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ABSTRACT 

Emergency medicine comprises a continuum of care that often commences with first aid, basic life support (BLS), or 

advanced life support (ALS.) First responders, including firefighters, emergency medical technicians (EMTs), and 

paramedics, often are the first to triage the sick, injured, and ailing, rapidly assessing the situation, providing curative 

and palliative care, and transporting patients to medical facilities. Emergency medical services (EMS) treatment 

protocols and standard operating procedures (SOPs) ensure that, despite the singular nature of every patient as well 

as potential complications, trained personnel have an array of tools and techniques to provide varying degrees of 

care in a standardized, repeatable, and responsible manner. Just as EMS providers must assess patients to 

prescribe an effective course of action, software too should identify and assess process deviation or failure, and 

similarly prescribe its commensurate course of action. Exception handling describes both the identification and 

resolution of adverse, unexpected, or untimely events that can occur during software execution, and should be 

implemented in SAS® software that demands reliability and robustness. The goal of exception handling always is to 

reroute process control back to the "happy trail" or "happy path"—i.e., the originally intended process path that 

delivers full business value. But, when insurmountable events do occur, exception handling routines should instruct 

the process, program, or session to gracefully terminate to avoid damage or other untoward effects. Between the 

opposing outcomes of a fully recovered program and graceful program termination, however, lie several other 

exception resolution paths that can deliver full or partial business value, sometimes only with a slight delay. To that 

end, this text demonstrates these paths and discusses various internal and external modalities for communicating 

exceptions to SAS users, developers, and other stakeholders. 

INTRODUCTION 

Treatment protocols for EMS providers vary by jurisdiction but uniformly serve to ensure that patients receive rapid, 

reliable care that meets or exceeds national, state, and local standards. Before an ambulance ever arrives on scene, 

however, untold hours and decades of applied medical research have been invested into composition and testing of 

protocols, as well as training of first responders to ensure they understand and strictly follow these protocols. 

Moreover, due to the advancement of medical research and EMS equipment, as well evolving legal authorizations, 

EMS protocols and standards represent living, breathing entities that will continue to improve and advance the 

standard of pre-hospital care. 

Exception handling routines—like EMS providers—rely on complex business rules to prescribe courses of action to 

ensure functioning not only under normal conditions, but also under exceptional or extraordinary conditions. For 

example, if SAS code is executing and suddenly runs out of memory, what should happen to the process? What 

should happen to dependent processes that are expecting and require the first process to complete? And, is the 

failure immediately communicated to users and developers, or do they have to painstakingly parse through a blood-

stained log following the exsanguination of their program? Thus, "SAS emergency medicine" describes the rapid 

triage, assessment, and road to restoration that begins when SAS code hits a bump…or a jersey wall head on. 

Under ideal circumstances, exception handling occurs natively without users even being aware that anything unusual 

has occurred. For example, SAS code might dynamically assess it is executing in a UNIX environment and thus 

perform certain functions that it would not within a Windows environment. And, while portability to a different 

operating system (OS) might not seem very exceptional, certain SAS statements and functions are OS-specific and 

must be dynamically coded. A large body of exception handling thus represents conditional logic statements that 

allow code to flexibly follow different paths back to the happy trail and toward the same eventual outcome. Other 



exception handling paradigms, however, are less straightforward and represent convoluted pathways through 

complex logic that may deliver varying degrees of ideal or not-so-ideal software functionality and performance.  

EMS protocols and SOPs, in prescribing courses of action, can vary the level of patient care based on the severity of 

illness or injury.  A sprained ankle might be treated with a lower level of care (like an ice pack) than an obviously 

broken ankle requiring transport to a hospital. However, because the underlying etiology often cannot be determined 

during a rapid trauma or medical assessment, care sometimes can be reflective of symptomology alone rather than 

cause. Thus, if a patient can't walk on or even put pressure on an ankle without agonizing pain, he'll be transported to 

a hospital regardless of whether the ankle is sprained, broken, or suffering from some other malady. Software 

exception handling is no different, in that while some causes can be easily diagnosed, in other cases, an unknown 

error occurs and developers must instead follow business rules to treat the symptoms. Thus, a process may have 

failed due to memory limitations or to a lost network connection but, if the undesirable outcome is similar, the same 

exception handling routine may handle these very different events. 

The ultimate goal of exception handling is to maintain or restore functionality and performance and thus deliver the 

intended business value. In many failure patterns, however, only partial functionality (e.g., only creating four out of 

five anticipated HTML reports) or partial performance (e.g., a runtime that is lengthened by 45 minutes) can be 

delivered or worse, the program must be terminated because no output or outcome will be of value. The following 

exception handling paths and outcomes vary in technique as well as degree of value they provide. 

1. Undetected Success – The exception is detected by the software but not the user, reflecting that execution 

continues unobstructed without detriment to functionality or performance. This is the most desirable outcome. 

2. Rerouted Success – The software handles the exception by dynamically redirecting the process flow to a 

different path that eventually produces the desirable outcome. Functionality is undiminished, but performance 

may be compromised if the rerouted path is significantly slower. 

3. Reattempted Success – The software detects the exception, waits a specified amount of time, and reattempts 

the initial process. This path often occurs in a loop that continues to reattempt the process for either a specified 

duration or a specified number of attempts but, because success cannot be guaranteed, this path must 

additionally include a secondary exception path in the event that reattempts fail. Thus, functionality may or may 

not be reduced, but performance is likely diminished due to wait times that are introduced. 

4. Partial Success – The exception may or may not be detected by the user during execution, but some degree of 

functionality is by definition compromised. In data analytic development, this often occurs when injects (i.e., 

values, observations, data sets, or files) must be deleted, imputed, or reverted back to default values because 

they are missing, corrupt, or otherwise invalid. Although the software completes and delivers some business 

value, developers often must later modify the injects, software, or both to facilitate future, fuller functionality. 

5. Process Termination – The process is skipped (if a priori requirements are not met) or is terminated 

prematurely (if post hoc failure is detected), but program control is maintained which shifts immediately to other 

processes that are independent of the failed process. Loss of functionality is proportionate to the failed process. 

6. Program Termination – The entire program is not executed (if a priori requirements are not met) or terminated 

prematurely (if post hoc failure is detected) but, unlike process termination, program control shifts nowhere 

except to graceful program termination, which implies no negative affect to the execution environment as well as 

prompt communication of the failure to stakeholders. All functionality and performance are lost. 

Thus, the power of exception handling lies in its ability to dynamically alter program flow either to prevent failed states 

and deliver full or partial functionality, or to allow code to fail gracefully. Despite the above array of exception handling 

tools and techniques, however, SAS literature too often depicts exception handling routines that only terminate the 

program while providing "exception reports" that do communicate invalid data or errors but which fail to fuel further 

data-driven processing. In fact, SAS exception handling implementation often is absent or so archaic that it mimics 

medieval medical practices. SAS code failing because a data set is locked? Terminate the program and notate in the 

log. SAS code failing because it's running in UNIX? Terminate the program and notate the log. SAS code failing 

because invalid data are ingested? Terminate the program and notate the log. Ankle swollen from a sprain? Put 



leaches on it. Ankle swollen from deep vein thrombosis (DVT)? Put leaches on it. Ankle swollen from a compound 

fracture and tibial protrusion? Amputate…and put leaches on it! 

Because this resemblance is both striking and horrifying, this text seeks to demonstrate the broader panoply of 

exception handling pathways that can recover full or partial functionality and performance, ushering SAS emergency 

medicine into the 21
st
 Century. It aims to supplant the outmoded practice of log parsing to validate program success 

with software development best practices that can facilitate reliable, robust execution. For an introduction to SAS 

exception handling terminology and techniques, a separate text by the author is recommended: Why Aren’t Exception 

Handling Routines Routine? Toward Reliably Robust Code through Increased Quality Standards in Base SAS
i
. 

I. UNDETECTED SUCCESS 

When the fentanyl and hydromorphone start dripping en route to the hospital, that's usually about the time the 

skateboarder with the compound tib/fib fracture begins to relax and joke about his gnarled leg. His body is no less 

injured, but its suppressed pain response eases suffering while allowing paramedics to better provide care. He 

probably won't notice—or remember—many details about the ride, but hopefully a friend is capturing the whole 

hilarious ordeal on video. While software exceptions are no laughing matter, exception handling routines also should 

aim to be both painless and unnoticeable. Thus, "undetected" paths reflect that while the exception was detected by 

software, it was handled in a manner undetectable to the user which degraded neither functionality nor performance. 

Thus, like those of covert operatives, the failures of exception handling routines often will be public and messy, while 

their successes will be largely private and unknown. 

Because variability is the nemesis of reliability and reliable software, an intent of exception handling is to make 

software more robust to dynamic injects, environments, states, and other events. Before software design or 

development can begin, however, business rules should model how software will respond to specific anticipated 

exceptions, as well as unanticipated (i.e., generic) ones. Only by incorporating exception handling into the entire 

software development life cycle (SDLC) can it be seamlessly integrated throughout business logic. Thus, before even 

the cornerstone SAS semicolon is laid, business requirements should describe the quality demanded of software, and 

should prescribe the nature and degree of performance requirements that will be facilitated in part through an 

exception handling framework. 

The vast majority of SAS code operates equivalently in both Windows and UNIX environments; however, some 

statements, procedures, functions, call routines, and system options do differ between OSes. A comprehensive list of 

these subtleties is found in the SAS® 9.4 Companion for UNIX Environments, Fifth Edition.
ii
 To give one example, the 

SLEEP function suspends execution of a SAS program for a specified period of time, but only operates within a 

Windows environment. To gain equivalent functionality in a UNIX environment, the CALL SLEEP function must be 

invoked. The SAS automatic macro variable SYSSCP is set to the runtime OS, allowing OS-specific code to execute 

dynamically. The following macro causes the processor to wait 10 seconds, and functions seamlessly in both 

Windows and UNIX environments. 

%macro test();  

%if &SYSSCP=WIN %then %let sleeping=%sysfunc(sleep(10));  

%else %if %sysfunc(substr(&SYSSCP,1,3))=LIN %then %do;  

 data _null_;  

   call sleep(10,1);  

 run;  

 %end;  

%else %put System is neither Windows nor UNIX; 

%mend; 

 

%test;  

In this example, the user is blissfully unaware that an exception—recognition of a different operating system—has 

occurred, and the code reliably functions in Windows or UNIX. However, the above code handles only these two 

OSes, while several others are recognized by SAS. Thus, if even more portable code is required, additional systems 



such as HP, AIX, or SUN could be incorporated into the above logic. The SAS Macro Language Reference lists all 

possible operating environments and corresponding SYSSCP values.
iii
 It becomes apparent, however, that exception 

handling, while delivering higher performance, comes at the cost of increased code length and complexity, thus it 

should be implemented only to meet specific business objectives and software requirements. 

A host of other portability considerations that can affect SAS environments and software are described in Portable 

SAS: Language and Platform Considerations
iv
. While software portability should be designed into robust SAS 

software intended for cross-platform use, other non-environmental exceptions can occur when software fails to 

flexibly respond to dynamic injects and states. As one example, conditional logic statements routinely parse 

categorical data and standardize acronyms, abbreviations, synonyms, spelling errors, and other variations that can 

obfuscate data analysis. The following code fragment bins vegetable names, thus accounting for the exception that 

occurs when spelling deviations are encountered. Without the following logic, subsequent analyses might 

underrepresent artichokes. 

data perm.choke; 

 set temp_choke; 

 if veg in('artichoke','articoke','choke') then veg_clean='artichoke'; 

 else if veg in('spinach','nach') then veg_clean='spinach'; 

 else veg_clean='UNK'; 

run; 

Rather than choking, the above code accounts for the exceptional artichoke values seamlessly and the data are 

cleaned without user awareness. While users likely should be aware of the underlying business rules that prescribe 

how data standardization occurs, they should not have to perform these rudimentary tasks manually. The ELSE 

statement additionally functions to alert users that values outside the model were observed, which might reduce 

business value as well as require model (and code) refinement to incorporate these values in the future. Thus, while 

the IF and ELSE IF lines represent the undetected exception path, the ELSE statement invokes a route that delivers 

some business value (i.e., demonstrating that an unknown value has been encountered), but fails to inform which 

vegetable, if any, was detected. In this way, exception handling routines—especially those that operate as quality 

control gates—often grow over time to identify a wider array of divergent data and exceptions. 

In addition to exceptional values, data sets and other files can cause exceptions or errors when they are missing, 

corrupt, or otherwise invalid. In a separate text, the author demonstrates how the initialization of SAS libraries, logical 

folders, control tables, and configuration files can be handled reliably behind the scenes without involving or alerting 

the user
v
. For example, given a program that requires a control table to operate, absence or deletion of this table 

would cause program failure. To remedy this situation, an exception handing routine can first check for the existence 

of the control table and, if it does not exist, create it dynamically. The following code creates the control table 

WORK.etl if it does not exist. 

%macro build_control(); 

%if %sysfunc(exist(etl))=0 %then %do; 

 data etl; 

   length process $32 dsn $32 date_complete 8; 

   format date_complete date10.; 

   if ^missing(process); 

 run; 

%end; 

%mend; 

 

%build_control; 

When exception handling is undetectable, users will be unaware when exceptions have occurred, but this is not to 

say the exceptions are hidden. In the first example, a user parsing the SAS log would have been able to identify 

which path—Windows or UNIX—of the SAS code executed. And, in the second example, the user would have 

noticed that the data set WORK.etl had been created by the process. Thus, while operating in an undetected manner, 

the intent is to provide reliability and robustness rather than covert operation.  



While an undetectable exception path is always the preferred outcome because business value is undiminished, this 

cannot always be achieved. In other cases, a delay in program completion could result, either from a rerouted or 

reattempted process. In more extreme examples, the process or program might need to be terminated, causing 

further diminished or eliminated value. The remaining sections describe other exception paths that can provide 

varying degrees of functionality and performance with varying degrees of user awareness. 

II. REROUTED SUCCESS 

EMS protocols and standards reflect the sometimes complex nature of successive steps that must be taken to 

provide care or save a life. When failure is not an option, and in the event that the first course of action is 

unsuccessful, a second course is sure to follow. For example, according to the American Heart Association, 

abdominal thrusts should be applied to an adult patient who is choking and, if successful, treatment often ends there. 

If the patient becomes unresponsive, however, cardiopulmonary resuscitation (CPR) is begun immediately
vi
. In this 

sense, the nature and severity of the patient will determine the ultimate course of actions that are taken but, however 

divergent these treatment paths may be, they will always follow the prescriptive business rules of EMS protocols. 

In the era of big data, a painful reality is that SAS and other analytic software can run out of memory when executing 

even simple processes. Given the case in which the SORT procedure runs out of memory and fails, this error can 

cascade and cause subsequent, dependent processes to fail as well. The following code, for example, could execute 

unreliably because it neither anticipates nor accounts for a memory failure. Not only would the user be faced with the 

initial memory error, but moreover, the DATA step also would fail because the BY statement would produce an error 

the first time it encountered an observation that was not sorted. 

data mydataissobig; 

 length fname $20 lname $20 dob 8 servicedate 8; 

run; 

 

proc sort data=mydataissobig; 

  by fname lname dob servicedate; 

run; 

 

data temp; 

  set mydataissobig; 

  by fname lname dob servicedate; 

  /* additional logic and transformations here */ 

run; 

Several solutions exist to this problem, such as increasing memory on the SAS server, implementing an index on the 

data set, using a hash object, or simply removing unnecessary fields or observations before the sort to reduce its 

memory consumption. The ultimate program objective as well as systems limitations should determine which 

methodology is implemented. A reliable method that the author demonstrates in a separate text invokes the 

SAFESORT macro that first attempts to sort a SAS data set using the SORT procedure and, if the procedure fails 

due to a memory (or other) error, subsequently reroutes program flow to a less memory-intensive sorting procedure. 

This rerouting logic is demonstrated below, while the logic of the sorting procedure itself is detailed in the text
vii

. 

%macro safesort(dsn=, sortby=); 

%global safesortrc; 

proc sort data=&dsn; 

  by &sortby; 

run; 

%if &syserr=0 %then %let safesortrc=; 

%else %do; 

  %let syscc=0; 

    /* logic that performs sort using less memory-intensive methods */ 

    /* code found in referenced text */ 



  %if &syscc=0 %then %let safesortrc=; 

  %else %let safesortrc=&syscc; 

  %end; 

%mend; 

 

%macro test(); 

%safesort(dsn=mydataissobig, sortby=fname lname dob servicedate); 

%if %length(&safesortrc)=0 %then %do; 

  data temp; 

   set mydataissobig; 

   by fname lname dob servicedate; 

     /* additional logic and transformations here */ 

  run; 

  %end; 

%else %return; 

%mend; 

 

%test; 

The code is now more robust because the SORT procedure has been wrapped in an exception handling framework 

inside the SAFESORT macro. The SAS automatic macro variable &SYSCC (system current condition), which records 

the highest warning or error code encountered, is used to test the completion status of SAFESORT, which is passed 

to the global macro variable SAFESORTRC. Thus, the DATA step now only initiates if either the SORT procedure or 

SAFESORT macro were successful. And, even if the more reliable SAFESORT macro fails, a second exception path 

is invoked with the %RETURN function that terminates the SAS macro and process. Thus, because even the 

rerouted path cannot guarantee process success, an additional exception path is required to either terminate the 

process or program in the event that this is warranted. 

III. REATTEMPTED SUCCESS 

CPR is considered to be a single procedure that involves chest compressions and, in some EMS protocols, rescue 

breathing. However, CPR also can be viewed iteratively as comprising discrete cycles of compressions, breathing, 

defibrillation, and assessment of patient vitals. In cases of cardiac arrest, while CPR is performed during the entire 

pre-hospital transport in the hopes of restoring cardiac rhythm, it cannot be performed indefinitely thereafter. Thus, 

based on factors such as lack of a heartbeat, other vital signs, patient age, health, and nature of arrest onset—and in 

concert with hospital protocols—at some point CPR is ceased and the arresting patient expires.  

If the first round of chest compressions is unsuccessful in restoring a heart rhythm, first responders don't give up, but 

immediately reattempt a second round. Some software exceptions occur similarly, in that an exception may have 

occurred the first time a process was attempted, but would not occur if the process were reattempted. Or, the process 

might fail repeatedly for the first 30 minutes but, following that substantial delay, eventually succeed and revive 

program execution. Despite representing only a small subset of potential exceptions, these temporal exceptions 

should be handled because their underlying processes can be automatically and repeatedly reattempted. 

Temporal exceptions can be handled with at least two different recovery methods. The process can enter a busy-

waiting (or spinlock) cycle in which SAS is temporarily put to sleep for a parameterized amount of time until the 

process is reattempted. Once in the busy-waiting cycle, and unless the process succeeds, business rules should 

prescribe how long to continue to reattempt the failed process until eventually giving up. The second method requires 

a flag (i.e., typically a SAS macro variable) that records the event of the failed process, after which program flow is 

passed to subsequent, independent processes. Periodically thereafter, the flag is queried and the failed process is 

reattempted. If successful, the flag is lowered and, if continually unsuccessful, business rules should prescribe when 

to stop reattempting. Thus, with both methods, a sentinel value—typically either the maximum elapsed time or 

maximum number of attempts—is required to prevent an infinite loop and deadlock. 



A notable example of a temporal exception solved with the busy-waiting method is a file access collision that occurs 

when one user or process attempts to access a SAS data set already exclusively locked by another user or process. 

A straightforward solution to this problem is introduced by the author in another text that describes the 

LOCKITDOWN macro which tests repeatedly for data set availability and either receives permission to access the 

data set or times out and prevents dependent processes from executing and failing.
viii

  The following invocation of 

LOCKITDOWN tests the existence and availability of the data set PROD.Thebigtamale and, only if it is unlocked 

within the first ten minutes (i.e., MAX=600 seconds), continues to perform the dependent DATA step. The return code 

LOCKERR represents a SAS global macro variable that is initialized inside the LOCKITDOWN macro and whose 

length will be at least one character if LOCKITDOWN failed to gain a file lock after attempting every second for ten 

minutes. 

%macro test(); 

%LOCKITDOWN (lockfile= prod.thebigtamale, sec=1, max=600, type=W, canbemissing=Y) 

%if %sysevalf(%length(&locker)>0) %then %return; 

data prod.thebigtamale; 

 set blah; 

run; 

&lockclr; /* use described in LOCKITDOWN text */ 

%mend; 

 

%test;               

Even repeatedly reattempting a process, however, in no way guarantees its success. After running the above code 

for 10 hours (i.e., MAX=36000), Thebigtamale might still be locked by a process. In other cases, performance 

requirements might prescribe that the program only wait a few minutes for a locked data set before conceding. Thus, 

code that implements LOCKITDOWN, LOCKANDTRACK
ix
, or other busy-waiting methodologies must also include an 

exit strategy for the event that the file lock cannot be obtained. In the above example, the first exception path is to 

reattempt the process for five minutes but, if functionality still has not been restored, the second exception path relies 

on the SAS macro %RETURN statement to terminate the macro TEST because the return code LOCKERR indicates 

that the lock could not be achieved. 

The second method to address temporal exceptions is, rather than sitting around idly waiting, to go do some other 

task whose execution does not rely on success of the first. First and foremost, this requires subsequent, independent 

processes to which the program can shift control through fuzzy logic or other business rules. Moreover, a flag is 

required to indicate that a process has failed and, finally, one or periodic checkpoints must exist at which point the 

flag is reevaluated and the original failed process is reattempted. In the following example, if the macro DOSTUFF 

fails because it cannot gain exclusive access to Somedata, the flag (macro variable RESIDUE) is set equal to the 

macro name, thus the macro DOSTUFF is reattempted later after other processes have completed. And, in this 

example, business rules prescribe if DOSTUFF fails a second time, a second exception path is initiated and the 

process is terminated with %RETURN statement. 

%macro dostuff(); 

%global residue; 

%let residue=; 

data somedata; 

  set mydataissobig; 

run; 

%if %sysevalf(&syserr>0) %then %let residue=dostuff; 

%mend; 

 

%macro dootherstuff; 

%mend; 

 

%macro control(); 

%dostuff; 



%dootherstuff; /* a macro not dependent on success of DOSTUFF macro */ 

%if %sysevalf(%length(&residue)>0) %then %do; 

  %&residue; 

  %end; 

%if %sysevalf(%length(&residue)>0) %then %return; 

%put Yay it worked!; 

%mend; 

 

%control; 

In the above example, the macro variable RESIDUE is a toggle that solely represents the status of the completion of 

the DOSTUFF macro. However, flags also can be space- or comma-delimited lists that contain numerous toggle 

values, or they can be updated with performance metrics that track reattempts or error codes. Similar to the busy-

waiting method, because there is no guarantee that a process will succeed even after numerous reattempts, a 

second exception path should exist to ensure that a deadlock is not created. 

IV. PARTIAL SUCCESS 

Sometimes in emergency medicine, while the patient may be saved, lasting disfigurement, disability, or ailments may 

persist. This occurs in the stroke patient who never regains use of his left arm, or the auto accident victim who is 

pulled from the wreckage but who loses an index finger. Software can encounter similar circumstances in which some 

segment of business value is lost while the remainder can be saved. Common patterns include when missing, 

corrupt, or otherwise invalid values, observations, data sets, or files are encountered. For example, a SAS program 

that ingests Oracle tables over a network connection might ingest 15 of 17 correctly but have unspecified issues with 

the remaining two tables. And, if business rules dictate that subsequent processing should continue on those 15 data 

sets then, while business value and functionality are reduced, they are not eliminated. Thus, losing a digit isn't the 

end of the world, especially if the hand can be saved. 

As a data analytic development application, Base SAS is much more likely to rely on data injects than other inputs. 

Thus, in robust infrastructures, quality control constraints should be applied to values, observations, data sets, and 

other ingested files. Where possible, business rules should be encoded to enforce the structure, format, content, 

completeness, quantity, and other aspects of quality for all dynamic injects into a robust system. Moreover, business 

rules additionally should prescribe how deviations from the expected norms will be handled, with common outcomes 

including data deletion, imputation, or modification to a default value. Thus, when encountering a missing value, 

exception handling routines could delete, impute, or modify its value—or delete, impute, or modify the entire 

observation—or delete, impute, or modify the entire data set, and so forth. 

A missing value, observation, data set, or file typically imparts no value or functionality. When values are missing or 

invalid, statistical imputation methods can replace the value with a likely one. SAS and other literature are replete with 

differing methodologies for imputation and, while not demonstrated in this text, these techniques can be woven into 

exception handling routines to ensure that maximum utility is garnered from data. In other cases, rather than 

dynamically or statistically imputing a new value, for simplicity, the value merely is deleted or set to a missing or 

unknown value. Similar to the artichoke example above, the following code validates the categorical variable Food 

against a list of acceptable values. If Food is invalid, it is set to missing using traditional conditional logic. 

data food; 

 length food $20; 

 food="burritto"; /*representing invalid data due to misspelling */ 

 output; 

 food="chimichanga"; 

 output; 

run; 

 

%let validlist="burrito","enchilada","taco","chimichanga"; 

data final_food; 



 set food; 

 if lowcase(food) not in (&validlist) then food=""; 

run;   

And, if business rules instead dictate that a missing or invalid value necessitates deletion of the entire observation, 

the following modified DATA step can be implemented. 

data final_food; 

 set food; 

 if lowcase(food) not in (&validlist) then delete; 

run; 

Thus, very simple conditional logic that prescribes quality control techniques often can be considered a form of 

exception handling. While these examples demonstrate the business rules in the code itself, in some instances, this 

logic can be extrapolated to a hash object, lookup table, or an external control table to accomplish the same result. In 

a separate text, the author demonstrates external control tables that drive conditional logic to validate and 

standardize categorical values.
x
  

In some cases, not only an observation but rather an entire data set is missing or corrupt. This often spells disaster 

and the process or program must terminate. However, as in the above example in which business value still can be 

conferred by 15 out of the total 17 Oracle tables, processing can continue so long as no statements or processes are 

executed subsequently that are dependent on the invalid or missing file. Consider the following initial example in 

which no exception handling routines are applied. Three data sets Perm_One, Perm_Two, and Perm_Three are to be 

created from three temporary data sets One, Two, and Three, respectively. Yet, an exception is encountered 

because data set Two is missing, a likelihood that should been anticipated and handled in more robust code.  

data One; 

 x=1; 

run; 

data Three; 

 x=3; 

run; 

 

%macro wrapper(filelist=); 

%let i=1; 

%do %while(%length(%scan(&filelist,&i))>1); 

 %let fil=%scan(&filelist,&i); 

 data Perm_&fil; 

     set &fil; 

 run; 

 %let i=%eval(&i+1); 

 %end; 

%mend; 

 

%wrapper(filelist=One Two Three); 

When executed, because data set Two does not exist, the following log and error are produced.  

NOTE: There were 1 observations read from the data set WORK.ONE. 

NOTE: The data set WORK.PERM_ONE has 1 observations and 1 variables. 

NOTE: DATA statement used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.02 seconds 

 

ERROR: File WORK.TWO.DATA does not exist. 

  



NOTE: The SAS System stopped processing this step because of errors. 

WARNING: The data set WORK.PERM_TWO may be incomplete.  When this step was stopped 

there were 0 observations and 0 variables. 

WARNING: Data set WORK.PERM_TWO was not replaced because this step was stopped. 

NOTE: DATA statement used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.01 seconds 

 

 NOTE: There were 1 observations read from the data set WORK.THREE. 

 NOTE: The data set WORK.PERM_THREE has 1 observations and 1 variables. 

 NOTE: DATA statement used (Total process time): 

       real time           0.01 seconds 

       cpu time            0.01 seconds 

Moreover, the log indicates that despite this error, a dummy data set Perm_Two still was created, although it contains 

0 observations and 0 variables. In some situations, this could cause subsequent, dependent processes to fail 

because they might attempt to utilize Perm_Two, believing it to be a valid data set. Thus, if the above error were 

produced, the Perm data sets most likely would need to be deleted before reattempting to execute the program with 

improvements that included additional exception handling to account for missing data sets. 

The following improvements now anticipate that under exceptional circumstances a data set could be missing, thus  

the process—the second iteration of the DATA step—is skipped by a priori exception handling that determines its 

prerequisite requirements are not met. 

data one; 

run; 

 

data three; 

run; 

 

%macro testdata(lib=, dsn=); 

 %global err; 

 %let err=library or data set does not exist; 

 %if (%sysfunc(libref(&lib))=0 and 

  %sysfunc(exist(&lib..&dsn))^=0) %then %let err=; 

%mend; 

 

%macro newwrapper(filelist=); 

%let i=1; 

%do %while(%length(%scan(&filelist,&i))>1); 

 %let fil=%scan(&filelist,&i); 

 %testdata (lib=work, dsn=&fil); 

 %if %length(&err)=0 %then %do; 

  data Perm_&fil; 

      set &fil; 

  run; 

  %end; 

 %let i=%eval(&i+1); 

 %end; 

%mend; 

 

%newwrapper(filelist=); 

In Section One, an example demonstrated the creation of a control table from scratch if the file were missing. This is 

not only seamless but also an ideal way to initialize control tables when they are first utilized (e.g., perhaps in a new 

environment) and, because the file never existed before, no business value is lost. However, if a file becomes 



corrupted either through invalid user entry or process failure and needs to be deleted, this represents a loss of 

functionality, especially where process metrics or user customizations had been recorded and are now lost. A goal 

thus becomes to attempt to automatically salvage these files if only some of their components are invalid. 

The following configuration file represents the text file config.txt designed to dynamically alter the values (LEV1 and 

LEV2) in a SAS HTML stoplight report (not included.) Thus, the value LEV1 (i.e., green) will be ingested and 

instantiate the macro variable LEV1 so that it can dynamically color the report. 

<STOPLIGHT> 

lev1: green 

lev2: very light red 

<OTHERSTUFF> 

blah blah blah 

Config.txt is ingested with the following code and, if the values for LEV1 or LEV2 cannot be validated, they are 

overwritten with acceptable default values (i.e., green and red.) User error also could have omitted (or misspelled) the 

STOPLIGHT header, in which case both LEV1 and LEV2 would revert to their respective default values. Thus, 

business value may be slightly diminished (because the user-defined values are lost) but the program nevertheless 

continues undaunted and produces the stoplight reporting. 

%global lev1; 

%global lev2; 

data _null_; 

 length tab $100 category $8 lib $8 loc $32 lev1 $20 lev2 $20; 

 infile "&basedir.test/config.txt" truncover; /* &basedir must be set first */ 

 input tab $100.; 

 if _n_=1 then do; 

  lev1=""; 

  lev2=""; 

  end; 

 if upcase(tab)="<STOPLIGHT>" then category="stop"; 

 else do; 

     if category="stop" then do; 

  if strip(lowcase(scan(tab,1,":")))="lev1" 

   then call symput("lev1",strip(scan(tab,2,":"))); 

  if strip(lowcase(scan(tab,1,":")))="lev2" 

   then call symput("lev2",strip(scan(tab,2,":"))); 

        end; 

     end; 

 retain category; 

run; 

 

%macro validate(); 

%let colorwheel=green, orange, red, very light red; 

%let i=1; 

%let lev1valid=0; 

%let lev2valid=0; 

%do %while (%length(%scan(&colorwheel,&i))>1); 

 %if &lev1=%scan(&colorwheel,&i) %then %let lev1valid=1; 

 %if &lev2=%scan(&colorwheel,&i) %then %let lev2valid=1; 

 %let i=%eval(&i+1); 

 %end; 

%if &lev1valid=0 %then %let lev1=green; /* sets to default if invalid or missing */ 

%if &lev2valid=0 %then %let lev2=red; /* sets to default if invalid or missing */ 

%mend; 

 



%validate; 

In all cases, assessment of business rules followed by careful examination of program flow can elucidate process 

paths that can continue, even after software has encountered grave exceptions. Understanding of process 

prerequisites, requirements, and dependencies is key to designing and implementing models that can allow software 

to recover full or partial functionality. Notwithstanding, in some instances, a missing or invalid file or field or some 

other exception does necessitate that the process or program be terminated. Thus, the final two sections reflect 

methods that can facilitate graceful process and program termination. 

V. PROCESS TERMINATION 

Sometimes when all hope is lost for one process, this doesn't mean that hope in general is lost. When confronted with 

a patient presenting uncontrolled bleeding, the common mnemonic DEPT instructs that direct pressure, elevation, 

pressure points, and tourniquet be applied to stop bleeding. Thus, when transporting a trauma patient with severe 

brachial hemorrhaging, under many protocols, a tourniquet is quickly applied. The injury is not ameliorated, but the 

temporary solution allows EMS providers to redirect attention to assessment and treatment of other injuries. Thus, the 

tourniquet represents a temporary stopgap until additional emergent care can be provided at the hospital. 

Process termination reflects that some module—one or a collection of DATA steps, procedures, or macros—must 

terminate prematurely and cannot complete, thus eliminating its business value. It also reflects that program flow 

continues to another independent process after the exception is encountered. Thus, the exception handling 

framework automatically places a tourniquet on the exceptional module, allowing focus and functionality to continue 

elsewhere. In procedural languages like SAS, process delimiters can be vague, undefined, or nonexistent but, to the 

extent that code can be organized and modularized by function or other attribute, modularity can be increased, thus 

helping isolate damage caused by exceptions and errors. This is akin to applying a tourniquet close to the wound to 

prevent unnecessary tissue damage elsewhere. 

In Section Four, examples demonstrated that processing often can continue if a value, observation, data set, or file is 

missing, corrupt, or otherwise invalid. In other cases, however, a missing data set might require process termination. 

The exception can be handled through a priori methods that test prerequisite conditions for the process, in essence 

deducing whether it will succeed, or through post hoc methods that test error codes, return codes, or process 

outcome requirements after the process has completed. These methods also have been distinguished in literature in 

that a priori testing is equivalent to "error proofing," whereas post hoc testing represents "error checking.
xi
" Often, a 

combination of both methods is required to produce software that both flexibly avoids and responds to exceptions. 

The following example introduces a priori conditional logic that bypasses the macro EXITEARLY if the data set 

Churro does not exist, allowing program flow to continue to the NICEDAY macro. Functionality is diminished because 

Churro could not be sorted, but at least the user receives a pleasant message in the log that brightens his day, since 

the NICEDAY macro still can complete. 

%macro exitearly(); 

%if %sysfunc(exist(work.churro))^=0 %then %do; /* if data set exists */ 

 proc sort data=churro; 

  by cinnamon sugar; 

 run; 

 %end; 

%else %put Something aint right!; 

%mend; 

 

%macro niceday(); 

%put have a nice day!; 

%mend; 

 

%exitearly; 

%niceday; 



The above example could also be accomplished through use of the SAS macro %GOTO statement. 

%macro exitearly(); 

%if %sysfunc(exist(work.churro))=0 %then %goto exit; 

 proc sort data=churro; 

  by cinnamon sugar; 

 run; 

%exit: %put Something aint right!; 

%mend; 

Both examples produce a warning message to the log that "something ain't right" but, in fact, the second code itself 

ain't right! Because the SAS label EXIT lies in the path of the program flow—directly following the SORT procedure—

it executes regardless of the value of the EXIST function, thus printing the warning message whether the SORT 

procedure is executed or not. For this reason, while %GOTO statements can be useful if not necessary in a 

procedural language like SAS, the assignment of process metrics (such as specific return codes or log messages) 

typically should be handled immediately after the exception is detected rather than in the subsequent label statement. 

The following code now correctly assigns a brief description of the exception—if the data set is missing, contains no 

observations, or the sort variable is missing—to the global macro variable AINTRIGHT, which can be parsed in 

subsequent processes. 

data nochurro; 

run; 

 

data churro; 

 length cinnamon $10; 

 cinnamon="numnumnum"; 

 output; 

 cinnamon="so sweet"; 

 output; 

run; 

 

%macro exitearly(dsn=, sortby=); 

%global aintright; 

%let aintright=; 

%if %sysfunc(exist(&dsn))=0 %then %do; 

 %let aintright=Missing data set; 

 %goto exit; 

 %end; 

%let dsid=%sysfunc(open(&dsn, i)); 

%let varnum=%sysfunc(varnum(&dsid, &sortby)); 

%let num=%sysfunc(attrn(&dsid, nvars)); 

%let buhbye=%sysfunc(close(&dsid)); 

%if %eval(&num=0) %then %do; 

 %let aintright=No Observations; 

 %goto exit; 

 %end; 

%if %eval(&varnum=0) %then %do; 

 %let aintright=Sort variable missing; 

 %goto exit; 

 %end;  

proc sort data=&dsn; 

 by &sortby; 

run; 

%exit:; 

%mend; 



 

%exitearly(dsn=churro, sortby=cinnamon); 

%put RC: &aintright; 

When executed, the above code correctly sorts the Churro data set and produces an empty return code, the global 

macro AINTRIGHT. To be clear, this return code does not signify process success, but rather demonstrates that all 

listed a priori process prerequisites were met and that the process execution started. 

NOTE: There were 2 observations read from the data set WORK.CHURRO. 

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables. 

NOTE: PROCEDURE SORT used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.02 seconds 

        

%put RC: &aintright; 

RC: 

And, when executed with the Churro data set but a misspelled sort variable CINNAMONNN, the macro correctly 

detects the sort variable CINNAMON is missing and exits with the appropriate return code. 

%exitearly(dsn=churro, sortby=cinnamonnn); 

%put RC: &aintright; 

RC: Sort variable missing 

And, when executed with the Nochurro data set, the macro correctly detects that no observations exist, and exits with 

the appropriate return code. 

%exitearly(dsn=nochurro, sortby=cinnamon); 

%put RC: &aintright; 

RC: No Observations 

And, finally, when executed with a spurious data set Spurious that does not exist, the macro correctly detects that the 

data set is missing and exits with the appropriate return code. 

%exitearly(dsn=Spurious, sortby=cinnamon); 

%put RC: &aintright; 

RC: Missing data set 

The above examples demonstrate some of the exceptions that can be anticipated if something is awry within the data 

set. And, in an actual production system, the AINTRIGHT return code would be used thereafter to dynamically alter 

program flow and would never simply be printed to the log. But, thinking outside the box, what if something is wrong 

with the macro invocation itself? For example, if two tokens—CINNAMON and BUN—are supplied in the SORTBY 

parameter rather than just one, the code ultimately should fail because BUN is not in the data set. However, the code 

fails sooner because the VARNUM function is provided two variables but expects only one. 

WARNING: Argument 2 to function VARNUM referenced by the %SYSFUNC or %QSYSFUNC 

macro function is out of range. 

NOTE: Mathematical operations could not be performed during %SYSFUNC function 

execution. The result of the operations have been set  

      to a missing value. 

ERROR: Variable BUN not found. 

 

NOTE: The SAS System stopped processing this step because of errors. 

NOTE: PROCEDURE SORT used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.01 seconds 

        



%put RC: &aintright; 

RC: 

This highlights the need to make macros that are as dynamic as possible, for example, accepting a space- or 

comma-delimited parameter for one (or more) variables, rather than assuming that the data set will only be sorted by 

a single variable. Exception handling routines also must especially guard against the possibility of unwanted variance 

when macro parameters are passed. The above error also demonstrates that the return code AINTRIGHT, which 

subsequent processes might be using to determine if the macro succeeded, does not record this new, unanticipated 

error. This highlights the need to always include a final post hoc check of the automatic macro variable SYSCC to 

assess if anything went wrong in the program, at which point a generic error return code can be generated. Validation 

of macros and their parameters to facilitate robustness is discussed thoroughly throughout SAS literature. 

When the process does succeed—as in the first of the above four examples—the empty return code should be used 

by other processes to demonstrate that anticipated exceptions did not occur in this macro. However, because no post 

hoc testing ensured that the SORT procedure completed without error, the empty return code still does not 

demonstrate or guarantee process success. To accomplish this, an additional test of the SAS automatic macro 

variable SYSERR (or SYSCC) would need to occur after the SORT procedure. This would allow the exception 

handling framework to account for exceptions arising from failures—from memory errors or other reasons—during the 

SORT procedure itself. 

A benefit of a priori testing is that no error is produced; however, this also requires the anticipation of specific 

exceptions, so business rules should be established that specify minimum requirements to execute a process. Over 

time, developers may notice that they are reusing the same chunks of exception handling code throughout various 

processes and programs. This is good, as it allows for standardization of code but, to the extent possible, reusable 

code should be modularized into separate macros that essentially can operate as functions. For example, in the 

above scenario, because testing for a missing data set or a data set that has no observations is such a common 

quality control technique, these two functions might be wrapped in a single macro that can be saved for posterity.  

Post hoc exception handling involves the testing of SAS warning and error codes and messages that were generated 

by a DATA step, procedure, statement, or process, as well as testing of return codes generated by a priori exception 

handling routines. Because an exception can occur unexpectedly at any moment, SAS software that demands high 

reliability should contain post hoc testing at the close of each boundary or process to confer whether it completed 

successfully or not. While typically post hoc testing often is conceptualized to evaluate the process that completed, 

just as SAS users sometimes painfully parse the SAS log, it also can evaluate a product that was created during a 

process. Thus, just as quality control routines were demonstrated in previous sections to evaluate the validity of data 

and other injects, these same quality control routines can evaluate data products for validity after a process has 

concluded. Thus, business rules often should specify both the prerequisite requirements that must be met to allow a 

process to initiate and a checklist that specifies what requirements must be met to signify process completion. 

When a process must be terminated abruptly, cleanup of the environment may sometimes be required, although 

typically this cleanup can be minimized or eliminated—as well as automated—through development best practices. 

Cleanup can include such operations as deleting folders or data sets that were created, or reverting a control table 

back to pre-failure (or pre-exception) conditions. The goal of cleanup is to ensure that the environment was not 

harmed by the exception, as well as to ensure that when the software is executed again, it will not fail due to some 

lingering consequence of the exception. In a separate text, the author discusses best practices for developing SAS 

code that supports efficient recoverability and which does not require environment cleanup
xii

. Consider the following 

code in which the data set Churro now is created and sorted inside the macro ETL, which simulates a much more 

complex ETL process. 

%macro etl(); 

data churro; 

 length cinnamon $10; 

 cinnamon="numnumnum"; 

 output; 

 cinnamon="so sweet"; 

 output; 



run; 

%if &syserr^=0 %then %return; 

proc sort data=churro; 

 by cinnamon; 

run; 

%if &syserr^=0 %then %return; 

%put SUCCESS!; 

%mend; 

 

%etl; 

The code features no a priori exception handling routines, but does verify process success after both the DATA step 

and subsequent SORT procedure. And, in the above example, the code executes perfectly. 

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables. 

NOTE: DATA statement used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.01 seconds 

        

NOTE: There were 2 observations read from the data set WORK.CHURRO. 

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables. 

NOTE: PROCEDURE SORT used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.00 seconds 

 

SUCCESS! 

However, if the data set Churrrro is misspelled in the SORT procedure, immediately after the procedure fails, the 

%RETURN macro function exits the macro, thus bypassing the proclamation of success. 

NOTE: The data set WORK.CHURRO has 2 observations and 1 variables. 

NOTE: DATA statement used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.00 seconds 

 

ERROR: File WORK.CHURRRRO.DATA does not exist. 

 

NOTE: The SAS System stopped processing this step because of errors. 

NOTE: PROCEDURE SORT used (Total process time): 

      real time           0.00 seconds 

      cpu time            0.00 seconds.  

In reality, an exception in a robust ETL infrastructure would be more likely caused by dynamic data injects rather than 

a misspelled data set name, but this error simulates the type of "leftovers" that failed SAS processes can create that 

can cripple or clog the environment. Subsequent procedures might expect Churro to be sorted, assess that the data 

set exists, and fail because it is not actually sorted. Thus, under certain business rules, one option would be to delete 

and recreate the Churro data set if the SORT procedure does not complete correctly. 

Also demonstrated in the above example, the SAS macro statement %RETURN (and its equivalent RETURN 

statement) is commonly implemented to terminate processing and return functioning to a higher level. The 

%RETURN statement causes termination of the current macro
xiii

, while the RETURN statement causes the DATA 

step to return functioning to the start of the DATA step or, if implemented, to the line after the LINK statement.
xiv

 

Because the %RETURN statement is easily recognizable and can be implemented effectively in a single line of code 

without the convolutions of %GOTO statements, it often is utilized (as above) in literature to represent program 

termination within exception handling routines. However, because %RETURN exits the macro abruptly, return code 

assignment or other cleanup must occur before its use. 



Because the goal of exception handling is to maximize software functionality, performance, and value, modules 

unrelated to a failed process usually should continue to execute if they can continue to provide some business value. 

As programs grow in complexity, it may become difficult to code business rules in a coherent or readable fashion, 

much less to organize rules that accurately reflect all requirements and dependencies of each. To further this goal, a 

separate text by the author demonstrates the use of control tables to drive fuzzy logic algorithms that automatically 

prescribe which processes can and should execute based on factors such as process priority or prerequisite process 

completion.
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 Although outside the scope of this text, these methods provide for straightforward creation, tracking, 

modification, and implementation of complex business rules, facilitated through data-driven processing, thus ensuring 

the maximum amount of juice is squeezed from each SAS program, even when exceptions are encountered. 

VI. PROGRAM TERMINATION 

Not every patient can be saved. While no attempt is made to resuscitate a room temperature victim presenting rigor 

mortis, patient respect and protocols remain paramount. A sheet is pulled and various authorities are notified or 

summoned. Thus, even in death, EMS protocols specify final steps that must be taken. Program termination similarly 

differs from process termination only in that execution ceases when the exception is encountered. This usually 

represents the effort to fail gracefully when it becomes apparent that no functionality or business value can be 

delivered. When prudent, the foregoing exception handling paths should have been considered before the decision to 

terminate the program. But, when termination is inevitable, attention should turn to ensuring that the failure will be 

graceful, not damage the execution environment, and will provide meaningful return codes and other diagnostics to 

aid developers in future investigation and resolution, especially where the exception was unanticipated or unknown. 

The SAS system option ERRORABEND—counterpoint to the default system option NOERRORABEND—is the 

option most synonymous with program termination. SAS documentation states the following regarding its use: "Use 

the ERRORABEND system option with SAS production programs, which presumably should not encounter any errors
 

.
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" The difficulty with implementing ERRORABEND in a single program is that because it abruptly terminates the 

program, any custom exception handling routines designed to guide the software to a graceful termination are never 

executed. Thus, checking for post hoc errors is pointless in an ERRORABEND environment because the SAS 

processor will catch the error and terminate before SYSERR or SYSCC are read by exception handling routines. 

The benefits of ERRORABEND, as detailed thoroughly in Denis Cogswell's text, are that in a production environment 

in which a controller program is spawning successive processes in other programs, the spawned programs will abort 

immediately following an error, but control will return to the controller.
xvii

 Thomas Billings, a great proponent of 

infusing SAS software with exception handling, refers to use of ERRORABEND as "a high risk situation" when he 

describes exception handling implementation in both Enterprise Guide and Batch modes. Moreover, because 

significant differences exist in how the option functions in SAS Batch and other modes, he goes on to recommend 

using ERRORABEND only in Batch mode.
xviii

 Thus, in some limited situations, the use of ERRORABEND is 

warranted; however, robust infrastructure in production environments can and should implement exception handling 

routines that far surmount the violent termination dictated by the ERRORABEND option. 

The SAS macro statement %ABORT and its equivalent SAS statement ABORT are the statements most synonymous 

with program termination
xix

. Invoking %ABORT with optional arguments causes program termination and return to the 

SAS operating environment and, because %ABORT can be utilized in conditional logic statements, it can gracefully 

direct a program to terminate after identification of an exception. As a caution, and like the ERRORABEND option, 

both %ABORT and ABORT statements are environment-specific and thus can produce unintended and problematic 

results if not tested thoroughly in all intended SAS environments. Billings thoroughly summarizes the %ABORT 

arguments ABEND, CANCEL, and RETURN, and highlights the discrepancies that exist among these.
xx

 

In the default (and generally recommended) NOERRORABEND environment, use of ABORT or %ABORT is required 

to stop a program because, despite encountering an error, the SAS processor will only terminate the offending DATA 

step, procedure, or macro, and will proceed to execute all subsequent processes. In Section Five, the EXITEARLY 

macro demonstrated the use of a priori exception handling to test for unanticipated exceptions (e.g., a missing data 

set, empty data set, or missing sort variable), but failed when an unanticipated exception—an extra token passed in 

the SORTBY parameter—occurred. Unanticipated exceptions often are best handled with use of %ABORT and, by 

modifying the EXITEARLY code by inserting a few lines between %EXIT and %MEND, this can be accomplished. 



 

...additional code from above... 

%exit:; 

%if %eval(&syscc>0) %then %do; 

 %let aintright=unanticipated exception; 

 %abort abend; 

 %end; 

%mend; 

 

%exitearly(dsn=churro, sortby=cinnamon bun); 

%put RC: &aintright; 

When executed, the above code does produce an error but, because this exception is now adequately handled, it 

terminates the program before the %PUT statement, which in a realistic scenario would represent subsequent, 

dependent code that would have failed because of this error. 

%exitearly(dsn=churro, sortby=cinnamon bun); 

WARNING: Argument 2 to function VARNUM referenced by the %SYSFUNC or %QSYSFUNC 

macro function is out of range. 

NOTE: Mathematical operations could not be performed during %SYSFUNC function 

execution. The result of the operations have been set  

      to a missing value. 

ERROR: Variable BUN not found. 

  

NOTE: The SAS System stopped processing this step because of errors. 

NOTE: PROCEDURE SORT used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.02 seconds 

 

ERROR: Execution terminated by an %ABORT statement. 

Moreover, the revised code now creates a return code AINTRIGHT that accurately reflects both anticipated and 

unanticipated exceptions, and which can be utilized in subsequent processes to drive program execution. And, if an 

unexpected error occurs that has not been uniquely handled, the program terminates immediately to allow developers 

to investigate the error. In the above scenario, developers would quickly realize that robust code would need to 

additionally include exception handling routines that validate all parameters passed to the macro, and potentially also 

the capability to perform multi-variable sorts. Thus, as processes mature over time, they will anticipate increasingly 

more types of exceptions that can occur. This continuous quality improvement (CQI) is a necessary component of 

any robust exception handling framework, and the reason it is a living, breathing entity. 

COMMUNICATION 

Exception handling routines require a mix of both internal and external communication to function. Internal 

communication includes warning and error codes that are generated by the SAS processor, SAS automatic macro 

variables, exception handling return codes, and, to a lesser extent, control tables or other external files that can foster 

communication between concurrent sessions of SAS that are running. Warning and error codes can be dramatically 

reduced by implementation of a priori testing described previously, but not always eliminated. They also can never 

guarantee that a process has succeeded, thus, if that assurance is required before passing program control to 

subsequent, dependent process, a post hoc test also is required. 

The number and comprehensive nature of SAS automatic macro variables grow with each new software release, 

allowing SAS software to be even more flexible and responsive to changing environments, system states, file states, 

and dynamic injects. Understanding these variables is invaluable to developing exception handling routines that can 

assess exceptional states. The authoritative list of all SAS automatic macro variables is found at SAS® 9.4 Macro 
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 and its understanding and implementation are essential to developing 

reliable, robust software.  

Control tables, configuration files, and other permanent files offer additional communication advantages in 

coordinating exception handling frameworks. While error codes and return codes can perish when a SAS process, 

program, or session is terminated, permanent files can save this information across sessions. Thus, if the SAS server 

is disconnected suddenly, an exception handling framework will do little good because execution ceases when SAS 

is terminated. Even if SAS global macro variables had been tracking software performance, their values would be lost 

with the server crash. Tracking software performance—including both successes and failures—in a permanent 

location like a control table thus can offer a substantial advantage. These metrics typically can be accessed when the 

SAS server is restored and, in many cases, can improve performance during the recovery period as software begins 

to churn again. A second major benefit of using permanent files to record process and performance metrics is the 

ability for multiple users or programs to access those data simultaneously. Thus, a control table accessed by multiple 

SAS sessions effectively allows those sessions to concurrently speak to each other because they are able to pass 

messages. 

Like the greater body of exception handling, return codes also should be used to drive dynamic functioning rather 

than simply print information to the log. In the final EXITEARLY macro example, the return code (macro variable 

AINTRIGHT) records the first (if any) exception encountered and can be used effectively in subsequent processes to 

assess completion status of this macro. To improve readability in this text, however, the only demonstrated 

subsequent use of AINTRIGHT was the %PUT statement that printed its value to the log; however, this statement is 

understood to represent subsequent, dependent processes that would rely on AINTRIGHT to further drive program 

control. Thus, while SAS literature may often reflect return codes that are created only to be spat out to the log, this 

practice occurs hopefully only to provide less complex, more comprehensible examples. In production environments, 

return codes that are only printed to the SAS log are of little use and should instead be incorporated into data-driven 

processing routines. 

The above communication all occurs—during both exceptional and normal processing—within SAS code and without 

the awareness of developers, users, or other stakeholders. While return codes and other process and performance 

metrics can be output to the log, this practice is best saved for development and test environments—not production. 

Thus, external communication encompasses information shared between software and stakeholders during and after 

program execution. External communication typically is unidirectional, conveying process and performance metrics to 

stakeholders, either in real time or after process or program completion or termination. In some cases, users are able 

to modify configuration files which in turn communicate data-driven "commands" to a SAS process, which can 

dynamically alter its execution in near-real-time. Most external communication, however, informs developers and 

users how or how well their code executed. 

The log can be a strong ally to exception handling routines, as process and performance metrics can be passed. 

However, exceptions that can be anticipated generally should not pass remarks to the log—after all, if an exception 

can be imagined, clearly defined exception paths should prescribe subsequent program control, so the log need not 

be parsed. Thus, in production systems, the only use of the log should be to drive CQI efforts because the log will 

have recorded events surrounding new, unanticipated exceptions that were either not handled or which were handled 

only through generic exception routines. For example, an original exception handling routine might only detect if any 

error occurs, but this routine refined over time might direct specific handling in the event that a memory-related error 

occurs. Thus, the log can be used to make exception handling routines more robust and meaningful. Several SAS 

texts demonstrate the benefits and ease of automated processes that save, parse, display, and archive logs for 

developers, and this automation of log activities should be considered the standard in any production environment. 

Other advanced methods for communication of exceptions include automatically sending emails or even playing a 

tone or song, as demonstrated separately by David Fielding
xxii

 and Ann Olmsted
xxiii

. As mentioned above, control 

tables also are an excellent method to archive process metrics (including warnings and errors) because they persist 

after the SAS session is terminated. Moreover, reports that can be automatically generated from control tables 

represent a proven method for tracking software functionality and performance. An added benefit of routines that print 

static reports from dynamic control tables is that this eliminates the possibility that a developer will accidentally modify 

or delete the control table, or that the table will be locked and prevent other processes from accessing it. 



BUT DON'T INTRODUCE MORE EXCEPTIONS DURING EXCEPTION HANDLING! 

Throughout this text, the complexity of business rules that prescribe exception handling routines has been 

demonstrated. Care must be taken to ensure that in this complexity, however, additional exceptions or errors are not 

introduced. Testing represents a critical component of any exception handling framework and should accompany 

each new exception path as it is designed and developed. Smoke detectors are tested regularly to demonstrate they 

are functional and in fact providing their advertised and expected level of protection and, similarly, all exception 

handling routines must be demonstrated to be valid and effective if they are to be depended upon. 

The following macro, reprised from above, instructs SAS to sleep for ten seconds and functions in both Windows and 

UNIX environments—with one exception—the CALL SLEEP function has been misspelled this time. 

%macro test();  

%if &SYSSCP=WIN %then %let sleeping=%sysfunc(sleep(10));  

%else %if %sysfunc(substr(&SYSSCP,1,3))=LIN %then %do;  

 data _null_;  

   call sleeeep(10,1); /* oops somebody made a spelling error */ 

 run;  

 %end;  

%else %put System is neither Windows nor UNIX; 

%mend; 

 

%test; 

The savvy SAS practitioner may have thought he was making his code more flexible and portable but, in releasing 

production code that contained this error, he only succeeded in demonstrating that his code had never been tested in 

a UNIX environment. 

%test; 

NOTE: Line generated by the invoked macro "TEST". 

data _null_;     call sleeeep(10,1);   run; 

                      _______ 

                      251 

ERROR 251-185: The subroutine SLEEEEP is unknown, or cannot be accessed. Check your 

spelling.  

          Either it was not found in the path(s) of executable images, or there was 

incorrect or missing subroutine descriptor information. 

  

NOTE: The SAS System stopped processing this step because of errors. 

NOTE: DATA statement used (Total process time): 

       real time           0.04 seconds 

       cpu time            0.04 seconds 

This underscores the importance of testing every exception path that is developed to ensure that it does function as 

intended and does not accidentally introduce additional errors in software. Because SAS data analytic development is 

data-centric, many of the complexities encountered in SAS that produce exceptions arise from dynamic injects, 

including variability observed in values, observations, data sets, and files. Thus, even when an exception path is 

tested, tried, and true, a slight variation in its throughput injects could reveal logic errors or other code defects that 

have been hidden. 

As one example, variations of the following code are found throughout SAS literature as a demonstration of how to 

determine if a data set has zero observations. And, typically this yields the correct number. 

%macro empty(dsn=); 

%global nothin; 

%let nothin=; 



proc sql noprint; 

 select count(*) into :nobs from &dsn; 

quit; 

run; 

%if %eval(&nobs=0) %then %let nothin=EMPTY; 

%else %let nothin=FULL; 

%mend; 

 

data Somethinghere; /* contains 1 field */ 

 a=5; 

run; 

 

data Nothinghere; /* contains no fields */ 

run; 

 

%empty(dsn=Somethinghere); 

%put NOTHIN: &nothin; 

Given the existence of the data set Somethinghere which has one observation, this produces the correct output 

FULL, indicating that the data has at least one observation. But, when the macro EMPTY is executed to examine the 

data set Nothinghere (containing no observations or fields), the SQL procedure and subsequent statements crash. 

%empty(dsn=Nothinghere); 

ERROR: Table WORK.NOTHINGHERE doesn't have any columns. PROC SQL requires each of 

its tables to have at least 1 column. 

NOTE: PROC SQL set option NOEXEC and will continue to check the syntax of 

statements. 

NOTE: The SAS System stopped processing this step because of errors. 

NOTE: PROCEDURE SQL used (Total process time): 

      real time           0.01 seconds 

      cpu time            0.02 seconds 

        

WARNING: Apparent symbolic reference NOBS not resolved. 

WARNING: Apparent symbolic reference NOBS not resolved. 

ERROR: A character operand was found in the %EVAL function or %IF condition where a 

numeric operand is required. The condition was:  

        &nobs=0  

ERROR: %EVAL function has no expression to evaluate, or %IF statement has no 

ondition. 

ERROR: The macro EMPTY will stop executing. 

%put Nothin: &nothin; 

Nothin: 

Thus, not only did the SQL procedure fail but, when it did, it caused the macro variable NOBS not be created, which 

in turn caused the following macro %IF and %EVAL statements to fail. Failure begets failure and all because some 

SAS practitioner tried to do the right thing and implement exception handling routines to test process prerequisites—

in this case, the common requirement that a data set contain at least one observation. This underscores the 

necessity that if exception handling routines are going to be implemented, they cannot be depended upon until all 

exception paths have been tested and additionally until all paths have been tested with the full spectrum of variation 

they are intended to handle. And, because the full spectrum of variation is likely unknown at project conception and 

throughout development, even the highest quality software invariably is released with defects that are overcome only 

through later discovery and resolution. Additional factors that should be taken into account when counting 

observations in SAS can be found in the seminal text How Many Observations Are in My Data Set?
xxiv

 

 



CONCLUSION 

Where reliable and robust code are warranted, exception handling routines can provide both functionality and peace 

of mind that code will not unexpectedly come to a tumultuous halt. Like emergency medical protocols, exception 

handling routines must follow established business rules that prescribe and sequence exception handling paths and 

responses. These routines often go undetected by users, facilitating functionality in dynamic environments that 

experience both predictable and unpredictable deviations from the norm. Moreover, in many circumstances, all or 

some intended business value can be achieved with exception handling implementation, possibly with only a delay in 

program completion. And, to further the recovery of future functionality and performance, exception handling always 

should capture new and previously undetected exceptions and errors in the hope that through CQI developers can 

incorporate these into future a priori and post hoc testing. 
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