
Paper PH-08-2015

Ushering SAS® Emergency Medicine into the 21st Century:

Toward Exception Handling Objectives, Actions, Outcomes, and Comms

Troy Martin Hughes

ABSTRACT

Emergency medicine comprises a continuum of care that often commences with first aid, basic life support (BLS), or

advanced life support (ALS.) First responders, including firefighters, emergency medical technicians (EMTs), and

paramedics, often are the first to triage the sick, injured, and ailing, rapidly assessing the situation, providing curative

and palliative care, and transporting patients to medical facilities. Emergency medical services (EMS) treatment

protocols and standard operating procedures (SOPs) ensure that, despite the singular nature of every patient as well

as potential complications, trained personnel have an array of tools and techniques to provide varying degrees of

care in a standardized, repeatable, and responsible manner. Just as EMS providers must assess patients to

prescribe an effective course of action, software too should identify and assess process deviation or failure, and

similarly prescribe its commensurate course of action. Exception handling describes both the identification and

resolution of adverse, unexpected, or untimely events that can occur during software execution, and should be

implemented in SAS® software that demands reliability and robustness. The goal of exception handling always is to

reroute process control back to the "happy trail" or "happy path"—i.e., the originally intended process path that

delivers full business value. But, when insurmountable events do occur, exception handling routines should instruct

the process, program, or session to gracefully terminate to avoid damage or other untoward effects. Between the

opposing outcomes of a fully recovered program and graceful program termination, however, lie several other

exception resolution paths that can deliver full or partial business value, sometimes only with a slight delay. To that

end, this text demonstrates these paths and discusses various internal and external modalities for communicating

exceptions to SAS users, developers, and other stakeholders.

INTRODUCTION

Treatment protocols for EMS providers vary by jurisdiction but uniformly serve to ensure that patients receive rapid,

reliable care that meets or exceeds national, state, and local standards. Before an ambulance ever arrives on scene,

however, untold hours and decades of applied medical research have been invested into composition and testing of

protocols, as well as training of first responders to ensure they understand and strictly follow these protocols.

Moreover, due to the advancement of medical research and EMS equipment, as well evolving legal authorizations,

EMS protocols and standards represent living, breathing entities that will continue to improve and advance the

standard of pre-hospital care.

Exception handling routines—like EMS providers—rely on complex business rules to prescribe courses of action to

ensure functioning not only under normal conditions, but also under exceptional or extraordinary conditions. For

example, if SAS code is executing and suddenly runs out of memory, what should happen to the process? What

should happen to dependent processes that are expecting and require the first process to complete? And, is the

failure immediately communicated to users and developers, or do they have to painstakingly parse through a blood-

stained log following the exsanguination of their program? Thus, "SAS emergency medicine" describes the rapid

triage, assessment, and road to restoration that begins when SAS code hits a bump…or a jersey wall head on.

Under ideal circumstances, exception handling occurs natively without users even being aware that anything unusual

has occurred. For example, SAS code might dynamically assess it is executing in a UNIX environment and thus

perform certain functions that it would not within a Windows environment. And, while portability to a different

operating system (OS) might not seem very exceptional, certain SAS statements and functions are OS-specific and

must be dynamically coded. A large body of exception handling thus represents conditional logic statements that

allow code to flexibly follow different paths back to the happy trail and toward the same eventual outcome. Other

exception handling paradigms, however, are less straightforward and represent convoluted pathways through

complex logic that may deliver varying degrees of ideal or not-so-ideal software functionality and performance.

EMS protocols and SOPs, in prescribing courses of action, can vary the level of patient care based on the severity of

illness or injury. A sprained ankle might be treated with a lower level of care (like an ice pack) than an obviously

broken ankle requiring transport to a hospital. However, because the underlying etiology often cannot be determined

during a rapid trauma or medical assessment, care sometimes can be reflective of symptomology alone rather than

cause. Thus, if a patient can't walk on or even put pressure on an ankle without agonizing pain, he'll be transported to

a hospital regardless of whether the ankle is sprained, broken, or suffering from some other malady. Software

exception handling is no different, in that while some causes can be easily diagnosed, in other cases, an unknown

error occurs and developers must instead follow business rules to treat the symptoms. Thus, a process may have

failed due to memory limitations or to a lost network connection but, if the undesirable outcome is similar, the same

exception handling routine may handle these very different events.

The ultimate goal of exception handling is to maintain or restore functionality and performance and thus deliver the

intended business value. In many failure patterns, however, only partial functionality (e.g., only creating four out of

five anticipated HTML reports) or partial performance (e.g., a runtime that is lengthened by 45 minutes) can be

delivered or worse, the program must be terminated because no output or outcome will be of value. The following

exception handling paths and outcomes vary in technique as well as degree of value they provide.

1. Undetected Success – The exception is detected by the software but not the user, reflecting that execution

continues unobstructed without detriment to functionality or performance. This is the most desirable outcome.

2. Rerouted Success – The software handles the exception by dynamically redirecting the process flow to a

different path that eventually produces the desirable outcome. Functionality is undiminished, but performance

may be compromised if the rerouted path is significantly slower.

3. Reattempted Success – The software detects the exception, waits a specified amount of time, and reattempts

the initial process. This path often occurs in a loop that continues to reattempt the process for either a specified

duration or a specified number of attempts but, because success cannot be guaranteed, this path must

additionally include a secondary exception path in the event that reattempts fail. Thus, functionality may or may

not be reduced, but performance is likely diminished due to wait times that are introduced.

4. Partial Success – The exception may or may not be detected by the user during execution, but some degree of

functionality is by definition compromised. In data analytic development, this often occurs when injects (i.e.,

values, observations, data sets, or files) must be deleted, imputed, or reverted back to default values because

they are missing, corrupt, or otherwise invalid. Although the software completes and delivers some business

value, developers often must later modify the injects, software, or both to facilitate future, fuller functionality.

5. Process Termination – The process is skipped (if a priori requirements are not met) or is terminated

prematurely (if post hoc failure is detected), but program control is maintained which shifts immediately to other

processes that are independent of the failed process. Loss of functionality is proportionate to the failed process.

6. Program Termination – The entire program is not executed (if a priori requirements are not met) or terminated

prematurely (if post hoc failure is detected) but, unlike process termination, program control shifts nowhere

except to graceful program termination, which implies no negative affect to the execution environment as well as

prompt communication of the failure to stakeholders. All functionality and performance are lost.

Thus, the power of exception handling lies in its ability to dynamically alter program flow either to prevent failed states

and deliver full or partial functionality, or to allow code to fail gracefully. Despite the above array of exception handling

tools and techniques, however, SAS literature too often depicts exception handling routines that only terminate the

program while providing "exception reports" that do communicate invalid data or errors but which fail to fuel further

data-driven processing. In fact, SAS exception handling implementation often is absent or so archaic that it mimics

medieval medical practices. SAS code failing because a data set is locked? Terminate the program and notate in the

log. SAS code failing because it's running in UNIX? Terminate the program and notate the log. SAS code failing

because invalid data are ingested? Terminate the program and notate the log. Ankle swollen from a sprain? Put

leaches on it. Ankle swollen from deep vein thrombosis (DVT)? Put leaches on it. Ankle swollen from a compound

fracture and tibial protrusion? Amputate…and put leaches on it!

Because this resemblance is both striking and horrifying, this text seeks to demonstrate the broader panoply of

exception handling pathways that can recover full or partial functionality and performance, ushering SAS emergency

medicine into the 21
st
 Century. It aims to supplant the outmoded practice of log parsing to validate program success

with software development best practices that can facilitate reliable, robust execution. For an introduction to SAS

exception handling terminology and techniques, a separate text by the author is recommended: Why Aren’t Exception

Handling Routines Routine? Toward Reliably Robust Code through Increased Quality Standards in Base SAS
i
.

I. UNDETECTED SUCCESS

When the fentanyl and hydromorphone start dripping en route to the hospital, that's usually about the time the

skateboarder with the compound tib/fib fracture begins to relax and joke about his gnarled leg. His body is no less

injured, but its suppressed pain response eases suffering while allowing paramedics to better provide care. He

probably won't notice—or remember—many details about the ride, but hopefully a friend is capturing the whole

hilarious ordeal on video. While software exceptions are no laughing matter, exception handling routines also should

aim to be both painless and unnoticeable. Thus, "undetected" paths reflect that while the exception was detected by

software, it was handled in a manner undetectable to the user which degraded neither functionality nor performance.

Thus, like those of covert operatives, the failures of exception handling routines often will be public and messy, while

their successes will be largely private and unknown.

Because variability is the nemesis of reliability and reliable software, an intent of exception handling is to make

software more robust to dynamic injects, environments, states, and other events. Before software design or

development can begin, however, business rules should model how software will respond to specific anticipated

exceptions, as well as unanticipated (i.e., generic) ones. Only by incorporating exception handling into the entire

software development life cycle (SDLC) can it be seamlessly integrated throughout business logic. Thus, before even

the cornerstone SAS semicolon is laid, business requirements should describe the quality demanded of software, and

should prescribe the nature and degree of performance requirements that will be facilitated in part through an

exception handling framework.

The vast majority of SAS code operates equivalently in both Windows and UNIX environments; however, some

statements, procedures, functions, call routines, and system options do differ between OSes. A comprehensive list of

these subtleties is found in the SAS® 9.4 Companion for UNIX Environments, Fifth Edition.
ii
 To give one example, the

SLEEP function suspends execution of a SAS program for a specified period of time, but only operates within a

Windows environment. To gain equivalent functionality in a UNIX environment, the CALL SLEEP function must be

invoked. The SAS automatic macro variable SYSSCP is set to the runtime OS, allowing OS-specific code to execute

dynamically. The following macro causes the processor to wait 10 seconds, and functions seamlessly in both

Windows and UNIX environments.

%macro test();

%if &SYSSCP=WIN %then %let sleeping=%sysfunc(sleep(10));

%else %if %sysfunc(substr(&SYSSCP,1,3))=LIN %then %do;

 data _null_;

 call sleep(10,1);

 run;

 %end;

%else %put System is neither Windows nor UNIX;

%mend;

%test;

In this example, the user is blissfully unaware that an exception—recognition of a different operating system—has

occurred, and the code reliably functions in Windows or UNIX. However, the above code handles only these two

OSes, while several others are recognized by SAS. Thus, if even more portable code is required, additional systems

such as HP, AIX, or SUN could be incorporated into the above logic. The SAS Macro Language Reference lists all

possible operating environments and corresponding SYSSCP values.
iii
 It becomes apparent, however, that exception

handling, while delivering higher performance, comes at the cost of increased code length and complexity, thus it

should be implemented only to meet specific business objectives and software requirements.

A host of other portability considerations that can affect SAS environments and software are described in Portable

SAS: Language and Platform Considerations
iv
. While software portability should be designed into robust SAS

software intended for cross-platform use, other non-environmental exceptions can occur when software fails to

flexibly respond to dynamic injects and states. As one example, conditional logic statements routinely parse

categorical data and standardize acronyms, abbreviations, synonyms, spelling errors, and other variations that can

obfuscate data analysis. The following code fragment bins vegetable names, thus accounting for the exception that

occurs when spelling deviations are encountered. Without the following logic, subsequent analyses might

underrepresent artichokes.

data perm.choke;

 set temp_choke;

 if veg in('artichoke','articoke','choke') then veg_clean='artichoke';

 else if veg in('spinach','nach') then veg_clean='spinach';

 else veg_clean='UNK';

run;

Rather than choking, the above code accounts for the exceptional artichoke values seamlessly and the data are

cleaned without user awareness. While users likely should be aware of the underlying business rules that prescribe

how data standardization occurs, they should not have to perform these rudimentary tasks manually. The ELSE

statement additionally functions to alert users that values outside the model were observed, which might reduce

business value as well as require model (and code) refinement to incorporate these values in the future. Thus, while

the IF and ELSE IF lines represent the undetected exception path, the ELSE statement invokes a route that delivers

some business value (i.e., demonstrating that an unknown value has been encountered), but fails to inform which

vegetable, if any, was detected. In this way, exception handling routines—especially those that operate as quality

control gates—often grow over time to identify a wider array of divergent data and exceptions.

In addition to exceptional values, data sets and other files can cause exceptions or errors when they are missing,

corrupt, or otherwise invalid. In a separate text, the author demonstrates how the initialization of SAS libraries, logical

folders, control tables, and configuration files can be handled reliably behind the scenes without involving or alerting

the user
v
. For example, given a program that requires a control table to operate, absence or deletion of this table

would cause program failure. To remedy this situation, an exception handing routine can first check for the existence

of the control table and, if it does not exist, create it dynamically. The following code creates the control table

WORK.etl if it does not exist.

%macro build_control();

%if %sysfunc(exist(etl))=0 %then %do;

 data etl;

 length process $32 dsn $32 date_complete 8;

 format date_complete date10.;

 if ^missing(process);

 run;

%end;

%mend;

%build_control;

When exception handling is undetectable, users will be unaware when exceptions have occurred, but this is not to

say the exceptions are hidden. In the first example, a user parsing the SAS log would have been able to identify

which path—Windows or UNIX—of the SAS code executed. And, in the second example, the user would have

noticed that the data set WORK.etl had been created by the process. Thus, while operating in an undetected manner,

the intent is to provide reliability and robustness rather than covert operation.

While an undetectable exception path is always the preferred outcome because business value is undiminished, this

cannot always be achieved. In other cases, a delay in program completion could result, either from a rerouted or

reattempted process. In more extreme examples, the process or program might need to be terminated, causing

further diminished or eliminated value. The remaining sections describe other exception paths that can provide

varying degrees of functionality and performance with varying degrees of user awareness.

II. REROUTED SUCCESS

EMS protocols and standards reflect the sometimes complex nature of successive steps that must be taken to

provide care or save a life. When failure is not an option, and in the event that the first course of action is

unsuccessful, a second course is sure to follow. For example, according to the American Heart Association,

abdominal thrusts should be applied to an adult patient who is choking and, if successful, treatment often ends there.

If the patient becomes unresponsive, however, cardiopulmonary resuscitation (CPR) is begun immediately
vi
. In this

sense, the nature and severity of the patient will determine the ultimate course of actions that are taken but, however

divergent these treatment paths may be, they will always follow the prescriptive business rules of EMS protocols.

In the era of big data, a painful reality is that SAS and other analytic software can run out of memory when executing

even simple processes. Given the case in which the SORT procedure runs out of memory and fails, this error can

cascade and cause subsequent, dependent processes to fail as well. The following code, for example, could execute

unreliably because it neither anticipates nor accounts for a memory failure. Not only would the user be faced with the

initial memory error, but moreover, the DATA step also would fail because the BY statement would produce an error

the first time it encountered an observation that was not sorted.

data mydataissobig;

 length fname $20 lname $20 dob 8 servicedate 8;

run;

proc sort data=mydataissobig;

 by fname lname dob servicedate;

run;

data temp;

 set mydataissobig;

 by fname lname dob servicedate;

 /* additional logic and transformations here */

run;

Several solutions exist to this problem, such as increasing memory on the SAS server, implementing an index on the

data set, using a hash object, or simply removing unnecessary fields or observations before the sort to reduce its

memory consumption. The ultimate program objective as well as systems limitations should determine which

methodology is implemented. A reliable method that the author demonstrates in a separate text invokes the

SAFESORT macro that first attempts to sort a SAS data set using the SORT procedure and, if the procedure fails

due to a memory (or other) error, subsequently reroutes program flow to a less memory-intensive sorting procedure.

This rerouting logic is demonstrated below, while the logic of the sorting procedure itself is detailed in the text
vii

.

%macro safesort(dsn=, sortby=);

%global safesortrc;

proc sort data=&dsn;

 by &sortby;

run;

%if &syserr=0 %then %let safesortrc=;

%else %do;

 %let syscc=0;

 /* logic that performs sort using less memory-intensive methods */

 /* code found in referenced text */

 %if &syscc=0 %then %let safesortrc=;

 %else %let safesortrc=&syscc;

 %end;

%mend;

%macro test();

%safesort(dsn=mydataissobig, sortby=fname lname dob servicedate);

%if %length(&safesortrc)=0 %then %do;

 data temp;

 set mydataissobig;

 by fname lname dob servicedate;

 /* additional logic and transformations here */

 run;

 %end;

%else %return;

%mend;

%test;

The code is now more robust because the SORT procedure has been wrapped in an exception handling framework

inside the SAFESORT macro. The SAS automatic macro variable &SYSCC (system current condition), which records

the highest warning or error code encountered, is used to test the completion status of SAFESORT, which is passed

to the global macro variable SAFESORTRC. Thus, the DATA step now only initiates if either the SORT procedure or

SAFESORT macro were successful. And, even if the more reliable SAFESORT macro fails, a second exception path

is invoked with the %RETURN function that terminates the SAS macro and process. Thus, because even the

rerouted path cannot guarantee process success, an additional exception path is required to either terminate the

process or program in the event that this is warranted.

III. REATTEMPTED SUCCESS

CPR is considered to be a single procedure that involves chest compressions and, in some EMS protocols, rescue

breathing. However, CPR also can be viewed iteratively as comprising discrete cycles of compressions, breathing,

defibrillation, and assessment of patient vitals. In cases of cardiac arrest, while CPR is performed during the entire

pre-hospital transport in the hopes of restoring cardiac rhythm, it cannot be performed indefinitely thereafter. Thus,

based on factors such as lack of a heartbeat, other vital signs, patient age, health, and nature of arrest onset—and in

concert with hospital protocols—at some point CPR is ceased and the arresting patient expires.

If the first round of chest compressions is unsuccessful in restoring a heart rhythm, first responders don't give up, but

immediately reattempt a second round. Some software exceptions occur similarly, in that an exception may have

occurred the first time a process was attempted, but would not occur if the process were reattempted. Or, the process

might fail repeatedly for the first 30 minutes but, following that substantial delay, eventually succeed and revive

program execution. Despite representing only a small subset of potential exceptions, these temporal exceptions

should be handled because their underlying processes can be automatically and repeatedly reattempted.

Temporal exceptions can be handled with at least two different recovery methods. The process can enter a busy-

waiting (or spinlock) cycle in which SAS is temporarily put to sleep for a parameterized amount of time until the

process is reattempted. Once in the busy-waiting cycle, and unless the process succeeds, business rules should

prescribe how long to continue to reattempt the failed process until eventually giving up. The second method requires

a flag (i.e., typically a SAS macro variable) that records the event of the failed process, after which program flow is

passed to subsequent, independent processes. Periodically thereafter, the flag is queried and the failed process is

reattempted. If successful, the flag is lowered and, if continually unsuccessful, business rules should prescribe when

to stop reattempting. Thus, with both methods, a sentinel value—typically either the maximum elapsed time or

maximum number of attempts—is required to prevent an infinite loop and deadlock.

A notable example of a temporal exception solved with the busy-waiting method is a file access collision that occurs

when one user or process attempts to access a SAS data set already exclusively locked by another user or process.

A straightforward solution to this problem is introduced by the author in another text that describes the

LOCKITDOWN macro which tests repeatedly for data set availability and either receives permission to access the

data set or times out and prevents dependent processes from executing and failing.
viii

 The following invocation of

LOCKITDOWN tests the existence and availability of the data set PROD.Thebigtamale and, only if it is unlocked

within the first ten minutes (i.e., MAX=600 seconds), continues to perform the dependent DATA step. The return code

LOCKERR represents a SAS global macro variable that is initialized inside the LOCKITDOWN macro and whose

length will be at least one character if LOCKITDOWN failed to gain a file lock after attempting every second for ten

minutes.

%macro test();

%LOCKITDOWN (lockfile= prod.thebigtamale, sec=1, max=600, type=W, canbemissing=Y)

%if %sysevalf(%length(&locker)>0) %then %return;

data prod.thebigtamale;

 set blah;

run;

&lockclr; /* use described in LOCKITDOWN text */

%mend;

%test;

Even repeatedly reattempting a process, however, in no way guarantees its success. After running the above code

for 10 hours (i.e., MAX=36000), Thebigtamale might still be locked by a process. In other cases, performance

requirements might prescribe that the program only wait a few minutes for a locked data set before conceding. Thus,

code that implements LOCKITDOWN, LOCKANDTRACK
ix
, or other busy-waiting methodologies must also include an

exit strategy for the event that the file lock cannot be obtained. In the above example, the first exception path is to

reattempt the process for five minutes but, if functionality still has not been restored, the second exception path relies

on the SAS macro %RETURN statement to terminate the macro TEST because the return code LOCKERR indicates

that the lock could not be achieved.

The second method to address temporal exceptions is, rather than sitting around idly waiting, to go do some other

task whose execution does not rely on success of the first. First and foremost, this requires subsequent, independent

processes to which the program can shift control through fuzzy logic or other business rules. Moreover, a flag is

required to indicate that a process has failed and, finally, one or periodic checkpoints must exist at which point the

flag is reevaluated and the original failed process is reattempted. In the following example, if the macro DOSTUFF

fails because it cannot gain exclusive access to Somedata, the flag (macro variable RESIDUE) is set equal to the

macro name, thus the macro DOSTUFF is reattempted later after other processes have completed. And, in this

example, business rules prescribe if DOSTUFF fails a second time, a second exception path is initiated and the

process is terminated with %RETURN statement.

%macro dostuff();

%global residue;

%let residue=;

data somedata;

 set mydataissobig;

run;

%if %sysevalf(&syserr>0) %then %let residue=dostuff;

%mend;

%macro dootherstuff;

%mend;

%macro control();

%dostuff;

%dootherstuff; /* a macro not dependent on success of DOSTUFF macro */

%if %sysevalf(%length(&residue)>0) %then %do;

 %&residue;

 %end;

%if %sysevalf(%length(&residue)>0) %then %return;

%put Yay it worked!;

%mend;

%control;

In the above example, the macro variable RESIDUE is a toggle that solely represents the status of the completion of

the DOSTUFF macro. However, flags also can be space- or comma-delimited lists that contain numerous toggle

values, or they can be updated with performance metrics that track reattempts or error codes. Similar to the busy-

waiting method, because there is no guarantee that a process will succeed even after numerous reattempts, a

second exception path should exist to ensure that a deadlock is not created.

IV. PARTIAL SUCCESS

Sometimes in emergency medicine, while the patient may be saved, lasting disfigurement, disability, or ailments may

persist. This occurs in the stroke patient who never regains use of his left arm, or the auto accident victim who is

pulled from the wreckage but who loses an index finger. Software can encounter similar circumstances in which some

segment of business value is lost while the remainder can be saved. Common patterns include when missing,

corrupt, or otherwise invalid values, observations, data sets, or files are encountered. For example, a SAS program

that ingests Oracle tables over a network connection might ingest 15 of 17 correctly but have unspecified issues with

the remaining two tables. And, if business rules dictate that subsequent processing should continue on those 15 data

sets then, while business value and functionality are reduced, they are not eliminated. Thus, losing a digit isn't the

end of the world, especially if the hand can be saved.

As a data analytic development application, Base SAS is much more likely to rely on data injects than other inputs.

Thus, in robust infrastructures, quality control constraints should be applied to values, observations, data sets, and

other ingested files. Where possible, business rules should be encoded to enforce the structure, format, content,

completeness, quantity, and other aspects of quality for all dynamic injects into a robust system. Moreover, business

rules additionally should prescribe how deviations from the expected norms will be handled, with common outcomes

including data deletion, imputation, or modification to a default value. Thus, when encountering a missing value,

exception handling routines could delete, impute, or modify its value—or delete, impute, or modify the entire

observation—or delete, impute, or modify the entire data set, and so forth.

A missing value, observation, data set, or file typically imparts no value or functionality. When values are missing or

invalid, statistical imputation methods can replace the value with a likely one. SAS and other literature are replete with

differing methodologies for imputation and, while not demonstrated in this text, these techniques can be woven into

exception handling routines to ensure that maximum utility is garnered from data. In other cases, rather than

dynamically or statistically imputing a new value, for simplicity, the value merely is deleted or set to a missing or

unknown value. Similar to the artichoke example above, the following code validates the categorical variable Food

against a list of acceptable values. If Food is invalid, it is set to missing using traditional conditional logic.

data food;

 length food $20;

 food="burritto"; /*representing invalid data due to misspelling */

 output;

 food="chimichanga";

 output;

run;

%let validlist="burrito","enchilada","taco","chimichanga";

data final_food;

 set food;

 if lowcase(food) not in (&validlist) then food="";

run;

And, if business rules instead dictate that a missing or invalid value necessitates deletion of the entire observation,

the following modified DATA step can be implemented.

data final_food;

 set food;

 if lowcase(food) not in (&validlist) then delete;

run;

Thus, very simple conditional logic that prescribes quality control techniques often can be considered a form of

exception handling. While these examples demonstrate the business rules in the code itself, in some instances, this

logic can be extrapolated to a hash object, lookup table, or an external control table to accomplish the same result. In

a separate text, the author demonstrates external control tables that drive conditional logic to validate and

standardize categorical values.
x

In some cases, not only an observation but rather an entire data set is missing or corrupt. This often spells disaster

and the process or program must terminate. However, as in the above example in which business value still can be

conferred by 15 out of the total 17 Oracle tables, processing can continue so long as no statements or processes are

executed subsequently that are dependent on the invalid or missing file. Consider the following initial example in

which no exception handling routines are applied. Three data sets Perm_One, Perm_Two, and Perm_Three are to be

created from three temporary data sets One, Two, and Three, respectively. Yet, an exception is encountered

because data set Two is missing, a likelihood that should been anticipated and handled in more robust code.

data One;

 x=1;

run;

data Three;

 x=3;

run;

%macro wrapper(filelist=);

%let i=1;

%do %while(%length(%scan(&filelist,&i))>1);

 %let fil=%scan(&filelist,&i);

 data Perm_&fil;

 set &fil;

 run;

 %let i=%eval(&i+1);

 %end;

%mend;

%wrapper(filelist=One Two Three);

When executed, because data set Two does not exist, the following log and error are produced.

NOTE: There were 1 observations read from the data set WORK.ONE.

NOTE: The data set WORK.PERM_ONE has 1 observations and 1 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.02 seconds

ERROR: File WORK.TWO.DATA does not exist.

NOTE: The SAS System stopped processing this step because of errors.

WARNING: The data set WORK.PERM_TWO may be incomplete. When this step was stopped

there were 0 observations and 0 variables.

WARNING: Data set WORK.PERM_TWO was not replaced because this step was stopped.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

 NOTE: There were 1 observations read from the data set WORK.THREE.

 NOTE: The data set WORK.PERM_THREE has 1 observations and 1 variables.

 NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

Moreover, the log indicates that despite this error, a dummy data set Perm_Two still was created, although it contains

0 observations and 0 variables. In some situations, this could cause subsequent, dependent processes to fail

because they might attempt to utilize Perm_Two, believing it to be a valid data set. Thus, if the above error were

produced, the Perm data sets most likely would need to be deleted before reattempting to execute the program with

improvements that included additional exception handling to account for missing data sets.

The following improvements now anticipate that under exceptional circumstances a data set could be missing, thus

the process—the second iteration of the DATA step—is skipped by a priori exception handling that determines its

prerequisite requirements are not met.

data one;

run;

data three;

run;

%macro testdata(lib=, dsn=);

 %global err;

 %let err=library or data set does not exist;

 %if (%sysfunc(libref(&lib))=0 and

 %sysfunc(exist(&lib..&dsn))^=0) %then %let err=;

%mend;

%macro newwrapper(filelist=);

%let i=1;

%do %while(%length(%scan(&filelist,&i))>1);

 %let fil=%scan(&filelist,&i);

 %testdata (lib=work, dsn=&fil);

 %if %length(&err)=0 %then %do;

 data Perm_&fil;

 set &fil;

 run;

 %end;

 %let i=%eval(&i+1);

 %end;

%mend;

%newwrapper(filelist=);

In Section One, an example demonstrated the creation of a control table from scratch if the file were missing. This is

not only seamless but also an ideal way to initialize control tables when they are first utilized (e.g., perhaps in a new

environment) and, because the file never existed before, no business value is lost. However, if a file becomes

corrupted either through invalid user entry or process failure and needs to be deleted, this represents a loss of

functionality, especially where process metrics or user customizations had been recorded and are now lost. A goal

thus becomes to attempt to automatically salvage these files if only some of their components are invalid.

The following configuration file represents the text file config.txt designed to dynamically alter the values (LEV1 and

LEV2) in a SAS HTML stoplight report (not included.) Thus, the value LEV1 (i.e., green) will be ingested and

instantiate the macro variable LEV1 so that it can dynamically color the report.

<STOPLIGHT>

lev1: green

lev2: very light red

<OTHERSTUFF>

blah blah blah

Config.txt is ingested with the following code and, if the values for LEV1 or LEV2 cannot be validated, they are

overwritten with acceptable default values (i.e., green and red.) User error also could have omitted (or misspelled) the

STOPLIGHT header, in which case both LEV1 and LEV2 would revert to their respective default values. Thus,

business value may be slightly diminished (because the user-defined values are lost) but the program nevertheless

continues undaunted and produces the stoplight reporting.

%global lev1;

%global lev2;

data _null_;

 length tab $100 category $8 lib $8 loc $32 lev1 $20 lev2 $20;

 infile "&basedir.test/config.txt" truncover; /* &basedir must be set first */

 input tab $100.;

 if _n_=1 then do;

 lev1="";

 lev2="";

 end;

 if upcase(tab)="<STOPLIGHT>" then category="stop";

 else do;

 if category="stop" then do;

 if strip(lowcase(scan(tab,1,":")))="lev1"

 then call symput("lev1",strip(scan(tab,2,":")));

 if strip(lowcase(scan(tab,1,":")))="lev2"

 then call symput("lev2",strip(scan(tab,2,":")));

 end;

 end;

 retain category;

run;

%macro validate();

%let colorwheel=green, orange, red, very light red;

%let i=1;

%let lev1valid=0;

%let lev2valid=0;

%do %while (%length(%scan(&colorwheel,&i))>1);

 %if &lev1=%scan(&colorwheel,&i) %then %let lev1valid=1;

 %if &lev2=%scan(&colorwheel,&i) %then %let lev2valid=1;

 %let i=%eval(&i+1);

 %end;

%if &lev1valid=0 %then %let lev1=green; /* sets to default if invalid or missing */

%if &lev2valid=0 %then %let lev2=red; /* sets to default if invalid or missing */

%mend;

%validate;

In all cases, assessment of business rules followed by careful examination of program flow can elucidate process

paths that can continue, even after software has encountered grave exceptions. Understanding of process

prerequisites, requirements, and dependencies is key to designing and implementing models that can allow software

to recover full or partial functionality. Notwithstanding, in some instances, a missing or invalid file or field or some

other exception does necessitate that the process or program be terminated. Thus, the final two sections reflect

methods that can facilitate graceful process and program termination.

V. PROCESS TERMINATION

Sometimes when all hope is lost for one process, this doesn't mean that hope in general is lost. When confronted with

a patient presenting uncontrolled bleeding, the common mnemonic DEPT instructs that direct pressure, elevation,

pressure points, and tourniquet be applied to stop bleeding. Thus, when transporting a trauma patient with severe

brachial hemorrhaging, under many protocols, a tourniquet is quickly applied. The injury is not ameliorated, but the

temporary solution allows EMS providers to redirect attention to assessment and treatment of other injuries. Thus, the

tourniquet represents a temporary stopgap until additional emergent care can be provided at the hospital.

Process termination reflects that some module—one or a collection of DATA steps, procedures, or macros—must

terminate prematurely and cannot complete, thus eliminating its business value. It also reflects that program flow

continues to another independent process after the exception is encountered. Thus, the exception handling

framework automatically places a tourniquet on the exceptional module, allowing focus and functionality to continue

elsewhere. In procedural languages like SAS, process delimiters can be vague, undefined, or nonexistent but, to the

extent that code can be organized and modularized by function or other attribute, modularity can be increased, thus

helping isolate damage caused by exceptions and errors. This is akin to applying a tourniquet close to the wound to

prevent unnecessary tissue damage elsewhere.

In Section Four, examples demonstrated that processing often can continue if a value, observation, data set, or file is

missing, corrupt, or otherwise invalid. In other cases, however, a missing data set might require process termination.

The exception can be handled through a priori methods that test prerequisite conditions for the process, in essence

deducing whether it will succeed, or through post hoc methods that test error codes, return codes, or process

outcome requirements after the process has completed. These methods also have been distinguished in literature in

that a priori testing is equivalent to "error proofing," whereas post hoc testing represents "error checking.
xi
" Often, a

combination of both methods is required to produce software that both flexibly avoids and responds to exceptions.

The following example introduces a priori conditional logic that bypasses the macro EXITEARLY if the data set

Churro does not exist, allowing program flow to continue to the NICEDAY macro. Functionality is diminished because

Churro could not be sorted, but at least the user receives a pleasant message in the log that brightens his day, since

the NICEDAY macro still can complete.

%macro exitearly();

%if %sysfunc(exist(work.churro))^=0 %then %do; /* if data set exists */

 proc sort data=churro;

 by cinnamon sugar;

 run;

 %end;

%else %put Something aint right!;

%mend;

%macro niceday();

%put have a nice day!;

%mend;

%exitearly;

%niceday;

The above example could also be accomplished through use of the SAS macro %GOTO statement.

%macro exitearly();

%if %sysfunc(exist(work.churro))=0 %then %goto exit;

 proc sort data=churro;

 by cinnamon sugar;

 run;

%exit: %put Something aint right!;

%mend;

Both examples produce a warning message to the log that "something ain't right" but, in fact, the second code itself

ain't right! Because the SAS label EXIT lies in the path of the program flow—directly following the SORT procedure—

it executes regardless of the value of the EXIST function, thus printing the warning message whether the SORT

procedure is executed or not. For this reason, while %GOTO statements can be useful if not necessary in a

procedural language like SAS, the assignment of process metrics (such as specific return codes or log messages)

typically should be handled immediately after the exception is detected rather than in the subsequent label statement.

The following code now correctly assigns a brief description of the exception—if the data set is missing, contains no

observations, or the sort variable is missing—to the global macro variable AINTRIGHT, which can be parsed in

subsequent processes.

data nochurro;

run;

data churro;

 length cinnamon $10;

 cinnamon="numnumnum";

 output;

 cinnamon="so sweet";

 output;

run;

%macro exitearly(dsn=, sortby=);

%global aintright;

%let aintright=;

%if %sysfunc(exist(&dsn))=0 %then %do;

 %let aintright=Missing data set;

 %goto exit;

 %end;

%let dsid=%sysfunc(open(&dsn, i));

%let varnum=%sysfunc(varnum(&dsid, &sortby));

%let num=%sysfunc(attrn(&dsid, nvars));

%let buhbye=%sysfunc(close(&dsid));

%if %eval(&num=0) %then %do;

 %let aintright=No Observations;

 %goto exit;

 %end;

%if %eval(&varnum=0) %then %do;

 %let aintright=Sort variable missing;

 %goto exit;

 %end;

proc sort data=&dsn;

 by &sortby;

run;

%exit:;

%mend;

%exitearly(dsn=churro, sortby=cinnamon);

%put RC: &aintright;

When executed, the above code correctly sorts the Churro data set and produces an empty return code, the global

macro AINTRIGHT. To be clear, this return code does not signify process success, but rather demonstrates that all

listed a priori process prerequisites were met and that the process execution started.

NOTE: There were 2 observations read from the data set WORK.CHURRO.

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 cpu time 0.02 seconds

%put RC: &aintright;

RC:

And, when executed with the Churro data set but a misspelled sort variable CINNAMONNN, the macro correctly

detects the sort variable CINNAMON is missing and exits with the appropriate return code.

%exitearly(dsn=churro, sortby=cinnamonnn);

%put RC: &aintright;

RC: Sort variable missing

And, when executed with the Nochurro data set, the macro correctly detects that no observations exist, and exits with

the appropriate return code.

%exitearly(dsn=nochurro, sortby=cinnamon);

%put RC: &aintright;

RC: No Observations

And, finally, when executed with a spurious data set Spurious that does not exist, the macro correctly detects that the

data set is missing and exits with the appropriate return code.

%exitearly(dsn=Spurious, sortby=cinnamon);

%put RC: &aintright;

RC: Missing data set

The above examples demonstrate some of the exceptions that can be anticipated if something is awry within the data

set. And, in an actual production system, the AINTRIGHT return code would be used thereafter to dynamically alter

program flow and would never simply be printed to the log. But, thinking outside the box, what if something is wrong

with the macro invocation itself? For example, if two tokens—CINNAMON and BUN—are supplied in the SORTBY

parameter rather than just one, the code ultimately should fail because BUN is not in the data set. However, the code

fails sooner because the VARNUM function is provided two variables but expects only one.

WARNING: Argument 2 to function VARNUM referenced by the %SYSFUNC or %QSYSFUNC

macro function is out of range.

NOTE: Mathematical operations could not be performed during %SYSFUNC function

execution. The result of the operations have been set

 to a missing value.

ERROR: Variable BUN not found.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

%put RC: &aintright;

RC:

This highlights the need to make macros that are as dynamic as possible, for example, accepting a space- or

comma-delimited parameter for one (or more) variables, rather than assuming that the data set will only be sorted by

a single variable. Exception handling routines also must especially guard against the possibility of unwanted variance

when macro parameters are passed. The above error also demonstrates that the return code AINTRIGHT, which

subsequent processes might be using to determine if the macro succeeded, does not record this new, unanticipated

error. This highlights the need to always include a final post hoc check of the automatic macro variable SYSCC to

assess if anything went wrong in the program, at which point a generic error return code can be generated. Validation

of macros and their parameters to facilitate robustness is discussed thoroughly throughout SAS literature.

When the process does succeed—as in the first of the above four examples—the empty return code should be used

by other processes to demonstrate that anticipated exceptions did not occur in this macro. However, because no post

hoc testing ensured that the SORT procedure completed without error, the empty return code still does not

demonstrate or guarantee process success. To accomplish this, an additional test of the SAS automatic macro

variable SYSERR (or SYSCC) would need to occur after the SORT procedure. This would allow the exception

handling framework to account for exceptions arising from failures—from memory errors or other reasons—during the

SORT procedure itself.

A benefit of a priori testing is that no error is produced; however, this also requires the anticipation of specific

exceptions, so business rules should be established that specify minimum requirements to execute a process. Over

time, developers may notice that they are reusing the same chunks of exception handling code throughout various

processes and programs. This is good, as it allows for standardization of code but, to the extent possible, reusable

code should be modularized into separate macros that essentially can operate as functions. For example, in the

above scenario, because testing for a missing data set or a data set that has no observations is such a common

quality control technique, these two functions might be wrapped in a single macro that can be saved for posterity.

Post hoc exception handling involves the testing of SAS warning and error codes and messages that were generated

by a DATA step, procedure, statement, or process, as well as testing of return codes generated by a priori exception

handling routines. Because an exception can occur unexpectedly at any moment, SAS software that demands high

reliability should contain post hoc testing at the close of each boundary or process to confer whether it completed

successfully or not. While typically post hoc testing often is conceptualized to evaluate the process that completed,

just as SAS users sometimes painfully parse the SAS log, it also can evaluate a product that was created during a

process. Thus, just as quality control routines were demonstrated in previous sections to evaluate the validity of data

and other injects, these same quality control routines can evaluate data products for validity after a process has

concluded. Thus, business rules often should specify both the prerequisite requirements that must be met to allow a

process to initiate and a checklist that specifies what requirements must be met to signify process completion.

When a process must be terminated abruptly, cleanup of the environment may sometimes be required, although

typically this cleanup can be minimized or eliminated—as well as automated—through development best practices.

Cleanup can include such operations as deleting folders or data sets that were created, or reverting a control table

back to pre-failure (or pre-exception) conditions. The goal of cleanup is to ensure that the environment was not

harmed by the exception, as well as to ensure that when the software is executed again, it will not fail due to some

lingering consequence of the exception. In a separate text, the author discusses best practices for developing SAS

code that supports efficient recoverability and which does not require environment cleanup
xii

. Consider the following

code in which the data set Churro now is created and sorted inside the macro ETL, which simulates a much more

complex ETL process.

%macro etl();

data churro;

 length cinnamon $10;

 cinnamon="numnumnum";

 output;

 cinnamon="so sweet";

 output;

run;

%if &syserr^=0 %then %return;

proc sort data=churro;

 by cinnamon;

run;

%if &syserr^=0 %then %return;

%put SUCCESS!;

%mend;

%etl;

The code features no a priori exception handling routines, but does verify process success after both the DATA step

and subsequent SORT procedure. And, in the above example, the code executes perfectly.

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

NOTE: There were 2 observations read from the data set WORK.CHURRO.

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 cpu time 0.00 seconds

SUCCESS!

However, if the data set Churrrro is misspelled in the SORT procedure, immediately after the procedure fails, the

%RETURN macro function exits the macro, thus bypassing the proclamation of success.

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.00 seconds

ERROR: File WORK.CHURRRRO.DATA does not exist.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.00 seconds

 cpu time 0.00 seconds.

In reality, an exception in a robust ETL infrastructure would be more likely caused by dynamic data injects rather than

a misspelled data set name, but this error simulates the type of "leftovers" that failed SAS processes can create that

can cripple or clog the environment. Subsequent procedures might expect Churro to be sorted, assess that the data

set exists, and fail because it is not actually sorted. Thus, under certain business rules, one option would be to delete

and recreate the Churro data set if the SORT procedure does not complete correctly.

Also demonstrated in the above example, the SAS macro statement %RETURN (and its equivalent RETURN

statement) is commonly implemented to terminate processing and return functioning to a higher level. The

%RETURN statement causes termination of the current macro
xiii

, while the RETURN statement causes the DATA

step to return functioning to the start of the DATA step or, if implemented, to the line after the LINK statement.
xiv

Because the %RETURN statement is easily recognizable and can be implemented effectively in a single line of code

without the convolutions of %GOTO statements, it often is utilized (as above) in literature to represent program

termination within exception handling routines. However, because %RETURN exits the macro abruptly, return code

assignment or other cleanup must occur before its use.

Because the goal of exception handling is to maximize software functionality, performance, and value, modules

unrelated to a failed process usually should continue to execute if they can continue to provide some business value.

As programs grow in complexity, it may become difficult to code business rules in a coherent or readable fashion,

much less to organize rules that accurately reflect all requirements and dependencies of each. To further this goal, a

separate text by the author demonstrates the use of control tables to drive fuzzy logic algorithms that automatically

prescribe which processes can and should execute based on factors such as process priority or prerequisite process

completion.
xv

 Although outside the scope of this text, these methods provide for straightforward creation, tracking,

modification, and implementation of complex business rules, facilitated through data-driven processing, thus ensuring

the maximum amount of juice is squeezed from each SAS program, even when exceptions are encountered.

VI. PROGRAM TERMINATION

Not every patient can be saved. While no attempt is made to resuscitate a room temperature victim presenting rigor

mortis, patient respect and protocols remain paramount. A sheet is pulled and various authorities are notified or

summoned. Thus, even in death, EMS protocols specify final steps that must be taken. Program termination similarly

differs from process termination only in that execution ceases when the exception is encountered. This usually

represents the effort to fail gracefully when it becomes apparent that no functionality or business value can be

delivered. When prudent, the foregoing exception handling paths should have been considered before the decision to

terminate the program. But, when termination is inevitable, attention should turn to ensuring that the failure will be

graceful, not damage the execution environment, and will provide meaningful return codes and other diagnostics to

aid developers in future investigation and resolution, especially where the exception was unanticipated or unknown.

The SAS system option ERRORABEND—counterpoint to the default system option NOERRORABEND—is the

option most synonymous with program termination. SAS documentation states the following regarding its use: "Use

the ERRORABEND system option with SAS production programs, which presumably should not encounter any errors

.
xvi

" The difficulty with implementing ERRORABEND in a single program is that because it abruptly terminates the

program, any custom exception handling routines designed to guide the software to a graceful termination are never

executed. Thus, checking for post hoc errors is pointless in an ERRORABEND environment because the SAS

processor will catch the error and terminate before SYSERR or SYSCC are read by exception handling routines.

The benefits of ERRORABEND, as detailed thoroughly in Denis Cogswell's text, are that in a production environment

in which a controller program is spawning successive processes in other programs, the spawned programs will abort

immediately following an error, but control will return to the controller.
xvii

 Thomas Billings, a great proponent of

infusing SAS software with exception handling, refers to use of ERRORABEND as "a high risk situation" when he

describes exception handling implementation in both Enterprise Guide and Batch modes. Moreover, because

significant differences exist in how the option functions in SAS Batch and other modes, he goes on to recommend

using ERRORABEND only in Batch mode.
xviii

 Thus, in some limited situations, the use of ERRORABEND is

warranted; however, robust infrastructure in production environments can and should implement exception handling

routines that far surmount the violent termination dictated by the ERRORABEND option.

The SAS macro statement %ABORT and its equivalent SAS statement ABORT are the statements most synonymous

with program termination
xix

. Invoking %ABORT with optional arguments causes program termination and return to the

SAS operating environment and, because %ABORT can be utilized in conditional logic statements, it can gracefully

direct a program to terminate after identification of an exception. As a caution, and like the ERRORABEND option,

both %ABORT and ABORT statements are environment-specific and thus can produce unintended and problematic

results if not tested thoroughly in all intended SAS environments. Billings thoroughly summarizes the %ABORT

arguments ABEND, CANCEL, and RETURN, and highlights the discrepancies that exist among these.
xx

In the default (and generally recommended) NOERRORABEND environment, use of ABORT or %ABORT is required

to stop a program because, despite encountering an error, the SAS processor will only terminate the offending DATA

step, procedure, or macro, and will proceed to execute all subsequent processes. In Section Five, the EXITEARLY

macro demonstrated the use of a priori exception handling to test for unanticipated exceptions (e.g., a missing data

set, empty data set, or missing sort variable), but failed when an unanticipated exception—an extra token passed in

the SORTBY parameter—occurred. Unanticipated exceptions often are best handled with use of %ABORT and, by

modifying the EXITEARLY code by inserting a few lines between %EXIT and %MEND, this can be accomplished.

...additional code from above...

%exit:;

%if %eval(&syscc>0) %then %do;

 %let aintright=unanticipated exception;

 %abort abend;

 %end;

%mend;

%exitearly(dsn=churro, sortby=cinnamon bun);

%put RC: &aintright;

When executed, the above code does produce an error but, because this exception is now adequately handled, it

terminates the program before the %PUT statement, which in a realistic scenario would represent subsequent,

dependent code that would have failed because of this error.

%exitearly(dsn=churro, sortby=cinnamon bun);

WARNING: Argument 2 to function VARNUM referenced by the %SYSFUNC or %QSYSFUNC

macro function is out of range.

NOTE: Mathematical operations could not be performed during %SYSFUNC function

execution. The result of the operations have been set

 to a missing value.

ERROR: Variable BUN not found.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SORT used (Total process time):

 real time 0.01 seconds

 cpu time 0.02 seconds

ERROR: Execution terminated by an %ABORT statement.

Moreover, the revised code now creates a return code AINTRIGHT that accurately reflects both anticipated and

unanticipated exceptions, and which can be utilized in subsequent processes to drive program execution. And, if an

unexpected error occurs that has not been uniquely handled, the program terminates immediately to allow developers

to investigate the error. In the above scenario, developers would quickly realize that robust code would need to

additionally include exception handling routines that validate all parameters passed to the macro, and potentially also

the capability to perform multi-variable sorts. Thus, as processes mature over time, they will anticipate increasingly

more types of exceptions that can occur. This continuous quality improvement (CQI) is a necessary component of

any robust exception handling framework, and the reason it is a living, breathing entity.

COMMUNICATION

Exception handling routines require a mix of both internal and external communication to function. Internal

communication includes warning and error codes that are generated by the SAS processor, SAS automatic macro

variables, exception handling return codes, and, to a lesser extent, control tables or other external files that can foster

communication between concurrent sessions of SAS that are running. Warning and error codes can be dramatically

reduced by implementation of a priori testing described previously, but not always eliminated. They also can never

guarantee that a process has succeeded, thus, if that assurance is required before passing program control to

subsequent, dependent process, a post hoc test also is required.

The number and comprehensive nature of SAS automatic macro variables grow with each new software release,

allowing SAS software to be even more flexible and responsive to changing environments, system states, file states,

and dynamic injects. Understanding these variables is invaluable to developing exception handling routines that can

assess exceptional states. The authoritative list of all SAS automatic macro variables is found at SAS® 9.4 Macro

Language: Reference, Fourth Edition
xxi

 and its understanding and implementation are essential to developing

reliable, robust software.

Control tables, configuration files, and other permanent files offer additional communication advantages in

coordinating exception handling frameworks. While error codes and return codes can perish when a SAS process,

program, or session is terminated, permanent files can save this information across sessions. Thus, if the SAS server

is disconnected suddenly, an exception handling framework will do little good because execution ceases when SAS

is terminated. Even if SAS global macro variables had been tracking software performance, their values would be lost

with the server crash. Tracking software performance—including both successes and failures—in a permanent

location like a control table thus can offer a substantial advantage. These metrics typically can be accessed when the

SAS server is restored and, in many cases, can improve performance during the recovery period as software begins

to churn again. A second major benefit of using permanent files to record process and performance metrics is the

ability for multiple users or programs to access those data simultaneously. Thus, a control table accessed by multiple

SAS sessions effectively allows those sessions to concurrently speak to each other because they are able to pass

messages.

Like the greater body of exception handling, return codes also should be used to drive dynamic functioning rather

than simply print information to the log. In the final EXITEARLY macro example, the return code (macro variable

AINTRIGHT) records the first (if any) exception encountered and can be used effectively in subsequent processes to

assess completion status of this macro. To improve readability in this text, however, the only demonstrated

subsequent use of AINTRIGHT was the %PUT statement that printed its value to the log; however, this statement is

understood to represent subsequent, dependent processes that would rely on AINTRIGHT to further drive program

control. Thus, while SAS literature may often reflect return codes that are created only to be spat out to the log, this

practice occurs hopefully only to provide less complex, more comprehensible examples. In production environments,

return codes that are only printed to the SAS log are of little use and should instead be incorporated into data-driven

processing routines.

The above communication all occurs—during both exceptional and normal processing—within SAS code and without

the awareness of developers, users, or other stakeholders. While return codes and other process and performance

metrics can be output to the log, this practice is best saved for development and test environments—not production.

Thus, external communication encompasses information shared between software and stakeholders during and after

program execution. External communication typically is unidirectional, conveying process and performance metrics to

stakeholders, either in real time or after process or program completion or termination. In some cases, users are able

to modify configuration files which in turn communicate data-driven "commands" to a SAS process, which can

dynamically alter its execution in near-real-time. Most external communication, however, informs developers and

users how or how well their code executed.

The log can be a strong ally to exception handling routines, as process and performance metrics can be passed.

However, exceptions that can be anticipated generally should not pass remarks to the log—after all, if an exception

can be imagined, clearly defined exception paths should prescribe subsequent program control, so the log need not

be parsed. Thus, in production systems, the only use of the log should be to drive CQI efforts because the log will

have recorded events surrounding new, unanticipated exceptions that were either not handled or which were handled

only through generic exception routines. For example, an original exception handling routine might only detect if any

error occurs, but this routine refined over time might direct specific handling in the event that a memory-related error

occurs. Thus, the log can be used to make exception handling routines more robust and meaningful. Several SAS

texts demonstrate the benefits and ease of automated processes that save, parse, display, and archive logs for

developers, and this automation of log activities should be considered the standard in any production environment.

Other advanced methods for communication of exceptions include automatically sending emails or even playing a

tone or song, as demonstrated separately by David Fielding
xxii

 and Ann Olmsted
xxiii

. As mentioned above, control

tables also are an excellent method to archive process metrics (including warnings and errors) because they persist

after the SAS session is terminated. Moreover, reports that can be automatically generated from control tables

represent a proven method for tracking software functionality and performance. An added benefit of routines that print

static reports from dynamic control tables is that this eliminates the possibility that a developer will accidentally modify

or delete the control table, or that the table will be locked and prevent other processes from accessing it.

BUT DON'T INTRODUCE MORE EXCEPTIONS DURING EXCEPTION HANDLING!

Throughout this text, the complexity of business rules that prescribe exception handling routines has been

demonstrated. Care must be taken to ensure that in this complexity, however, additional exceptions or errors are not

introduced. Testing represents a critical component of any exception handling framework and should accompany

each new exception path as it is designed and developed. Smoke detectors are tested regularly to demonstrate they

are functional and in fact providing their advertised and expected level of protection and, similarly, all exception

handling routines must be demonstrated to be valid and effective if they are to be depended upon.

The following macro, reprised from above, instructs SAS to sleep for ten seconds and functions in both Windows and

UNIX environments—with one exception—the CALL SLEEP function has been misspelled this time.

%macro test();

%if &SYSSCP=WIN %then %let sleeping=%sysfunc(sleep(10));

%else %if %sysfunc(substr(&SYSSCP,1,3))=LIN %then %do;

 data _null_;

 call sleeeep(10,1); /* oops somebody made a spelling error */

 run;

 %end;

%else %put System is neither Windows nor UNIX;

%mend;

%test;

The savvy SAS practitioner may have thought he was making his code more flexible and portable but, in releasing

production code that contained this error, he only succeeded in demonstrating that his code had never been tested in

a UNIX environment.

%test;

NOTE: Line generated by the invoked macro "TEST".

data _null_; call sleeeep(10,1); run;

 251

ERROR 251-185: The subroutine SLEEEEP is unknown, or cannot be accessed. Check your

spelling.

 Either it was not found in the path(s) of executable images, or there was

incorrect or missing subroutine descriptor information.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: DATA statement used (Total process time):

 real time 0.04 seconds

 cpu time 0.04 seconds

This underscores the importance of testing every exception path that is developed to ensure that it does function as

intended and does not accidentally introduce additional errors in software. Because SAS data analytic development is

data-centric, many of the complexities encountered in SAS that produce exceptions arise from dynamic injects,

including variability observed in values, observations, data sets, and files. Thus, even when an exception path is

tested, tried, and true, a slight variation in its throughput injects could reveal logic errors or other code defects that

have been hidden.

As one example, variations of the following code are found throughout SAS literature as a demonstration of how to

determine if a data set has zero observations. And, typically this yields the correct number.

%macro empty(dsn=);

%global nothin;

%let nothin=;

proc sql noprint;

 select count(*) into :nobs from &dsn;

quit;

run;

%if %eval(&nobs=0) %then %let nothin=EMPTY;

%else %let nothin=FULL;

%mend;

data Somethinghere; /* contains 1 field */

 a=5;

run;

data Nothinghere; /* contains no fields */

run;

%empty(dsn=Somethinghere);

%put NOTHIN: ¬hin;

Given the existence of the data set Somethinghere which has one observation, this produces the correct output

FULL, indicating that the data has at least one observation. But, when the macro EMPTY is executed to examine the

data set Nothinghere (containing no observations or fields), the SQL procedure and subsequent statements crash.

%empty(dsn=Nothinghere);

ERROR: Table WORK.NOTHINGHERE doesn't have any columns. PROC SQL requires each of

its tables to have at least 1 column.

NOTE: PROC SQL set option NOEXEC and will continue to check the syntax of

statements.

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.01 seconds

 cpu time 0.02 seconds

WARNING: Apparent symbolic reference NOBS not resolved.

WARNING: Apparent symbolic reference NOBS not resolved.

ERROR: A character operand was found in the %EVAL function or %IF condition where a

numeric operand is required. The condition was:

 &nobs=0

ERROR: %EVAL function has no expression to evaluate, or %IF statement has no

ondition.

ERROR: The macro EMPTY will stop executing.

%put Nothin: ¬hin;

Nothin:

Thus, not only did the SQL procedure fail but, when it did, it caused the macro variable NOBS not be created, which

in turn caused the following macro %IF and %EVAL statements to fail. Failure begets failure and all because some

SAS practitioner tried to do the right thing and implement exception handling routines to test process prerequisites—

in this case, the common requirement that a data set contain at least one observation. This underscores the

necessity that if exception handling routines are going to be implemented, they cannot be depended upon until all

exception paths have been tested and additionally until all paths have been tested with the full spectrum of variation

they are intended to handle. And, because the full spectrum of variation is likely unknown at project conception and

throughout development, even the highest quality software invariably is released with defects that are overcome only

through later discovery and resolution. Additional factors that should be taken into account when counting

observations in SAS can be found in the seminal text How Many Observations Are in My Data Set?
xxiv

CONCLUSION

Where reliable and robust code are warranted, exception handling routines can provide both functionality and peace

of mind that code will not unexpectedly come to a tumultuous halt. Like emergency medical protocols, exception

handling routines must follow established business rules that prescribe and sequence exception handling paths and

responses. These routines often go undetected by users, facilitating functionality in dynamic environments that

experience both predictable and unpredictable deviations from the norm. Moreover, in many circumstances, all or

some intended business value can be achieved with exception handling implementation, possibly with only a delay in

program completion. And, to further the recovery of future functionality and performance, exception handling always

should capture new and previously undetected exceptions and errors in the hope that through CQI developers can

incorporate these into future a priori and post hoc testing.

REFERENCES

i
 Hughes, Troy Martin. 2014. Why Aren’t Exception Handling Routines Routine? Toward Reliably Robust Code
through Increased Quality Standards in Base SAS. Midwest SAS Users Group (MWSUG).

ii
 SAS Press. SAS® 9.4 Companion for UNIX Environments, Fifth Edition. 2015. Retrieved from

http://support.sas.com/documentation/cdl/en/hostunx/67929/PDF/default/hostunx.pdf.

iii
 SAS Press. SAS® 9.4 Macro Language: Reference, Fourth Edition. SYSSCP and SYSSCPL Automatic Macro

Variables. Retrieved from
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n0e7s8lf147kazn17u45trpwb6
sw.htm.

iv
 Cruz, Robert A. 2009. Portable SAS: Language and Platform Considerations. Western Users of SAS Software

(WUSS).

v
 Hughes, Troy Martin. 2015. SAS Spontaneous Combustion: Securing Software Portability through Self-Extracting

Code. Western Users of SAS Software (WUSS).

vi
 American Heart Association. 2010. American Heart Association Guidelines for Cardiopulmonary Resuscitation and

Emergency Cardiovascular Care Science. Part 5: Basic Life Support: Relief of Foreign-Body Airway-Obstruction.
Retrieved from http://circ.ahajournals.org/content/122/18_suppl_3/S685.full.

vii
 Hughes, Troy Martin. 2015. Sorting a Bajillion Records: Conquering Scalability in a Big Data World. South Central

SAS Users Group (SCSUG.)

viii
 Hughes, Troy Martin. 2014. From a One-Horse to a One-Stoplight Town: A Base SAS Solution to Preventing Data

Access Collisions through the Detection and Deployment of Shared and Exclusive File Locks. Western Users of SAS
Software (WUSS).

ix
 Hughes, Troy Martin. 2015. Beyond a One-Stoplight Town: A Base SAS Solution to Preventing Data Access

Collisions through the Detection, Deployment, Monitoring, and Optimization of Shared and Exclusive File Locks.
Western Users of SAS Software (WUSS).

x
 Hughes, Troy Martin. 2013. Binning Bombs When You’re Not a Bomb Maker: A Code-Free Methodology to

Standardize, Categorize, and Denormalize Categorical Data through Taxonomical Control Tables. Southeast SAS

Users Group (SESUG).

xi
 Nelson, Gregory; Zhou, Jay. 2012. Good Programming Practices in Healthcare: Creating Robust Programs. SAS

Global Forum.

xii
 Hughes, Troy Martin. 2015. When Reliable Programs Fail: Designing for Timely, Efficient, Push-Button Recovery.

Pharmaceutical Industry SAS Users Group (PharmaSUG).

xiii
 SAS Press. SAS® 9.4 Macro Language: Reference, Fourth Edition. %RETURN Statement. Retrieved from

http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#p0qyygqt5a69xnn1rhfju3kjs8a
l.htm.

http://support.sas.com/documentation/cdl/en/hostunx/67929/PDF/default/hostunx.pdf
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n0e7s8lf147kazn17u45trpwb6sw.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n0e7s8lf147kazn17u45trpwb6sw.htm
http://circ.ahajournals.org/content/122/18_suppl_3/S685.full
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#p0qyygqt5a69xnn1rhfju3kjs8al.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#p0qyygqt5a69xnn1rhfju3kjs8al.htm

xiv

 SAS Press. SAS® 9.4 Statements: Reference, Fourth Edition. RETURN Statement. Retrieved from
https://support.sas.com/documentation/cdl/en/lestmtsref/68024/HTML/default/viewer.htm#p0t9xi85l04wjtn1j31cx4j4kr
y7.htm.

xv
 Hughes, Troy Martin. 2014. Calling for Backup When Your One-Alarm Becomes a Two-Alarm Fire: Developing

Base SAS Data-Driven, Concurrent Processing Models through Fuzzy Control Tables that Maximize Throughput and
Efficiency. South Central SAS Users Group (SCSUG).

xvi
 SAS Press. SAS® 9.4 System Options: Reference, Fourth Edition. ERRORABEND System Option. Retrieved from

https://support.sas.com/documentation/cdl/en/lesysoptsref/68023/HTML/default/viewer.htm#n1w4v7ouc6vfhmn1cnsq
5aunqk2j.htm.

xvii
 Cogswell, Denis. 2005. More Than Batch – A Production SAS Framework. SAS Users Group International (SUGI).

xviii
 Billings, Thomas. 2015. Strategies for Error Handling and Program Control: Concepts. SAS Global Forum.

xix
 SAS Press. SAS® 9.4 Macro Language: Reference, Fourth Edition. %ABORT Statement. Retrieved from

http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#p0f7j2zr6z71nqn1fpefnmulzaz
f.htm.

xx
 Billings, Thomas. 2014. Differences in Functionality of Error Handling Features, SAS Enterprise Guide vs. Batch.

Western Users of SAS Software (WUSS).

xxi
 SAS Press. SAS® 9.4 Macro Language: Reference, Fourth Edition. Automatic Macro Variables. Retrieved from

http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n18mk1d0g1j31in1q6chazvfs
eel.htm.

xxii
 Fielding, David. 2004. Making Music in SAS: Using Sound to Alert Users of Errors and Data Discrepancies. SAS

Users Group International (SUGI).

xxiii
 Olmsted, Ann. 2007. Wake Up and Look at the Log: How to Code a Nag Macro. Western Users of SAS Software

(WUSS).

xxiv
 Hamilton, Jack. 2001. How Many Observations Are in My Data Set? SAS Users Group International (SUGI).

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/documentation/cdl/en/lestmtsref/68024/HTML/default/viewer.htm#p0t9xi85l04wjtn1j31cx4j4kry7.htm
https://support.sas.com/documentation/cdl/en/lestmtsref/68024/HTML/default/viewer.htm#p0t9xi85l04wjtn1j31cx4j4kry7.htm
https://support.sas.com/documentation/cdl/en/lesysoptsref/68023/HTML/default/viewer.htm#n1w4v7ouc6vfhmn1cnsq5aunqk2j.htm
https://support.sas.com/documentation/cdl/en/lesysoptsref/68023/HTML/default/viewer.htm#n1w4v7ouc6vfhmn1cnsq5aunqk2j.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#p0f7j2zr6z71nqn1fpefnmulzazf.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#p0f7j2zr6z71nqn1fpefnmulzazf.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n18mk1d0g1j31in1q6chazvfseel.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n18mk1d0g1j31in1q6chazvfseel.htm

