
1

Paper SA-06-2015

LET SAS® CLEANSE YOUR DIRTY DATA

Kaushal Raj Chaudhary1, Deanna Naomi Schreiber-Gregory2

1Sanford Research, Sioux Falls, SD, 2 National University, La Jolla, CA

ABSTRACT

In an ideal world, every data set is complete, clean, and properly formatted. However, in real world situations, the

data available to us is very rarely presented in this form. They may contain any number of problematic events such as

outliers, duplicate observations, missing values, invalid character and numeric data values, as well as many other

issues. Given the necessity that the data being examined is as complete and clean as possible, it is very important

that these issues are addressed prior to any analysis. In this paper we describe various cases of dirty data and

techniques to clean them. These techniques are explored within the context of SAS® 9.4 and presented in a way that

would benefit beginning and moderate level SAS users.

INTRODUCTION

Clean data are essential for any analysis and SAS is a great tool for getting data cleaned. A wealth of functions and

procedures are available for inspecting and cleaning data. This paper describes some of those techniques.

METHODS

In this section we will use DATA step, SAS procedures and /or SAS SQL to address the following scenarios.

 - Variable Type Conversion
 - Invalid Character Values

 - Invalid Numeric Values and Outliers

 - Duplicate Observations

 - Missing Values

VARIABLE TYPE CONVERSION

IMPLICIT AND EXPLICIT CONVERSION

Sometimes numeric variables are stored as character variables. SAS automatically converts the character variable to

numeric when used in numeric context (arithmetic operations) and prints the note in the log.

data have;

 input ID Weight $ Height;

 cards;

 1 120 5.3

 2 130 5.5

 3 145 5.6

 ;

run;

data want;

 set have;

 Weight_num=Weight*1;

run;

2

Converting the variable explicitly is better programming practice. This can be done using the INPUT and PUT

functions. Automatic conversion can cause errors, and should be avoided to have a better, cleaner log. The log tells

us when errors and problems occur. If we know about a problem and use a proper conversion, the log will not show

us these known warnings, and unexpected warnings and errors will be easier to see.

Input function to convert character to numeric:

 Num_var=input (oldvar, informat)

Put function to convert numeric to character:

 Char_var=put (oldvar, format)

Character variable “Weight” is explicitly converted to numeric using the INPUT function with BEST3. informat. If

“Weight” contains any non-numeric data SAS prints note (Invalid argument) and corresponding data in the log. To

suppress both note and data from the log “??” modifier can be used in INPUT function. “Height” is converted to

character using the PUT function and displayed in one decimal point.

data want;

 set have;

 Weight_num=input(Weight, Best3.);

 Height_char=put(Height, 3.1);

run;

data want;

 set have;

 Weight_num=input(Weight,?? Best3.);

 Height_char=put(Height, 3.1);

run;

INVALID CHARACTER VALUES

 A data set might contain character values other than permitted values, such as other values than “M” and “F” for Sex.

To detect invalid character values, we will use SAS procedures and a DATA step technique in this section.

SAS PROCEDURES

We illustrate PROC FREQ, PROC FORMAT, and PROC PRINT in finding invalid character values in a data set.

PROC FREQ is very handy data exploratory tool especially for categorical variables. The FREQ procedures below

return the number of unique values of Sex and Race, all character variables and all variables of data, respectively.

MISSING option in the table statement puts the frequency of missing in the table. We used an asterisk (*) sign to

denote missing value in frequency table.

options missing='*';

proc freq data=have;

 tables Sex Race /missing;

run;

options missing='*';

proc freq data=have;

 tables _character_/missing;

run;

proc freq data=have;

 tables _all_/missing;

run;

PROC FORMAT is one of the powerful tools in data manipulation. It uses VALUE and INVALUE statement to create

user defined formats and informats respectively. In the example code we are creating character format $Sex and

character informat $Sex_ to output and read the data in specified format, respectively. “F” and “M” are regarded as

valid values for Gender. Informat reads “F” and “M” as they are using _SAME_ keyword and set to missing other

values using OTHER keyword. PROC PRINT prints any values other than “M”,”F”, and missing.

3

options missing='*';

proc format;

 value $Sex 'F','M' = 'Valid'

 ' ' = 'Missing'

 other = 'Not Valid';

proc freq data=have;

 format Sex $Sex.;

 tables Sex/ missing nopercent nocum;

run;

proc format;

 invalue $Sex_ 'F','M' = _same_

 other = ' ';

data have;

input ID $ Sex $Sex_. Race $ Age Weight Height Smoking;

cards;

 0001 M WH 24 170 176.3 1

 0002 M WH 27 178 170.2 0

 ;

 run;

proc print data=have;

 where Gender not in ('M' 'F' ' ');

 id ID;

 var Sex;

run;

DATA STEP

DATA _NULL_ can be used to return invalid character values of variable(s) specified. _NULL_ keyword tells SAS not
to create a data set. PUT statement prints the invalid values in the log.

data _null_;

 set have;

 if Sex not in ("F", "M") then put ID= Sex=;

run;

 Log output:

4

SAS has a number of character functions to clean and manipulate character data. The table below shows some commonly used character functions.

Table 1 Character functions

Function Example Output Description

Length

data _null_;

len=length("MWSUG2015");

 put len=;

run;

len=9 returns the length of character string.

Upcase

data _null_;

var=upcase("mwsug2015");

 put var=;

run;

var=MWSUG2015

converts letters of character string to uppercase.

Substr

data _null_;

var=substr("MWSUG2015",1,5);

 put var=;

run;

var=MWSUG

extracts part of a character string.

Scan

data _null_;

 var="MWSUG2014,MWSUG2015";

 newvar=scan(var,2,',');

 put newvar=;

run;

newvar=MWSUG2015 returns nth word from a character string.

Compress

data _null_;

 var=compress("M W S U G");

 put var=;

run;

var=MWSUG

returns a character string with specified characters
removed from the original string

Compbl

data _null_;

 var=compbl("MWSUG 2015");

 put var=;

run;

var=MWSUG 2015

removes multiple blanks from a character string.

Tranwrd

data _null_;

var=tranwrd("MWSUG2014","2014","2015");

 put var=;

run;

var=MWSUG2015 replaces all occurrences of a substring in a character

string

Translate

data _null_;

var=translate("MWSUG2014","2015","2014");

 put var=;

run;

var=MWSUG2015

replaces specific characters in a character string.

Index

data _null_;

 pos=index("MWSUG2015","SUG");

 put pos;

run;

3

searches a character expression for a string of
characters, and returns the position of the string's first
character for the first occurrence of the string.

5

Verify

data _null_;

 check=verify("ABCD","ABCD");

 put check=;

run;

check=0
returns the position of the first character in a string
that is not in any of several other strings.

Anyalpha

data _null_;

 var=anyalpha("MWSUG2015");

 put var=;

run;

var=1

searches a character string for an alphabetic
character, and returns the first position at which the
character is found.

Anyalnum

data _null_;

 var=anyalnum("MWSUG2015");

 put var=;

run;

var=1

searches a character string for an alphanumeric
character, and returns the first position at which the
character is found.

Anydigit

data _null_;

 var=anydigit("MWSUG2015");

 put var=;

run;

var=6

searches a character string for a digit, and returns the
first position at which the digit is found.

Notalpha

data _null_;

 var=notalpha("MWSUG2015");

 put var=;

run;

var=6

searches a character string for a nonalphabetic
character, and returns the first position at which the
character is found.

Notdigit

data _null_;

 var=notdigit("MWSUG2015");

 put var=;

run;

var=1

Searches a character string for any character that is
not a digit, and returns the first position at which that
character is found.

Anypunct

data _null_;

 var=anypunct("MWSUG2015!");

 put var=;

run;

var=10
Searches a character string for a punctuation
character, and returns the first position at which that
character is found.

6

INVALID NUMERIC VALUES AND OUTLIERS

A data set might contain numeric values out of permitted ranges and outliers. Hawkins (1980) defines an outlier as

“an observation that deviates so much from other observations as to arouse the suspicion that it was generated by a

different mechanism. In general, any numeric values out of lower quartile (Q1) -1.5 IQR (Interquartile range) and

upper quartile (Q3) +1.5 IQR or out of 5% and 95 % percentiles are considered as outliers. These invalid numeric

values or outliers will give incorrect result during analysis. SAS procedures and DATA step techniques are presented

to capture those values.

SAS PROCEDURES

PROC MEANS and PROC UNIVARIATE can be used to check invalid numeric values and outliers.

PROC MEANS produces summary statistics for numeric variables. The default summary statistics are N, MEAN,

STD, MIN, and MAX. To get summary statistics other than those, such as first quantile (q1) or third quantile (q3), it

has to be specified in PROC MEANS statement. MAXDEC option limits the decimal points in summary statistics

values.

PROC UNIVARIATE yields various information about numeric variables. It also produces graphs, such as histogram,

box plot, and normal probability plot if PLOTS option is included. ODS SELECT statement outputs only the desired

table among several other tables. In our example we select only extreme observations table. The default quantiles in

PROC UNIVARIATE are 1
st
, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99

th
. To get specific quantiles we can use

PCTLPTS in OUTPUT statement. In example below we obtain every tenth percentile from 10 to 100 of

“TRIGLYCERIDE”.

proc means data=trig n min max mean median q1 q3 maxdec=2;

 var triglyceride;

run;

ods select extremeobs;

proc univariate data=trig;

 var triglyceride;

run;

Proc univariate data=trig;

 Var triglyceride;

 Output out=P pctlpre=P_ pctlpts= 10 to 100 by 10;

Run;

UNIVARIATE BOX PLOT

Box plot provides graphic summary of numeric variables. It displays median, first quartile, third quartile, inter quartile

range and any outliers if exist. PROC UNIVARIATE, PROC GPLOT, PROC BOXPLOT, and PROC SGPLOT can

produce box plot in SAS. I prefer SGPLOT procedure because of easier syntax. In our example “male” seems to have

more outliers than “female” in “ICD” variable.

proc sgplot data=gad.final;

 vbox ICD/category=Gender;

run

7

PROC RANK

PROC RANK computes ranks for one or more numeric variables across the observations of a SAS data set and

outputs the ranks to a new SAS data set. Groups option generates quantiles (groups=4), deciles (groups=10), and

percentiles (groups=100). In example below new variable “ICD_Decile” with deciles values is added to output dataset

“deciles”.

proc rank data=gad.final2 groups=10 out=deciles

 (keep=ID ICD ICD_Decile);

 var ICD;

 ranks ICD_Decile;

run;

DATA STEP

This technique is similar to detecting invalid character values. “TRIGLYCERIDE” values more than 400 have been
printed in the log.

data _null_;

 set trig;

 if triglyceride > 400 then put Rat_Number=

triglyceride=;

run;

Log output:

8

SAS date and time are special type numeric values in SAS. SAS has several date and time functions to clean and manipulate date and time. The following table presents

frequently used date and time functions.

Table 2 SAS Date and Time functions

Function Example Output Description

date

data _null_;

 Today_date=date();

 put Today_date mmddyy8.;

run;

09/01/15

returns today’s date as a SAS date value.

Today

data _null_;

 Today_date=Today();

 Put Today_date mmddyy10.;

 run;

09/01/2015

returns the current date as a SAS date value.

Datatime

data _null_;

 Date_time=DateTime();

 put Date_time Datetime13.;

run;

01SEP15:09:46 returns the current date and time of day as a SAS

datetime value.

datepart

data _null_;

 Date_time='01SEP2015:9:30'dt;

 Date_Part=Datepart(Date_time);

 Put Date_part worddate18.;

 run;

September 1, 2015

returns the date part of a SAS datetime value as a
date value

timepart

data _null_;

 Date_time='01SEP2015:9:30'dt;

 Time_Part=Timepart(Date_time);

 put Time_part Time8.;

run;

9:30:00

returns the time part of a SAS datetime value.

day

data _null_;

 Day_=Day('01SEP2015'd);

 put Day_;

run;

1

returns the day of the month from a SAS date value.

weekday

data _null_;

 Weekday_=Weekday('01SEP2015'd);

 put Weekday_;

run;

3

returns the day of the week from a SAS date value

month

data _null_;

 Month_=Month('01SEP2015'd);

 put Month_;

run;

9 returns the numerical value for the month of the year

from a SAS date value

Year

data _null_;

 Year_=Year('01SEP2015'd);

 put Year_;

run;

2015

returns the year from a SAS date value.

9

qtr

data _null_;

 qtr_=qtr('01SEP2015'd);

 put qtr_;

run;

3

returns the quarter of the year from a SAS date value.

mdy

data _null_;

 mdy_=mdy(9,1,2015);

 put mdy_ worddate12.;

run;

Sep 1, 2015

returns a SAS date value for month, day, and year
values.

dhms

data _null_;

DHMS_=DHMS('01SEP2015'd,10,20,45);

 put DHMS_ datetime.;

run;

01SEP15:10:20:45 returns a SAS datetime value for date, hour, minute,

and second values.

hms

data _null_;

 HMS_=HMS(10,20,45);

 put HMS_ time.;

run;

10:20:45 returns a SAS time value for hour, minute, and second

values

Hour
Minute
Second

data _null_;

 time_='11:20:30't;

 hour_=hour(time_);

 minute_=minute(time_);

 Second_=second(time_);

 put time_ time. hour_ minute_

second_;

run;

11:20:30
11
20
30

returns the hour from a SAS datetime or time value.
returns the minute from a SAS time or datetime value.
returns the second from a SAS time or datetime value.

intck

data _null_;

 Birthday='01AUG1993'd;

Age=intck('Year',Birthday,Today());

 put Age;

run;

22 returns the number of boundaries of intervals of the

given kind that lie between the two date or datetime
values.

intnx

data _null_;

 Birthday='01AUG1993'd;

date_=intnx('Year',Birthday,22,'same');

 put date_ date9.;

run;

01AUG2015 returns the date or datetime value of the beginning of

the interval that is n intervals from the interval that
contains the given date or datetime value.

10

DUPLICATE OBSERVATIONS

Sometimes the observations are duplicated and we have to remove those duplicates.

SAS PROCEDURES

PROC SORT

NODUPKEY and NODUP or NODUPRECS options in PROC SORT can be used to find and remove the duplicates in

the SAS data set. NODUP or NODUPRECS option removes all the exact observations matched by all variables. It

compares the all variable values of current observation to values of previous observation. If it exists, then it is not

written to output data set. However, if identical observations are not consecutive it fails to remove the duplicates. The

only solution of this problem is to sort the input data set by all variables. NODUPKEY options exclude the duplicate

observations matched by variable(s) in by statement. It compares observations by variable in by statement.

DUPOUT option creates output dataset with duplicate observations.

proc sort data=have out=want nodup;

 by ID;

run;

proc sort data=have out=want nodupkey;

 by ID;

run;

proc sort data=have out=want noduprecs;

 by ID;

run;

proc sort data=have out=want dupout=duplicates nodup;

 by ID;

run;

PROC FREQ

PROC FREQ is another way of identifying duplicates in a data set. Here we are creating an output data set “want” in

FREQ procedure and subsetting it by “count” variable to include more than 1 count. To get exact observations by all

variables in a data set, they all have to be present in the table statement separated by an asterisk (*) sign.

Unfortunately, _ALL_ key word cannot be used here to specify all variables in the data set.

proc freq data=dp;

 tables ID /out=want (where= (count > 1));

run;

PROC SQL

PROC SQL is yet another technique for getting duplicate observations form an input data set. In this example we are

creating variable Count which contains number of identical ID in our data set. All columns of table have to be included

in group by statement to identify the exact matches.

proc sql;

 select *, count(*) as Count

 from dp

 group by ID

 having count(*) > 1;

run;

DATA STEP

First.variable and last.variable in data step can be used to detect the duplicate observations in a data set. It consists

of two steps -first sorting the input data set by key variable(s) and second creating output data set with duplicates. In

this example we are outputting only those IDs where both first.ID and last.ID are not equal to 1 (ie. duplicate IDs).

11

proc sort data=dp out=sorted_dp;

 by ID;

run;

data want;

 set sorted_dp;

 by ID;

 if not(first.ID and last.ID) then output;

run;

MISSING VALUES

A data set might contain missing values. They can be of following types in SAS.

- . (Numeric)

- ‘ ‘ (Character)

- .letter (Special such as .Z) (Numeric)

- ._ (Special) (Numeric)

SAS sets variables to missing at the top of each implicit loop of the DATA step except for variables in the retain

statement, variable created in the sum statement, _temporary_arrays, automatic variables, and variable from SAS

data sets. An arithmetic operation on a missing value generates missing value. In the example below the first

observation of variable “First_total” will be missing. Any further calculation on that result will be missing too. To

prevent such propagation of the missing value, computation is performed using sample statistics functions (SUM

function in example below).

data have;

input x y z;

cards;

2 . 4

4 3 2

;

data want;

 set have;

 First_total=x+y+z;

 Second_total=sum(of x--z);

run;

In this section we will explain various techniques in SAS to assess the missing values in a data set.

SAS PROCEDURES

The MISSING option in the PROC FREQ and PROC MEANS returns the number of missing values

options missing='*';

proc freq data=have;

 tables _character_/missing nopercent nocum;

run;

proc means data=have n nmiss;

 var _numeric_;

run;

proc mi data=have;

 ods select misspattern;

run;

The MISSING option in the table statement of PROC FREQ returns the frequency of missing values of variables in
table statement. Similarly, the NMISS option in PROC MEANS gives the number of missing values for each variable
included in var statement. We are using _NUMERIC_ keyword to get the frequency of missing of all numeric
variables. PROC MI will output missing data patterns for the variables in the specified datasets.

12

DATA STEP FUNCTIONS

SAS has various functions to check the missing values in numeric and character variables.
IS NULL or IS MISSING function in SAS is ANSI Standard method of SQL for evaluating missing values. They work

with character or numeric variables and can be used in WHERE clause of DATA statement or PROC SQL.

data want;

 set have;

 where Race is null;

run;

data want;

 set have;

 where Race is missing;

run;

data want;

 set have;

 where Sex is not missing;

run;

proc sql;

 create table test as

 select *

 from have

 where Sex is not missing;

quit;

MISSING function checks whether a character or numeric variable is missing and returns. It returns 1 if the variable is

missing or 0 if it is not missing. CMISS and NMISS count the number of missing across observations. CMISS counts

the missing observations for both character and numeric variable(s) whereas NMISS counts only for numeric

variable(s). CALL MISSING assigns missing values to its argument (s) (character or numeric variables).

CONCLUSION

This paper presented various techniques of inspecting and cleaning data.

REFERENCES

Philpot, L. B., and Cantu, G. (2012, November). Dirty Data? Clean it up with SAS. Paper presented at SCSUG 2012.

Houston, TX.

Kincheloe, F. (2008, March). Get Your Hands Dirty Cleaning Your Data with SAS Data Quality Server. Presented at

SAS Global Forum 2008. San Antonio, TX.

Cody, R. (2008). Cody’s Data Cleaning Techniques Using SAS, Second Edition. Cary, NC: SAS® Institute Inc.

Field, A., & Miles, J. (2012). Discovering Statistics Using SAS® , Thousand Oaks, CA: Sage Publications.

SAS® Institute Inc. 2008. SAS /STAT® 9.2 User’s Guide. Cary, NC: SAS® Institute Inc.

Horstman, J. & Muller, R. (2011). Dealing with Duplicates in Your Data. MWSUG 2011, Kansas City, KS.

data want;

 set have;

 miss_n=cmiss(of Sex--Smoking);

 miss_num=nmiss(Age,Weight,Height);

 miss_y_n=missing(Age);
proc print data=want;

run;

data want;

 set have;

 call missing (of Sex--Smoking);

run;

13

CONTACT INFORMATION

Your comments, questions, and suggestions are valued and encouraged. Contact the authors at:

Kaushal Raj Chaudhary

Sanford Research

Sioux Falls, SD

Email: kaushal.chaudhary@SanfordHealth.org

Deanna Naomi Schreiber-Gregory

National University

La Jolla, CA / Moorhead, MN

E-mail: d.n.schreibergregory@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are

trademarks of their respective companies.

mailto:kaushal.chaudhary@SanfordHealth.org

