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Intermediate SAS® ODS Graphics 

Chuck Kincaid, Experis Business Analytics, Kalamazoo, MI 

ABSTRACT 

This paper will build on the knowledge gained in the Intro to SAS® ODS Graphics. The capabilities in ODS Graphics 
grow with every release as both new paradigms and smaller tweaks are introduced. After talking with the ODS 
developers, a selection of the many wonderful capabilities was selected. This paper will look at that selection of both 
types of capabilities and provide the reader with more tools for their belt.  

Visualization of data is an important part of telling the story seen in the data. And while the standards and defaults in 
ODS Graphics are very well done, sometimes the user has specific nuances for characters in the story or additional 
plot lines they want to incorporate. Almost any possibility, from drama to comedy to mystery, is available in ODS 
Graphics if you know how. We will explore tables, annotation and changing attributes, as well as the BLOCK plot.  

Any user of Base SAS on any platform will find great value from the SAS ODS Graphics procedures. Some 
experience with these procedures is assumed, but not required. 

INTRODUCTION  

In the previous paper, the basics of SAS ODS Graphics were presented and with these the user can accomplish 
most of their tasks. However, we often need to do more than the basic graphs. The questions asked by the business 
and the data we work with to answer them are complex. It takes a complex system to tell this story in ways that are 
easily and accurately understood. Not coincidently, SAS ODS Graphics are such a system. The good thing is that it 
is also an immensely simple system to use, as shown in the previous paper. That simplicity allows us to quickly get 
into the more advanced capabilities so that we can tell the story even better.  

This paper will introduce the reader to those more advanced capabilities. Users often want to show the data 
alongside of the graphs or provide additional information with relevant data not currently visualized, so we will 
explore how to add tables of information to the graph. Annotation, familiar to those who used it in SAS/Graph, allows 
the user to add additional, often less structured, information to the graph. The user has the amazing, almost 
dumbfounding, power to customize the attributes of every graph component if they so choose. This allows them 
endless possibilities of comparing and contrast, highlighting and subtlety, asceticism and style. We will introduce 
how to control these style attributes inline and with attribute maps. Finally, a new types of plot, BLOCK, will be 
introduced that can be paired with the standard plots or even used on its own. 

TABLES 

Graphics are a brilliant way to help someone easily comprehend complex information. Comparing and contrasting, 
for example, is done better with bar charts than with tables of information. However, often both the big picture and 

the details are needed and it is better to present tables with the graph, such as the one in Error! Reference source 

not found.. Creating these used to be possible only with the SCATTER statement. Let’s use some data about 
villains on the British TV series Doctor Who to see how. The show has been running since 1963 except for a short 
break, so there are a lot of villains. We’ve subset the data to include only the top 14 villains according to number of 
episodes. The code below creates a scatter plot of the number of episodes for each of the villains.  

proc sgplot data=who14; 

    scatter x=villain y=episodes;  

run; 
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Figure 1 
 

Suppose we would also like to show the year that the villain first appeared on the show. A table of the year will be 
created within the wall area (i.e. within the axes) of the graph.  

O L D  S C H O O L  

First, we’ll do this the “old” way, which can still be useful. We start by adding a new variable, X1, to the data set 
whose value is “First Aired.”  

data who14; 

    set who14; 

    x1 = "First Aired"; 

run; 

This variable will serve as both the label and the location on the Y axis for the table. SGPLOT has no problem 
combining a quantitative variable, EPISODES, with a qualitative variable, X1, on the same plot as long as we put 
them on different axes. We’ll do this by using the Y2AXIS for our table. 

Now we add a SCATTER plot with VILLAIN on the x-axis just like the other plot and X1 on the y-axis. We get the 
information we want on there by telling SAS that the MARKERCHAR should be YEAR_FIRST. Notice that we specify 
the Y2AXIS.  

proc sgplot data=who14 noautolegend; 

    scatter x=villain y=episodes;  

    scatter x=villain y=x1 / markerchar=year_first y2axis; 

    yaxis offsetmin=0.1; 

    y2axis display=(nolabel) offsetmax=0.9; 

run; 
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We also add an offset to both the YAXIS and the Y2AXIS so that the numbers don’t overlap with the plotted points. 
OFFSETMIN=0.1 moves the bottom edge of the y-axis up by ten percent of the range. OFFSETMAX moves the top 
edge of the y2-axis down by 90%. That way they do not overlap. We also tell the Y2AXIS to not display the label. If it 
did, then we’d see a weird “x1” on the right edge of the graph.  

 

 

Figure 2 
 

We can have as many rows as we want in this table by adding more variables and moving the offsets. For example, 
if we wanted to show the year the villains first aired, the year they last aired and the total number of story lines they 
showed up in, then our code could look like this. 

data who14; 

    set who14; 

    x1 = "First Aired"; 

    x2 = "Total Storylines"; 

    x3 = "Last Aired"; 

run; 

 

proc sgplot data=who14 noautolegend; 

    scatter x=villain y=episodes;  

    scatter x=villain y=x1 / markerchar=year_first y2axis; 

    scatter x=villain y=x2 / markerchar=total_stories y2axis; 

    scatter x=villain y=x3 / markerchar=year_last y2axis; 

    yaxis offsetmin=0.3; 

    y2axis display=(nolabel) offsetmin=0.1 offsetmax=0.8; 

run; 
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Figure 3 
 

Here we’ve added X2 and X3 with appropriate values and appropriate MARKERCHARs. We also added another 
offset control so that the rows would be closer to each other and the “table” would look better. Try it without the new 
OFFSETMIN=0.1 to see what we mean. 

N E W  S C H O O L  

While this works, and is the only option prior to release 9.4, it takes more work and can become cumbersome. 
Because the developers are all about flexibility and ease of use, and because quite a few users asked for the 
capability, they added XAXISTABLE and YAXISTABLE. These options not only do what we just did a bit easier, but 
they give us greater control and flexibility over how it’s done. To reproduce the second example above, we would just 
submit this code. 

proc sgplot data=who14; 

    scatter x=villain y=episodes; 

    xaxistable year_last total_stories year_first / location=inside; 

run; 

 

Notice that we were able to put the labels for the table on the YAXIS. We can actually move it back to the Y2AXIS by 
adding that option to the statement. 
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Figure 4 
 

With these statements, we can also control the LOCATION of the table as INSIDE (like we did above) or OUTSIDE 
of the axis area, as well as POSITION it either at the TOP or BOTTOM of graph. You can also control how the labels 
and the data values are displayed. Here’s the code for a full graph with most of the options specified.  

proc sgplot data=who14; 

    scatter x=villain y=episodes; 

    xaxistable year_last year_first / location=inside position=bottom 

  droponmissing separator title="Other Info" titleattrs=(weight=bold)  

  valueattrs=(color=red) x2axis labelpos=right 

labelattrs=(style=italic) name="other"; 

run; 

 

and the graph. 
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Figure 5 
 

As silly as this graph is, it shows the effects of most of the available options. Notice that the TITLE applies to every 
row in the table. If this is useful for you, then good. The labels on the x-axis are on the top and the bottom because 
of the X2AXIS keyword. This actually allows us to have two sets of horizontal axes. An X= option would allow the 
values in the table to be placed according to another scale than the one in the primary graph. 

The XAXISTABLE statement can be used multiple times. This allows you to place tables on the top and bottom of 
the graph (or left and right with YAXISTABLE) at the same time. It also allows you to do things like have a title for 
only one row of the table or customize the text or label attributes per row. You can also use XAXISTABLE and 
YAXISTABLE in the same plot. 

S T AT =  

The axistables can also be used to show summary statistics related to the plot, particularly when the plot is 
categorical, such as the bar charts, line charts and dot plots. These plots are often summarizing a variable for 
particular levels of a categorical variable. This situation is well suited to display a statistic on the plotted variable or a 
related variable. In our current data set everything is summarized, so this type of table isn’t necessary. One can see 
that by comparing the graphs from these two pieces of code.  

proc sgplot data=who14; 

    scatter x=villain y=villain_episodes; 

    xaxistable total_stories; 

run; 
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Figure 6 
proc sgplot data=who14; 

    scatter x=villain y=villain_episodes; 

    xaxistable total_stories / stat=mean; 

run; 

 

 

Figure 7 
 

Let’s use another dataset, then, called WHO_EP with the following variables, among others. 
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Variable Name Type Meaning 

Doctor_number Numeric The number of the regenerations of the Doctor. Also the 
number of the actor playing the Doctor. 

Doctor Character The actor playing the Doctor. 

Season Numeric The season number that this actor part of. 

Title Character The title of the stories this actor played in. 

Story_episodes Numeric The number of episodes made to tell the story. 

 

We’ll create a dotplot of the total number of episodes in all the stories for each doctor and add a YAXISTABLE to 
show the median number of episodes per story for each doctor. Note that we specify STATLABEL to show, in this 
case, “(Median)” on the table. The default is to show the statistic calculated, but for this example, PROC IMPORT 
was used to import the dataset from a spreadsheet and PROC IMPORT adds labels to the variables. In this situation, 
i.e. when a custom label is assigned to the variable, the statistic is not displayed. We can easily force it to be 
displayed, though, as below. 

proc sgplot data=who_ep; 

    dot doctor / response=story_episodes; 

    yaxistable story_episodes / stat=median statlabel; 

run; 

 

 

Figure 8 
 

The X|YAXISTABLE statements are much easier to use for adding tabular information to the plot. As with the rest of 
ODS, they give the user almost complete control over the layout and look of the tables. What if we want to add 
information that is not so structured? With SAS 9.x we now have the option of adding annotations to our plots. 

ANNOTATION 

For those who are familiar with SAS/Graph, annotating a graph is likely very familiar. Some people have even 
skipped the built in graphs and created their entire visualization with annotations. These are the true artists. Since 
SAS 9.x annotation has been available to users of ODS Graphics with much of the functionality as before.  
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Many of the things you might want to do with SG Annotation can be done with other ODS statements, such as 
putting text on the plot or drawing lines. Let’s see some examples of both. 

If we want a horizontal line on my plot such as a line to indicate that the villains who appeared in more than 40 
episodes are very scary, then we can use the REFLINE statement.  

proc sgplot data=who14 noautolegend; 

    scatter x=villain y=episodes;  

 refline 40 / label=”Very scary!”; 

run; 

 

 

Figure 9 
 

We can also create an annotate data set and draw it “manually.” Just like in SAS Graphics, there are particular 
variable names and keywords to use. We specify  

 the FUNCTION that we want the graphics engine to perform 

 where we want it to perform that function 

 the coordinate system it uses to do the positioning 

 how we want the output to look 

For our reference line we might have 

data annoline; 

    infile datalines dlm="#"; 

    retain x1space "DATAPERCENT" y1space "DATAVALUE" x2space "DATAPERCENT" y2space 

"DATAVALUE"; 

    length label $ 15; 

    input function $ x1 y1 label x2 y2; 

datalines; 

TEXT # 90 # 45 # Very scary! # . # .  

LINE # 1 # 40 # # 99 # 40  

;; 

run; 

 

to create the following data set. 
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OBS x1space y1space x2space y2space label function x1 y1 x2 y2 

1 DATAPERCENT DATAVALUE DATAPERCENT DATAVALUE Very scary! TEXT 90 45 . . 

2 DATAPERCENT DATAVALUE DATAPERCENT DATAVALUE  LINE 1 40 99 40 

 

With this data set we will be telling the SGPLOT procedure to draw TEXT at coordinates (90, 45) and a LINE from 
(1,40) to (99, 40).  

 

Figure 10 
 

Be aware, though, that those instructions are not as simple as they may seem. Each of those coordinates is relative 
to some “drawing space.” There are four drawing areas that we can use: graph, layout, wall and data. Suppose we 
run this code. 

proc sgplot data=who14; 

 title "The Most Popular Villains"; 

    scatter x=year_first y=episodes; 

 footnote "Daleks and the Master stand out"; 

 xaxis offsetmin=0.1 offsetmax=0.1; 

 yaxis offsetmin=0.1 offsetmax=0.1; 

run; 

 

Notice that we have a title and a footnote, as well as offsets for the X and Y axes. 
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The GRAPH drawing area encompasses the entire graph: plot, axes, titles, footnotes, etc. 

 

 

 

The LAYOUT drawing area does not include the titles and footnotes, but does include the rest of the graph area. 

Figure 11a-d 
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The WALL drawing area does not include titles, footnotes, and axes. It does include all the area within the axes, 
including any offsets.  

 

 

Finally, the DATA drawing area is just that. It includes only the square that the data takes up. It does not include any 
of the offsets. 

For each of these we can specify the scaling as a percentage of the drawing space or by the number of pixels. The 
first is useful when you want to specify relative coordinates. For our TEXT above with the coordinates (90, 45), 
DATAPERCENT says to anchor the text at 90% of the horizontal space within the data area. The second scaling 
gives you strict control over the annotation’s positioning. If we had said DATAPIXEL for X1SPACE and X2SPACE, 
then the line would have started at 1 pixel into the data area and ended at 99 pixels. The look of the output will 
depend on both the drawing space chosen and the size (width or height) of the graph. A wider graph means that 
there are more pixels being drawn in essentially the same drawing space, so the line will be shorter relative to the 
rest of the graph.  

It can also be very helpful to use DATAVALUE as the drawing space. This positions and scales the annotation with 
respect to the values of the data, which may make it easier to draw by eye or, better yet, the coordinates could be 
data-driven. 
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Suppose we want to identify the Daleks (Daleks at (1963,104) and Dalek Supreme at (1964, 63)) on the plot below 
by circling them with an oval. We can use the values of the points to draw the oval. We’ll center the oval at the 
midway point between the two data points. We’ll set the WIDTH and HEIGHT to be functions of the distance 
between the two points and, finally, ROTATE, the oval based on the angle of the line connecting the two points. Here 
is the code for the calculations. 

data oval; 

    set oval; 

    length function $8; 

    distx = dsx - dx; 

    disty = dsy - dy; 

    distance = sqrt(distx**2 + disty**2); 

    x1 = distx/2 + dx; 

    y1 = disty/2 + dy; 

    angle = atan2(disty, distx) * 180 / constant('PI'); 

    function = "oval"; 

    width = distance*0.8; 

    height = distance*0.25; 

    rotate = angle*0.98; 

    drawspace = "datavalue"; 

    output; 

    function = "text"; 

    x1 = dsx*1.001; 

    y1 = dy*0.9; 

    label = "Daleks are"; 

    rotate = 0; 

    anchor = "left"; 

    output; 

    function = "textcont"; 

    label = " Scary!"; 

    textcolor = "red"; 

    textsize = 20; 

    textweight = "bold"; 

    output; 

run; 

 

We’ve also annotated the graph with an important notice about the Daleks as TEXT. For emphasis we’ve used the 
TEXTCONT function to continue the text in a different font. When TEXTCONT follows TEXT in the data set, the 
LABEL for TEXTCONT follows the LABEL for text so we put a space at the front to separate the two. See the code 
and graph below. 

proc sgplot data=who sganno=oval; 

    scatter x=year_first y=episodes; 

run; 
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Figure 12 

ATTRIBUTES 

Even though the default values for ODS Graphics are well thought out and aesthetically pleasing, there are often 
times that we want to customize the look and feel of various parts of the graph. The good thing is that they have 
given us the ability to customize almost everything and a number of ways to do it. We’ll look at some background 
first and then three ways to control the attributes. 

B AC K G R O U N D  

A STYLE is what determines what ODS output is going to look like. It is a SAS template that can be associated with 
a particular ODS document. The default style used by the HTML destination is HTMLBlue. There is a definition for 
everything you can output in this template. There is a definition for how to produce the background, borders, 
headers, footers, table cells, web links, titles, etc. It’s almost overwhelming at times how much control they give you. 
Each style is made up of elements that are named collections of style attributes. These style elements are the 
specific way the look and feel of an area of the ODS output is determined. For example, in the HTMLBlue style there 
is a style element for Header that specifies the bordercolor, backgroundcolor and color of the Header. For a list of 
the Style Elements Affecting Template-Based Graphics, refer to the SAS System Documentation at SAS Products > 
Base SAS > SAS Output Delivery System (ODS) > SAS 9.4 Output Delivery System: User’s Guide, Third Edition > 
ODS Style Reference > Style Elements. 

As mentioned, the Style Elements are collections of attributes. According to the documentation just noted, the 
recognized attributes for the GRAPHDATADEFAULT style element, as an example, are Color, ContrastColor, 
MarkerSymbol, MarkerSize, LineStyle, LineThickness, StartColor, NeutralColor, and EndColor. These attributes 
determine the look and feel of non-grouped data items according to the Style set for the current destination. For 
example, in the graph below, the blue color for the line is defined by this style element because the style being used 
is HTMLBlue.  
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Figure 13 
 

When we add a barchart, it keeps the same coloring so that they complement rather than contrast.  

 

Figure 14 
 

On the other hand, when there are grouped items or multiple items of the same type, then different style elements 
are used: GRAPHDATA1, GRAPHDATA2, GRAPHDATA3, etc., depending on how many data items there are. The 
relationship among these elements depends on the style being used. When color is the primary differentiator, then 
the colors for each of these are designed to enhance the differentiability of the pieces of information. For example, 
when we change our barchart to a line chart SAS shows the first line as blue and the second line as red. (see below)  
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Figure 15 
 

Other styles, such as those in black and white, use the pattern of the line to differentiate the grouped or multiple 
items.  

As you can see from the example for GraphDataDefault, the style attributes are related (in a broad sense) to color, 
shape and size. The table below gives a variety of further examples. 

“Color” “Shape” Size 

CXFF0000 Courier New 5 CM 

H07880FF Solid 2.3 IN 

Light Red DashDashDot 20 MM 

Matte Italic 30% 

Crisp MMDDYY8. 55 PT 

 

The color can be specified in any SAS standard format, such as a predefined SAS color (“orange” and “blue”) or an 
RGB (red/green/blue) value. Another is HLS (hue/light/saturation) or even an English description of an HLS value. 
For example, you could code “very dark grayish yellow,” if that’s your thing. The shape, in a broad sense, can be 
specified by a font-definition, a SAS format, an integer list, a line pattern or marker symbol (e.g., ArrowDown, 
CircleFilled, or Star). The size can be specified by a number and the units of measure (CM=centimeters, IN=inches, 
MM=millimeters, PCT=percentage, PT=point size, PX=pixels). 

With that brief background, let’s look at some ways to customize the appearance of our graphs.  

M AR K E R S  

Markers are common in plots and customizing them to provide other information is very valuable. We’ve already 
seen this concept when we used SCATTER to make a data table. The “markers” were the numeric values we wanted 
to show. The two relevant options are 

• MARKERCHAR=variable 

• MARKERCHARATTRS=style-element <(options)> | (options) 

The “variable” can be any quantitative or categorical variable, and if there’s a format on the variable then it’s applied 
as well. 
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The other Marker options are 

• MARKERATTRS=style-element <(options)> | (options) 

• MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color) 

• MARKEROUTLINEATTRS=style-element <(options)> | (options) 

• FILLEDOUTLINEDMARKERS 

These are used to customize the built in marker symbols for the dot, scatter, series, step, line, needle and fit plots by 
specifying either a Style Element or specific Style Attributes. The first three have an interaction with 
FILLEDOUTLINEDMARKERS. If we don’t use FILLEDOUTLINEDMARKERS, then MARKERATTRS can control the 
COLOR, SIZE and SYMBOL, whether we pick a filled symbol or not. The PROC also ignores MARKERFILLATTRS 
and MARKEROUTLINEATTRS.  

If we do use FILLEDOUTLINEDMARKERS, then the COLOR option in MARKERATTRS is ignored. Instead the color 
is controlled by the MARKERFILLATTRS and the MARKEROUTLINEATTRS options. The MARKEROUTLINEATTRS 
can also control the THICKNESS of the outline on the marker. Note also, that when the 
FILLEDOUTLINEDMARKERS option is used, then a FILLED symbol must be used, either specified explicitly 
(MARKERATTRS) or defaulted from the active style.  

proc sgplot data=whovill; 

    scatter x=villain y=episodes / filledoutlinedmarkers 

            markerattrs=(symbol=CircleFilled size=15); 

run; 

 

 

Figure 16 
 

 

proc sgplot data=whovill; 

    scatter x=villain y=episodes / filledoutlinedmarkers 

        markerattrs=(symbol=CircleFilled size=15) markerfillattrs=(color="#003865") 

        markeroutlineattrs=(color=red); 

run; 
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Figure 17 

C Y C L E AT T R S  

As we mentioned, the GraphDataX style elements are used when multiple plots of the same type are created or the 
data is plotted in groups so that different attributes, such as color, are used for different lines. Sometimes we want to 
force different colors to be used and sometimes we want to use all the same color. We have control over this 
through the CYCLEATTRS and NOCYCLEATTRS options. CYCLEATTRS means to cycle the attributes through the 
available options. In our example above, we have a VLINE and an HBAR chart that both have the same attributes. 
Adding the CYCLEATTRS option on the SGPLOT statement  

proc sgplot data=who_seasons cycleattrs; 

    hbar first_aired / response=num_episodes stat=sum; 

    hline first_aired / response=ave_viewers x2axis; 

run; 

 

gives this graph. 
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Figure 18 
 

Since the HBAR is first it is drawn in blue and the HLINE is drawn in red. The attributes that ODS cycles through 
depends on the style being used. The style in effect here is the default (HTMLBLUE). If we had been using the 
JOURNAL style, then ODS would have changed the line pattern as below, since it does not use colors.  

 

Figure 19 
 

Going the other direction, we can force the second example above to show the same colors by adding the 
NOCYCLEATTRS option. We might want this if we are being very specific about some of the attributes we want 
displayed and we want the other attributes to stay consistent. 
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S T Y L E AT T R S  

The CYCLEATTRS option is nice, but it’s a far cry from everything that can be done. We touched upon some of 
those capabilities in the previous paper. One of the newer features is the STYLEATTRS statement for SGPLOT and 
SGPANEL. This statement shortcuts a lot of the work of creating a new ODS style template that was previously 
required. Now the programmer can control the colors, contrast colors, line patters and marker symbols of graphic 
elements. The STYLEATTRS statement can be used in conjunction with the ATTRPRIORITY option on the ODS 
GRAPHICS statement, but this is still rudimentary. If the user community finds it helpful, then I expect it to be 
expanded in future releases. 

This statement is pretty straightforward to understand and use (like most things in ODS Graphics!). The simple 
scatter plot below shows the average number of viewers for each season. We’ve grouped the display of the 
information by which incarnation of the Doctor was in the show.  

 

Figure 20 
 

This graph comes because we are using the default style, HTMLBLUE, whose pattern for differentiating is based on 
colors. If we wanted to differentiate the markers by symbol also, then we would use the following statements. 

ods graphics / attrpriority=none; 

 

proc sgplot data=who_seasons nocycleattrs; 

    styleattrs datasymbols=(ibeam circle circlefilled diamond diamondfilled  

     hash starfilled triangle trianglefilled square 

     squarefilled); 

    scatter x=first_aired y=prem_viewers / group=doctor; 

run; 

 

The ATTRPRIORITY option on the ODS GRAPHICS statement is important because it tells ODS to not give color the 
highest priority for differentiating. If we had not used that option, then ODS would have displayed a bunch of multi-
colored ibeams. Essentially, we tell it to not set a priority because we define it in the STYLEATTRS statement. Here, 
we have set the symbols as the first attribute to be changed and we get this plot. 
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Figure 21 
 

Notice that the colors change with each of the symbols. They change because we are still in HTMLBlue with groups 
and it is still using GraphData1, GraphData2, …. To go all the way and have the symbol be the only differentiator, we 
would have to specify one color as in the following code snippet. 

styleattrs datasymbols=(ibeam circle circlefilled diamond diamondfilled hash 

    starfilled triangle trianglefilled square squarefilled) 

           datacontrastcolors=(blue); 

 

We specified a different symbol for each level of the group. If we had not, then ODS would have started over with the 
ibeam once it got through the list. This cycling also works across attribute specs. If we had used 
DATACONTRASTCOLORS=(BLUE RED) instead, then the symbols would alternate between blue and red as below. 
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Figure 22 
 

Stepping back now, there are 4 attributes that can be changed in the STYLEATTRS statement. 

Argument Controls 

DATACOLORS Fill colors 

DATACONTRASTCOLORS Contrast colors for lines and markers 

DATALINEPATTERNS Line patterns 

DATASYMBOLS Marker symbols 

 

When you include a STYLEATTRS statement with one or more of these arguments, you are redefining the 
GraphData1, GraphData2, … GraphDatan style elements (discussed above and shown in the table below) which are 
then applied to each graphic element to determine its look.  

Style Element  Color Contrast Color Marker Symbol Line Pattern 

GraphData1  cx7C95CA  cx2A25D9  CIRCLE  1  

GraphData2  cxDE7E6F  cxB2182B  PLUS  4  

GraphData3  cx66A5A0  cx01665E  X  8  

GraphData4  cxA9865B  cx543005  TRIANGLE  5  

GraphData5  cxB689CD  cx9D3CDB  SQUARE  14  

GraphData6  cxBABC5C  cx7F8E1F  ASTERISK  26  

GraphData7  cx94BDE1  cx2597FA  DIAMOND  15  

GraphData8  cxCD7BA1  cxB26084   20  

GraphData9  cxCF974B  cxD17800   41  

GraphData10  cx87C873  cx47A82A   42  

GraphData11  cxB7AEF1  cxB38EF3   2  
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GraphData12  cxDDD17E  cxF9DA04    

 

When we changed the DATASYMBOLS we replaced the default values of CIRCLE, PLUS, X, etc. with IBEAM, 
CIRCLE, CIRCLEFILLED, etc. When we included the DATACOLORS=(BLUE RED) the table becomes 

Style Element  Color Contrast Color Marker Symbol Line Pattern 

GraphData1  blue  cx2A25D9  IBEAM  1  

GraphData2  red  cxB2182B  CIRCLE 4  

GraphData3  blue cx01665E  CIRCLEFILLED 8  

GraphData4  red cx543005  DIAMOND 5  

GraphData5  blue cx9D3CDB  DIAMONDFILLED 14  

GraphData6  red cx7F8E1F  HASH 26  

GraphData7  blue cx2597FA  STARFILLED 15  

GraphData8  red cxB26084  TRIANGLE 20  

GraphData9  blue cxD17800  TRIANGLEFILLED 41  

GraphData10  red cx47A82A  SQUARE 42  

GraphData11  blue cxB38EF3  SQUAREFILLED 2  

GraphData12  red cxF9DA04    

 

If a 12
th

 group had shown up, then the patterns would have been repeated to give us a red ibeam next. (NB: Even 
though the show is on the twelfth incarnation of the Doctor, there are only 11 groups, because the 8

th
 Doctor is not in 

the dataset. He only appeared in a show twice: once in the 1996 TV movie Doctor Who and then in the 2013 
YouTube video The Night of the Doctor. On the other hand, it is interesting to note that outside of the screen, he has 
appeared in more stories than any other Doctor. [tardis.wikia.com/wiki/Eighth_Doctor])  

AT T R I B U T E  M AP S  

Another way to control the appearance of grouped data is with Attribute Maps. Attribute Maps are overkill for 
controlling attributes in single, one-time graphs. They really come into play when you want to create graphs with an 
attribute scheme that is independent of the data structure and/or consistent across graphs.  

The map is a data set (isn’t everything?) where each observation assigns attributes to one level of the group. Each 
element is connected to a series of attributes sort of like a SAS format. Like the Annotation data sets and the format 
data sets, the attribute map data set has a specific structure. 

Variable  

ID (required) The connector between the data set and the graphing 
element. This ID is used in the ATTRID option. It is like 
the FMTNAME variable in a CTRL data set for user 
defined formats.  

VALUE (required) The connector between the record of attributes and the 
level of the group. It is like the START variable in a 
CTRL data set. Because groups can only be categorical 
(and not ranges like in a format), VALUE is a case 
sensitive CHAR variable.  

_MISSING_ and _OTHER_ are also valid values to 
handle missing values and group values not explicitly 
defined, respectively. 

and one or more attributes such as  FILLCOLOR, MARKERSYMBOL, LINEPATTERN, etc.  
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By defining these maps it doesn’t matter what order the input data is in, whether any group levels are missing, or 
what other graph items are on the plot. The attributes will always be as you specified. Let’s look at a simple example.  

Suppose we wanted a bar chart that shows the average number of viewers for each doctor. We would like to group 
the output by the decade that the episodes were shown. Below is the first example with all the data. 

proc sort data=who_seasons; 

    by doc_no; 

run; 

 

proc sgplot data=who_seasons; 

    hbar doctor / response=ave_viewers group=decade; 

    yaxis discreteorder=data; 

run; 

 

 

Figure 23 
 

GraphData1 … GraphData4 use the blue, red, green, brown and violet colors to differentiate the groups (1960s, 
1970s, 1980s, 2000s, and 2010s respectively). Now suppose that next month we are given different requirements for 
what to show. In this case, since we are deciding which shows to re-air and many of the early episodes are lost, we 
only care about the average number of viewers for those seasons with all episodes complete. The graph below 
shows this plot created with the following code. 

proc sgplot data=who_seasons(where=(some_missing="No")); 

    hbar doctor / response=ave_viewers group=decade; 

    yaxis discreteorder=data; 

run; 
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Figure 24 
 

Note that the colors are the same – blue, red and green – but they are associated with different decades because 
the 1960s are missing. If we don’t want to confuse our managers, then maybe we should keep the colors the same. 
Data attribute maps are the best way to do this.  

We can define a data attribute map data set (DAMPD) to be the following. 

ID Value Fillcolor Linecolor 

decades  1960s  brown black 

decades 1970s green black 

decades 1980s red black 

decades 2000s blue black 

decades 2010s purple black 

 

With this attribute map we modify the previous code in the following simple ways. First, we add the DATTRMAP 
option to the PROC SGPLOT statement so that we can connect the data set to the PROC (1). Then we add the 
ATTRID= option to the plot statement so that we can connect the appropriate ID (decades) to the values plotted (2).  

 

proc sgplot data=who_seasons dattrmap=dampd; 

    hbar doctor / response=ave_viewers group=decade attrid=decades; 

    yaxis discreteorder=data; 

run; 

 

proc sgplot data=who_seasons(where=(some_missing="No")) dattrmap=dampd; 

    hbar doctor / response=ave_viewers group=decade attrid=decades; 

    yaxis discreteorder=data; 

run; 

 

1 

1 

2 

2 
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Figure 25 
 

 

Figure 26 
 

Now we see that each group level has the same color across graphs, even though some are missing. Note that we 
can use attribute maps for any graph with grouped data to achieve this consistency.  

Just like formats, two or more maps may be combined in a single data set. The ID variable is what keeps them 
distinct. The other variables have values specific to the group being mapped. The two restrictions that apply are that 
one group cannot be associated with two maps in the same dataset, and that the data set must be sorted by ID 
values so that they are consecutive.  
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BLOCKS 

The BLOCK plot is a new plot that, most of the time, is used to enhance another plot. For example, Suppose we 
want to show a line plot of the number of viewers who watched the premiere of each season versus the date the 
season first aired. We also want to identify the doctor associated with each season. We could do that by using 
Doctor as a group variable and we would get different colors or symbols or line patterns for each doctor. We can 
also use blocks as a background over which the lines would be laid. The code below does just that. 

proc sgplot data=who_seasons; 

 block x=first_aired block=doctor / transparency=0.3 valuefitpolicy=splitalways; 

    series x=first_aired y= prem_viewers / markers; 

 yaxis label="# of Premiere Viewers (millions)"; 

 xaxis label="Date First Aired"; 

run; 

 

 

Figure 27 
 

We create the blocks first and then plot a SERIES line with MARKERS. The blocks come out by default with a darker 
color than we want, since it hides the lines and the text. To reduce this we set the TRANSPARENCY of the blocks to 
0.3. The block labels (“First Doctor”, “Second Doctor”, etc.) are also cumbersome. We can’t fix that completely, but 
we can use one of the VALUEFITPOLICY options to make it better. Here we chose SPLITALWAYS so that it always 
splits the text. We use the default SPLITCHAR which is a blank space. [Note: the documentation for the BLOCK 
statement under PROC SGPLOT is wrong. It says that VALUEFITPOLICY=SPLITALWAYS (and SPLIT) has no 
effect unless the split character is defined with the SPLITCHAR= option. The BLOCKPLOT statement under the GTL 
section seems to be the correct description of the PROC’s behavior. 

As always you can control most of the appearance of the BLOCK plots: fill, outline, values, and text. 

CONCLUSION 

Each release the SAS ODS Graphics development team adds many new features. They listen to their customers 
and add minor options and major capabilities based on the requests they get. This paper is intended to highlight a 
few of the more advanced and some of the newer capabilities. There are so many more that they have made 
available to us. The documentation and the Data Visualization blog are wonderful reads. Enjoy! 
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