
1

Paper BI-11-2015

The Joinless Join ~ The Impossible Dream Come True;
Expanding the Power of SAS® Enterprise Guide® in a New Way

Kent Y Ronda Team Phelps, The SASketeers, Des Moines, IA

All for SAS and SAS for All

ABSTRACT

SAS Enterprise Guide can easily combine data from tables or data sets by using a Graphical User Interface (GUI)

PROC SQL Join to match on like columns or by using a Base SAS® Program Node DATA Step Merge to match on

the same variable name. However, what do you do when tables or data sets do not contain like columns or the

same variable name and a Join or Merge cannot be used? We invite you to attend our exciting presentation on

the Joinless Join where we teach you how to expand the power of SAS Enterprise Guide in a new way.

We will empower you to creatively overcome the limits of a standard Join or Merge. You will learn how to

design a Joinless Join based upon dependencies, indirect relationships, or no relationships at all between the

tables or data sets. In addition, we will highlight how to use a Joinless Join to prepare unrelated joinless data to

be utilized by ODS and PROC REPORT in creating a PDF. Come experience the power and the versatility of the

Joinless Join to greatly expand your data transformation and analysis toolkit .

We look forward to introducing you

to the surprising paradox of the

Joinless Join.

INTRODUCTION

The tagline for SAS is The Power To Know® and your 'power to know' greatly expands with your ability to

access, combine, and analyze important data from tables or data sets (referred to as tables going forward).

The Power To Know sets off The Power To Create which leads to The Power To Automate ~ much like an

intricate and fluid domino design. However, this power will quickly become disjointed if you do not know how

to effectively Join or Merge tables of data ~ even when the tables do not have a relationship .

Here are 2 questions to ask yourself when analyzing 2 or more tables :

× Do the tables contain like columns or the same variable name which can be utilized in a Join or Merge?

× If the tables do not contain like columns or the same variable name and a standard Join or Merge cannot be

used, have I reached a cavernous and insurmountable Ȭwoe is meȭ research impasse in my data analysis?

2

J There is no need to fear, the Joinless Join is here! J

The Joinless Join will bridge your research impasse and empower you to :

× Creatively overcome the limits of a standard Join or Merge

× Access, combine, and analyze tables for the first time based upon dependencies, indirect relationships, or no

relationships at all

× Open up new worlds of table creations, calculations, validations, and filtrations

× Prepare unrelated joinless data to be utilized by ODS and PROC REPORT

× Increase your ability to detect and resolve errors including hidden errors

× Prevent validation process failure ~ yea! ~ and completely... yes, completely automate your projects

The SAS project in this presentation demonstrates:

The Power To Know how to design a Joinless Join

The Power To Create tables based upon dependencies, indirect relationships, or no relationships at all

The Power To Automate projects even when tables cannot be directly joined or merged

We invite you to journey with us

as we help you

E X P A N D

 the power of SAS Enterprise Guide in a new way.

Brief Overview of Standard PROC SQL Joins and DATA Step Merges

A standard Join or Merge enables you to combine tables side-by-side horizontally by matching related rows. A

like column or the same variable name, with the same attributes and like values, is used to connect the tables and

bring together some or all of each tableȭs contents.

An Inner Join or Merge is a symmetrical process of matching related rows in tables ~ an Inner Join can

match related rows in 2 to 256 tables, and a Merge can match related rows in 2 tables.

 Figure 1. Venn Diagram ɀ Inner Join or Merge

Just traveling along...
side-by-side.

Harry Macgregor Woods

The result of an Inner Join or Merge produces only

matched rows from the tables. The result is illustrated

by the shaded area AB in Figure 1.

3

An Outer Join or Merge is an asymmetrical process of matching related rows in 2 tables. The resulting set of

data also contains unmatched rows from the left, right, or both tables.

Figure 2. Venn Diagram ɀ Left Outer Join or Merge

 Figure 3. Venn Diagram ɀ Right Outer Join or Merge

Figure 4. Venn Diagram ɀ Full Outer Join or Merge

All of these Joins and Merges have an important common denominator ~ each of them requires a like column

or the same variable name for matching. Thus, we now return to the core focus of this presentationȣ

Figure 5. Venn Diagram ɀ Tables Without Like Columns or the Same Variable Name

What do you do when the tables you want to analyze do not contain like columns or the same variable name

(Figure 5) and a standard Join or Merge cannot be used?

 Professor Domino will be our guide J

In the next section
we will

continue
to

follow

The Power To Know

dominoes
to

find
the

answer .

The result of a Left Outer Join or Merge produces

matched rows from both tables while preserving all

unmatched rows from the left table. The result is

illustrated by the shaded areas A and AB in Figure 2.

The result of a Right Outer Join or Merge produces

matched rows from both tables while preserving all

unmatched rows from the right table. The result is

illustrated by the shaded areas B and AB in Figure 3.

The result of a Full Outer Join or Merge produces

matched rows while preserving all unmatched rows

from both tables. The result is illustrated by the

shaded areas A, AB, and B in Figure 4.

4

Illuminating the Paradox of the Joinless Join

The development of the Joinless Join came about during a recent project when the need arose to overcome the

limitations of a standard Join and to resolve unforeseen issues which occurred with a One-Way Frequency.

SAS Highlight

A One-Way Frequency contains a distribution list of values, counts, and percentages for a column.

Here is our SAS Enterprise Guide project example:

× Our project example demonstrates 8 ways to use a Joinless Join.

Sometimes success is seeing
what we already have

in a new light.

Dan Miller

5

The Program Node creates the SMILEY_COMPANY source table:

We design a Program Node to create a source table:

× This is the code you will need to re create th is table.

DATA SMILEY_COMPANY;

 LENGTH Special_Person $ 20 Special_Number 8 Special_Code $ 1 Load_Date 8;

 FORMAT Load_Date date9. ;

 INFILE DATALINES DELIMITER=',' ;

 INPUT Special_Person $ Special_Number Special_Code $ Load_Date;

DATALINES;

Smiley,10127911, ,20090

Smiley's Son,10173341,K,20090

Smiley's Twin,10376606,B,20090

Smiley's Wife,10927911,A,20090

Smiley's Son,11471884,E,20090

Smiley's Twin,11573691,G,20090

Smiley's Daughter,11975386,C,20090

Smiley's Son,12071884,J,20090

Smiley's Son,12871884,D,20090

Smiley's Twin,13173691,A,20090

Smiley's Wife,13771202,D,20090

Smiley's Daughter,13775498,H,20090

Smiley's Son,14171884,I,20090

Smiley's Twin,15373691,F,20090

Smiley's Son,15471884,C,20090

Smiley's Son,16074330,H,20090

Smiley's Daughter,16175498,B,20090

Smiley's Wife,16176964,I,20088

Smiley,16279111,E,20090

Smiley's Twin,16573691,K,20090

RUN;

× The SMILEY_COMPANY table is used

throughout this presentation.

× This table contains each Special

Person, Special Number, and Special

Code of the J Smiley Company J

employees.

× Load_Date is the date when each

row was created.

6

The output table contains 1 row:

× The Special_Code_Flag is set to 1 because the Special_Code is missing from this row.

The output is filtered to include only rows where a flag is set to 1:

This Query creates the SMILEY_CONTROL_VALUE table:

× Please see the Appendix to learn how to create

Computed Columns.

A Control Value table is created in which
Computed Columns are set to 1 if any data
is missing in the SMILEY_COMPANY table:

Special_Person_Flag:
CASE

 WHEN t1.Special_Code = '' THEN 1

 ELSE 0

END

Special_Number_Flag:
CASE

 WHEN t1.Special_Number = 0 THEN 1

 WHEN t1.Special_Number is missing

 THEN 1

 ELSE 0

END

Special_Code_Flag:
CASE

 WHEN t1.Special_Code = '' THEN 1

 ELSE 0

END

Load_Date_Flag:
CASE

 WHEN t1.Load_Date = . THEN 1

 ELSE 0

END

7

A One-Way Frequency is run using the 4 flags:

Here is the One-Way Frequency output with the 4 flags:

× This One-Way Frequency is setup to automatically send an email when this project is run.

4ÈÅÎ ÏÎÅ ÄÁÙ ./4().' ×ÁÓ ÍÉÓÓÉÎÇ ÆÒÏÍ ÔÈÅ 3-),%9ͺ#/-0!.9 ÔÁÂÌÅȣ

× To replicate this scenario you will need to perform the following:

ü Replace the Smiley,10127911, , 20090 DATALINE with Smiley,10127911,A, 20090 in the

SMILEY_COMPANY Program Node on Page 6 and rerun to have no missing data in the table.

ü Rerun the Query for the SMILEY_CONTROL_VALUE table and the Control Value Report One -

Way Frequency.

8

Here is the empty SMILEY_CONTROL_VALUE table:

× Since nothing is missing from the SMILEY_COMPANY table, all of the flags are set to 0 which

filters out all of the rows causing the SMILEY_CONTROL_VALUE table to be created empty.

× Do you know what happens when the SMILEY_CONTROL_VALUE table is created empty?

Note the Red X in the upper left corner
of the One-Way Frequency output:

× At first glance, it appears the report ran correctly ɀ but remember, the input to th e Control

Value Report was created empty.

× If the input is empty, then what are we seeing? Notice the Warning Message which appeared:

× This warning message unfortunately means that we are looking at the previous successful run

of this One-Way Frequency instead of the current results which we are seeking.

9

When the Smiley_Company table processed error free and no data was missing for the first time, it was ironic

that the resulting empty Smiley_Control_Value table caused the One-Way Frequency to not run! Consequently,

the previous results were generated on the monthly report instead of the current results.

Here is a review of the One -Way Frequency issue before we explore the solution:

× When data is missing in the Smiley_Company table a row is created in the Smiley_Control_Value table with

the column flags set to 1.

× When the Smiley_Control_Value table is populated with at least 1 row the One-Way Frequency runs correctly

and generates current results.

× However, when data is not missing from the Smiley_Company table no rows are created in the

Smiley_Control_Value table.

× When the Smiley_Control_Value table is created empty the One-Way Frequency does not run correctly and

does not generate current results but instead displays the previous results.

× In summary, the One-Way Frequency runs correctly and generates current results only when the

Smiley_Control_Value table is populated with at least 1 row created by missing data detected in the

Smiley_Company table.

In response to this dilemma, SAS Intuition kicked in and a quest was undertaken to find a permanent

workaround solution that would enable the project to run successfully ɀ even if all the tables were empty.

Here is the solution which arose during the quest to resolve this issue:

× Create a Smiley_Control_Value_Row_Count table with the row count of the Smiley_Control_Value table.

× Create a Smiley_Control_Value_Mock_Row table based upon an indirect relationship between the

Smiley_Control_Value_Row_Count table and the Smiley_Company table.

× When the Smiley_Control_Value table is populated with rows, the Smiley_Control_Value_Row_Count table will

contain a non-zero row count, and the Smiley_Control_Value_Mock_Row table will be created empty.

× When the Smiley_Control_Value table is empty, the Smiley_Control_Value_Row_Count table will contain a

zero row count, and the Smiley_Control_Value_Mock_Row table will be created with 1 mock row of column

flags set to 0.

× Append the Smiley_Control_Value table and the Smiley_Control_Value_Mock_Row table to ensure that the

appended output is always populated with either real data or mock data instead of being created empty.

× Use this appended output as the input to the One-Way Frequency to enable it to always run correctly and to

generate current results.

Always 2ÅÍÅÍÂÅÒȟ)ÔȭÓ 4ÏÏ 3ÏÏÎ 4Ï 1ÕÉÔȦ

Bob Wieland (Mr. Inspiration)

 7ÈÁÔ ÔÏ ÄÏȟ ×ÈÁÔ ÔÏ ÄÏȣ

Necessity is the mother of all inventions.

Plato / Einstein

10

This Query creates the SMILEY_CONTROL_VALUE_ROW_COUNT table

with the row count of the SMILEY_ CONTROL_VALUE table :

× A Count of Special_Person is used to create the SMILEY_CONTROL_VALUE_ROW_COUNT.

× Automatically Select Groups is selected and no groups are selected to count the rows.

The output table contains 1 row with 1 column:

11

Create a Smiley_Control_Value_Mock_Row table based upon an indirect

relationship between the Smiley_Control_Value_Row_Count table

and the Smiley_Company table:

× As the mock row is created , all 4 flags are set to a 0 value meaning nothing is missing.

× Since only 1 mock row is needed, Query limits are set to creat e 1 output row via the O ptions.

× A filter is set to create a mock row only if the SMILEY_CONTROL_VALUE table is empty.

Notice there are no columns to Join between the two tables:

12

How the Joinless Join works :

× The SMILEY_CONTROL_VALUE_ROW_COUNT table indirec tly relat es to the SMILEY_COMPANY

table because it contains the row count of the error rows in the SMILEY_COMPANY table.

× We utilize a Joinless Join to create a Cartesian Product based upon this indirect relationship.

× The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SMILEY_CONTROL_VALUE_ROW_COUNT table to the right of each of the 20 rows

and 4 columns in the SMILEY_COMPANY table.

×

No Problem ~

We will use a Joinless Join

based upon an indirect relationship

between the tables.

13

× This Warning Message always appears whenever 2 tables are joined with a Joinless Join

because SAS knows it will create a Cartesian Product which can take a lot of extra resources.

Here is the complete result of the Joinless Join:

× Notice that all 4 flags are set to 0 because no data is missing from the SMILEY_COMPANY table.

SAS Highlight

A Cartesian Product is a result set of all the possible rows and columns contained in 2 or more

tables. The resulting set of data can be extremely large and unwieldy. The DATA Step does not

easily lend itself to creating a Cartesian Product thus PROC SQL is the desired appr oach. Its most

noticeable coding characteristic is the absence of a WHERE -clause. Although rarely produced, a

Cartesian Product Join nicely illustrates a base (or internal representation) for all Joins.

Caution:

When you design your Joinless Join

make sure that one of the tables

has only ONE row!

14

Append the Smiley_Control_Value table and the

Smiley_Control_Value_Mock_Row table to ensure the appended output

is always populated with either real data or mock data

instead of being created empty:

× Notice the Append result matches the Smiley_Control_Value_Mock_Row table ɀ Done & Done!

× We have achieved our desired results and we have a new input to the One-Way Frequency.

The One-Way Frequency is recreated using the appended table:

15

J Oh but wait... your new friend, the Joinless Join, is just getting started ! J

Here is the One-Way Frequency output with the 4 flags:

× The One-Way Frequency correctly displays that all 4 flags are set to 0 and therefore no data is

missing ɀ thanks to the Joinless Join J.

Yea!!!

 Strike up the band,
 Toss the confetti,
 Release the balloons!

!ÐÐÌÁÕÓÅȣ !ÐÐÌÁÕÓÅȣ !ÐÐÌÁÕÓÅȣ

Bring out the treats for everyone!

16

Here are the 3 additional tables the Program Node creates:

Next we design another Program Node to create 3 additional tables :

× This is the code you will need to re create th ese table s.

DATA Special_Number_National_Average

 (KEEP=Special_Number_National_Average)

 Load_Date_Check (KEEP=Load_Date_Check)

 Special_Code_National_Focus

 (KEEP=Special_Code_National_Focus) ;

 LENGTH Load_Date_Check 8;

 FORMAT Load_Date_Check date9. ;

 Special_Number_National_Average = 12000000 ;

 OUTPUT Special_Number_National_Average;

 Load_Date_Check = '01J AN2015'd ;

 OUTPUT Load_Date_Check;

 Special_Code_National_Focus = 'K' ;

 OUTPUT Special_Code_National_Focus;

RUN;

× The Special_Number_National_Average table contains

the average of all the Special_Number columns from

each Smiley Company nationwide which we will use in a

Joinless Join to calculate a percentage of the

Special_Number column in our SMILEY_COMPANY table.

× The Load_Date_Check table contains a Load Date which

we will use in a Joinless Join to validate that all of our

SMILEY_COMPANY table rows were created in 201 5.

× The Special_Code_National_Focus table contains a

Special Code from the Smiley Company National

Headquarters which we will use in a Joinless Join to

filter our SMILEY_COMPANY table output .

17

Designing a Joinless Join to perform a Calculation:

× Build a Query with the SMILEY_COMPANY table and the Smiley Company National

Headquarters SPECIAL_NUMBER_NATIONAL_AVERAGE table.

× The Joinless Join is based upon the SPECIAL_NUMBER_NATIONAL_AVERAGE table which

indirec tly relat es to the SMILEY_COMPANY table because it contains the average of all the

Special_Number columns from each SMILEY_COMPANY table nationwide .

× The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SPECIAL_NUMBER_NATIONAL_AVERAGE table to the right of each of the 20 row s

and 4 columns in the SMILEY_COMPANY table.

18

× Calculate a Special_Number_Percent Computed Column using the Special_Number column from

the SMILEY_COMPANY table and the Special_Number_National_Average column from the

Cartesian Product results .

× Here is the final result of the SMILEY_COMPANY table with the Special_Number_Percent column

to the right of each of the 20 row s and 4 columns.

19

Designing a Joinless Join to perform a Validation:

× Build a Query with the SMILEY_COMPANY table and the LOAD_DATE_CHECK table.

× The Joinless Join is based upon the LOAD_DATE_CHECK table which indirec tly relat es to the

SMILEY_COMPANY table because it contains the valid Load Date that should be found in the

Load_Date column in the SMILEY_COMPANY table.

× The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the LOAD_DATE_CHECK table to the right of each of the 20 row s and 4 columns in the

SMILEY_COMPANY table.

20

× Validate a Date_Validation Computed Column using the Load_Date column from the

SMILEY_COMPANY table and the Load_Date_Check column from the Cartesian Product results .

× Here is the final result of the SMILEY_COMPANY table with the Special_Number_Percent column

to the right of each of the 20 row s and 4 columns.

21

Designing a Joinless Join to perform a Filtration:

× Build a Query with the SMILEY_COMPANY table and the Smiley Company National

Headquarters SPECIAL_CODE_NATIONAL_FOCUS table.

× The Joinless Join is based upon the SPECIAL_CODE_NATIONAL_FOCUS table which indirec tly

relat es to the SMILEY_COMPANY table because it contains the Special Code to be focused upon

nationwide within the Special_Code column in the SMILEY_COMPANY table.

× The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SPECIAL_CODE_NATIONAL_FOCUS table to the right of each of the 20 row s and 4

columns in the SMILEY_COMPANY table.

22

× Filter the raw data to include the rows where the value of the Special_Code column from the

SMILEY_COMPANY table is equal to the value of the Special_Code_National_Focus column from

the Cartesian Product results .

× Here is the final result of the SMILEY_COMPANY table with the Special_Code column filtered by

the Special_Code_National_Focus column.

23

Designing a Joinless Join to perform a

Mock Row Creation, Calculation, Validation, and Filtration :

× Build a Query with the SMILEY_COMPANY table and the SMILEY_CONTROL_VALUE_ROW

_COUNT, SPECIAL_NUMBER_NATIONAL_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE

_NATIONAL_FOCUS table s.

× The Joinless Join is based upon the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL_NUMBER

_NATIONAL_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE_NATIONAL_FOCUS table s which

indirec tly relat e to the SMILEY_COMPANY table as shown in the previous examples.

