations page at:
http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

%if %sysevalf(%superq(city)=,boolean) %then %do;

http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

12

REFERENCES
Carpenter, Art, 2012, Carpenters Guides to Innovative SAS® Techniques, SAS Press, SAS
Institute Inc., Cary NC.

In her 2006 paper “MISSING! - Understanding and Making the Most of Missing Data”
Suzanne Humphreys includes a number of nice examples and explanations on the use of
missing values. The paper was published in the Proceedings of the Thirty-first Annual SAS
Users Group International Conference, 2006, NC: SAS Institute Inc., paper 025-31.
http://www2.sas.com/proceedings/sugi31/025-31.pdf

A careful and detailed discussion concerning the testing for null macro values is presented
by:
Chung, Chang Y., and John King, 2009, “IS THIS MACRO PARAMETER BLANK?” . The paper
was published in the Proceedings of the SAS Global Forum Conference, 2009, NC: SAS
Institute Inc., paper 022-2009.
http://support.sas.com/resources/papers/proceedings09/022-2009.pdf

A comparison of the IS MISSING and IS NULL comparisons used in PROC SQL is discussed in the LinkedIn thread:
https://www.linkedin.com/groups/IS-NULL-IS-MISSING-Operators-
2356262.S.5880340836025131008?view=&item=5880340836025131008&type=member&gid=2356262&trk=eml-
b2_anet_digest-null-5-null&fromEmail=fromEmail&ut=2GPr7n15XwASg1

TRADEMARK INFORMATION
SAS and SAS Certified Advanced Professional are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

http://www2.sas.com/proceedings/sugi31/025-31.pdf
http://support.sas.com/resources/papers/proceedings09/022-2009.pdf
https://www.linkedin.com/groups/IS-NULL-IS-MISSING-Operators-2356262.S.5880340836025131008?view=&item=5880340836025131008&type=member&gid=2356262&trk=eml-b2_anet_digest-null-5-null&fromEmail=fromEmail&ut=2GPr7n15XwASg1
https://www.linkedin.com/groups/IS-NULL-IS-MISSING-Operators-2356262.S.5880340836025131008?view=&item=5880340836025131008&type=member&gid=2356262&trk=eml-b2_anet_digest-null-5-null&fromEmail=fromEmail&ut=2GPr7n15XwASg1
https://www.linkedin.com/groups/IS-NULL-IS-MISSING-Operators-2356262.S.5880340836025131008?view=&item=5880340836025131008&type=member&gid=2356262&trk=eml-b2_anet_digest-null-5-null&fromEmail=fromEmail&ut=2GPr7n15XwASg1

