
1

Paper BI-07

Intermediate SAS® ODS Graphics

Chuck Kincaid, Experis Business Analytics, Kalamazoo, MI

ABSTRACT

This paper will build on the knowledge gained in the Intro to SAS® ODS Graphics. The capabilities in ODS Graphics
grow with every release as both new paradigms and smaller tweaks are introduced. After talking with the ODS
developers, a selection of the many wonderful capabilities was selected. This paper will look at that selection of both
types of capabilities and provide the reader with more tools for their belt.

Visualization of data is an important part of telling the story seen in the data. And while the standards and defaults in
ODS Graphics are very well done, sometimes the user has specific nuances for characters in the story or additional
plot lines they want to incorporate. Almost any possibility, from drama to comedy to mystery, is available in ODS
Graphics if you know how. We will explore tables, annotation and changing attributes, as well as the BLOCK plot.

Any user of Base SAS on any platform will find great value from the SAS ODS Graphics procedures. Some
experience with these procedures is assumed, but not required.

INTRODUCTION

In the previous paper, the basics of SAS ODS Graphics were presented and with these the user can accomplish
most of their tasks. However, we often need to do more than the basic graphs. The questions asked by the business
and the data we work with to answer them are complex. It takes a complex system to tell this story in ways that are
easily and accurately understood. Not coincidently, SAS ODS Graphics are such a system. The good thing is that it
is also an immensely simple system to use, as shown in the previous paper. That simplicity allows us to quickly get
into the more advanced capabilities so that we can tell the story even better.

This paper will introduce the reader to those more advanced capabilities. Users often want to show the data
alongside of the graphs or provide additional information with relevant data not currently visualized, so we will
explore how to add tables of information to the graph. Annotation, familiar to those who used it in SAS/Graph, allows
the user to add additional, often less structured, information to the graph. The user has the amazing, almost
dumbfounding, power to customize the attributes of every graph component if they so choose. This allows them
endless possibilities of comparing and contrast, highlighting and subtlety, asceticism and style. We will introduce
how to control these style attributes inline and with attribute maps. Finally, a new types of plot, BLOCK, will be
introduced that can be paired with the standard plots or even used on its own.

TABLES

Graphics are a brilliant way to help someone easily comprehend complex information. Comparing and contrasting,
for example, is done better with bar charts than with tables of information. However, often both the big picture and

the details are needed and it is better to present tables with the graph, such as the one in Error! Reference source

not found.. Creating these used to be possible only with the SCATTER statement. Let’s use some data about
villains on the British TV series Doctor Who to see how. The show has been running since 1963 except for a short
break, so there are a lot of villains. We’ve subset the data to include only the top 14 villains according to number of
episodes. The code below creates a scatter plot of the number of episodes for each of the villains.

proc sgplot data=who14;

 scatter x=villain y=episodes;

run;

2

Figure 1

Suppose we would also like to show the year that the villain first appeared on the show. A table of the year will be
created within the wall area (i.e. within the axes) of the graph.

O L D S C H O O L

First, we’ll do this the “old” way, which can still be useful. We start by adding a new variable, X1, to the data set
whose value is “First Aired.”

data who14;

 set who14;

 x1 = "First Aired";

run;

This variable will serve as both the label and the location on the Y axis for the table. SGPLOT has no problem
combining a quantitative variable, EPISODES, with a qualitative variable, X1, on the same plot as long as we put
them on different axes. We’ll do this by using the Y2AXIS for our table.

Now we add a SCATTER plot with VILLAIN on the x-axis just like the other plot and X1 on the y-axis. We get the
information we want on there by telling SAS that the MARKERCHAR should be YEAR_FIRST. Notice that we specify
the Y2AXIS.

proc sgplot data=who14 noautolegend;

 scatter x=villain y=episodes;

 scatter x=villain y=x1 / markerchar=year_first y2axis;

 yaxis offsetmin=0.1;

 y2axis display=(nolabel) offsetmax=0.9;

run;

3

We also add an offset to both the YAXIS and the Y2AXIS so that the numbers don’t overlap with the plotted points.
OFFSETMIN=0.1 moves the bottom edge of the y-axis up by ten percent of the range. OFFSETMAX moves the top
edge of the y2-axis down by 90%. That way they do not overlap. We also tell the Y2AXIS to not display the label. If it
did, then we’d see a weird “x1” on the right edge of the graph.

Figure 2

We can have as many rows as we want in this table by adding more variables and moving the offsets. For example,
if we wanted to show the year the villains first aired, the year they last aired and the total number of story lines they
showed up in, then our code could look like this.

data who14;

 set who14;

 x1 = "First Aired";

 x2 = "Total Storylines";

 x3 = "Last Aired";

run;

proc sgplot data=who14 noautolegend;

 scatter x=villain y=episodes;

 scatter x=villain y=x1 / markerchar=year_first y2axis;

 scatter x=villain y=x2 / markerchar=total_stories y2axis;

 scatter x=villain y=x3 / markerchar=year_last y2axis;

 yaxis offsetmin=0.3;

 y2axis display=(nolabel) offsetmin=0.1 offsetmax=0.8;

run;

4

Figure 3

Here we’ve added X2 and X3 with appropriate values and appropriate MARKERCHARs. We also added another
offset control so that the rows would be closer to each other and the “table” would look better. Try it without the new
OFFSETMIN=0.1 to see what we mean.

N E W S C H O O L

While this works, and is the only option prior to release 9.4, it takes more work and can become cumbersome.
Because the developers are all about flexibility and ease of use, and because quite a few users asked for the
capability, they added XAXISTABLE and YAXISTABLE. These options not only do what we just did a bit easier, but
they give us greater control and flexibility over how it’s done. To reproduce the second example above, we would just
submit this code.

proc sgplot data=who14;

 scatter x=villain y=episodes;

 xaxistable year_last total_stories year_first / location=inside;

run;

Notice that we were able to put the labels for the table on the YAXIS. We can actually move it back to the Y2AXIS by
adding that option to the statement.

5

Figure 4

With these statements, we can also control the LOCATION of the table as INSIDE (like we did above) or OUTSIDE
of the axis area, as well as POSITION it either at the TOP or BOTTOM of graph. You can also control how the labels
and the data values are displayed. Here’s the code for a full graph with most of the options specified.

proc sgplot data=who14;

 scatter x=villain y=episodes;

 xaxistable year_last year_first / location=inside position=bottom

 droponmissing separator title="Other Info" titleattrs=(weight=bold)

 valueattrs=(color=red) x2axis labelpos=right

labelattrs=(style=italic) name="other";

run;

and the graph.

6

Figure 5

As silly as this graph is, it shows the effects of most of the available options. Notice that the TITLE applies to every
row in the table. If this is useful for you, then good. The labels on the x-axis are on the top and the bottom because
of the X2AXIS keyword. This actually allows us to have two sets of horizontal axes. An X= option would allow the
values in the table to be placed according to another scale than the one in the primary graph.

The XAXISTABLE statement can be used multiple times. This allows you to place tables on the top and bottom of
the graph (or left and right with YAXISTABLE) at the same time. It also allows you to do things like have a title for
only one row of the table or customize the text or label attributes per row. You can also use XAXISTABLE and
YAXISTABLE in the same plot.

S T AT =

The axistables can also be used to show summary statistics related to the plot, particularly when the plot is
categorical, such as the bar charts, line charts and dot plots. These plots are often summarizing a variable for
particular levels of a categorical variable. This situation is well suited to display a statistic on the plotted variable or a
related variable. In our current data set everything is summarized, so this type of table isn’t necessary. One can see
that by comparing the graphs from these two pieces of code.

proc sgplot data=who14;

 scatter x=villain y=villain_episodes;

 xaxistable total_stories;

run;

7

Figure 6
proc sgplot data=who14;

 scatter x=villain y=villain_episodes;

 xaxistable total_stories / stat=mean;

run;

Figure 7

Let’s use another dataset, then, called WHO_EP with the following variables, among others.

8

Variable Name Type Meaning

Doctor_number Numeric The number of the regenerations of the Doctor. Also the
number of the actor playing the Doctor.

Doctor Character The actor playing the Doctor.

Season Numeric The season number that this actor part of.

Title Character The title of the stories this actor played in.

Story_episodes Numeric The number of episodes made to tell the story.

We’ll create a dotplot of the total number of episodes in all the stories for each doctor and add a YAXISTABLE to
show the median number of episodes per story for each doctor. Note that we specify STATLABEL to show, in this
case, “(Median)” on the table. The default is to show the statistic calculated, but for this example, PROC IMPORT
was used to import the dataset from a spreadsheet and PROC IMPORT adds labels to the variables. In this situation,
i.e. when a custom label is assigned to the variable, the statistic is not displayed. We can easily force it to be
displayed, though, as below.

proc sgplot data=who_ep;

 dot doctor / response=story_episodes;

 yaxistable story_episodes / stat=median statlabel;

run;

Figure 8

The X|YAXISTABLE statements are much easier to use for adding tabular information to the plot. As with the rest of
ODS, they give the user almost complete control over the layout and look of the tables. What if we want to add
information that is not so structured? With SAS 9.x we now have the option of adding annotations to our plots.

ANNOTATION

For those who are familiar with SAS/Graph, annotating a graph is likely very familiar. Some people have even
skipped the built in graphs and created their entire visualization with annotations. These are the true artists. Since
SAS 9.x annotation has been available to users of ODS Graphics with much of the functionality as before.

9

Many of the things you might want to do with SG Annotation can be done with other ODS statements, such as
putting text on the plot or drawing lines. Let’s see some examples of both.

If we want a horizontal line on my plot such as a line to indicate that the villains who appeared in more than 40
episodes are very scary, then we can use the REFLINE statement.

proc sgplot data=who14 noautolegend;

 scatter x=villain y=episodes;

 refline 40 / label=”Very scary!”;

run;

Figure 9

We can also create an annotate data set and draw it “manually.” Just like in SAS Graphics, there are particular
variable names and keywords to use. We specify

 the FUNCTION that we want the graphics engine to perform

 where we want it to perform that function

 the coordinate system it uses to do the positioning

 how we want the output to look

For our reference line we might have

data annoline;

 infile datalines dlm="#";

 retain x1space "DATAPERCENT" y1space "DATAVALUE" x2space "DATAPERCENT" y2space

"DATAVALUE";

 length label $ 15;

 input function $ x1 y1 label x2 y2;

datalines;

TEXT # 90 # 45 # Very scary! # . # .

LINE # 1 # 40 # # 99 # 40

;;

run;

to create the following data set.

10

OBS x1space y1space x2space y2space label function x1 y1 x2 y2

1 DATAPERCENT DATAVALUE DATAPERCENT DATAVALUE Very scary! TEXT 90 45 . .

2 DATAPERCENT DATAVALUE DATAPERCENT DATAVALUE LINE 1 40 99 40

With this data set we will be telling the SGPLOT procedure to draw TEXT at coordinates (90, 45) and a LINE from
(1,40) to (99, 40).

Figure 10

Be aware, though, that those instructions are not as simple as they may seem. Each of those coordinates is relative
to some “drawing space.” There are four drawing areas that we can use: graph, layout, wall and data. Suppose we
run this code.

proc sgplot data=who14;

 title "The Most Popular Villains";

 scatter x=year_first y=episodes;

 footnote "Daleks and the Master stand out";

 xaxis offsetmin=0.1 offsetmax=0.1;

 yaxis offsetmin=0.1 offsetmax=0.1;

run;

Notice that we have a title and a footnote, as well as offsets for the X and Y axes.

11

The GRAPH drawing area encompasses the entire graph: plot, axes, titles, footnotes, etc.

The LAYOUT drawing area does not include the titles and footnotes, but does include the rest of the graph area.

Figure 11a-d

12

The WALL drawing area does not include titles, footnotes, and axes. It does include all the area within the axes,
including any offsets.

Finally, the DATA drawing area is just that. It includes only the square that the data takes up. It does not include any
of the offsets.

For each of these we can specify the scaling as a percentage of the drawing space or by the number of pixels. The
first is useful when you want to specify relative coordinates. For our TEXT above with the coordinates (90, 45),
DATAPERCENT says to anchor the text at 90% of the horizontal space within the data area. The second scaling
gives you strict control over the annotation’s positioning. If we had said DATAPIXEL for X1SPACE and X2SPACE,
then the line would have started at 1 pixel into the data area and ended at 99 pixels. The look of the output will
depend on both the drawing space chosen and the size (width or height) of the graph. A wider graph means that
there are more pixels being drawn in essentially the same drawing space, so the line will be shorter relative to the
rest of the graph.

It can also be very helpful to use DATAVALUE as the drawing space. This positions and scales the annotation with
respect to the values of the data, which may make it easier to draw by eye or, better yet, the coordinates could be
data-driven.

13

Suppose we want to identify the Daleks (Daleks at (1963,104) and Dalek Supreme at (1964, 63)) on the plot below
by circling them with an oval. We can use the values of the points to draw the oval. We’ll center the oval at the
midway point between the two data points. We’ll set the WIDTH and HEIGHT to be functions of the distance
between the two points and, finally, ROTATE, the oval based on the angle of the line connecting the two points. Here
is the code for the calculations.

data oval;

 set oval;

 length function $8;

 distx = dsx - dx;

 disty = dsy - dy;

 distance = sqrt(distx**2 + disty**2);

 x1 = distx/2 + dx;

 y1 = disty/2 + dy;

 angle = atan2(disty, distx) * 180 / constant('PI');

 function = "oval";

 width = distance*0.8;

 height = distance*0.25;

 rotate = angle*0.98;

 drawspace = "datavalue";

 output;

 function = "text";

 x1 = dsx*1.001;

 y1 = dy*0.9;

 label = "Daleks are";

 rotate = 0;

 anchor = "left";

 output;

 function = "textcont";

 label = " Scary!";

 textcolor = "red";

 textsize = 20;

 textweight = "bold";

 output;

run;

We’ve also annotated the graph with an important notice about the Daleks as TEXT. For emphasis we’ve used the
TEXTCONT function to continue the text in a different font. When TEXTCONT follows TEXT in the data set, the
LABEL for TEXTCONT follows the LABEL for text so we put a space at the front to separate the two. See the code
and graph below.

proc sgplot data=who sganno=oval;

 scatter x=year_first y=episodes;

run;

14

Figure 12

ATTRIBUTES

Even though the default values for ODS Graphics are well thought out and aesthetically pleasing, there are often
times that we want to customize the look and feel of various parts of the graph. The good thing is that they have
given us the ability to customize almost everything and a number of ways to do it. We’ll look at some background
first and then three ways to control the attributes.

B AC K G R O U N D

A STYLE is what determines what ODS output is going to look like. It is a SAS template that can be associated with
a particular ODS document. The default style used by the HTML destination is HTMLBlue. There is a definition for
everything you can output in this template. There is a definition for how to produce the background, borders,
headers, footers, table cells, web links, titles, etc. It’s almost overwhelming at times how much control they give you.
Each style is made up of elements that are named collections of style attributes. These style elements are the
specific way the look and feel of an area of the ODS output is determined. For example, in the HTMLBlue style there
is a style element for Header that specifies the bordercolor, backgroundcolor and color of the Header. For a list of
the Style Elements Affecting Template-Based Graphics, refer to the SAS System Documentation at SAS Products >
Base SAS > SAS Output Delivery System (ODS) > SAS 9.4 Output Delivery System: User’s Guide, Third Edition >
ODS Style Reference > Style Elements.

As mentioned, the Style Elements are collections of attributes. According to the documentation just noted, the
recognized attributes for the GRAPHDATADEFAULT style element, as an example, are Color, ContrastColor,
MarkerSymbol, MarkerSize, LineStyle, LineThickness, StartColor, NeutralColor, and EndColor. These attributes
determine the look and feel of non-grouped data items according to the Style set for the current destination. For
example, in the graph below, the blue color for the line is defined by this style element because the style being used
is HTMLBlue.

15

Figure 13

When we add a barchart, it keeps the same coloring so that they complement rather than contrast.

Figure 14

On the other hand, when there are grouped items or multiple items of the same type, then different style elements
are used: GRAPHDATA1, GRAPHDATA2, GRAPHDATA3, etc., depending on how many data items there are. The
relationship among these elements depends on the style being used. When color is the primary differentiator, then
the colors for each of these are designed to enhance the differentiability of the pieces of information. For example,
when we change our barchart to a line chart SAS shows the first line as blue and the second line as red. (see below)

16

Figure 15

Other styles, such as those in black and white, use the pattern of the line to differentiate the grouped or multiple
items.

As you can see from the example for GraphDataDefault, the style attributes are related (in a broad sense) to color,
shape and size. The table below gives a variety of further examples.

“Color” “Shape” Size

CXFF0000 Courier New 5 CM

H07880FF Solid 2.3 IN

Light Red DashDashDot 20 MM

Matte Italic 30%

Crisp MMDDYY8. 55 PT

The color can be specified in any SAS standard format, such as a predefined SAS color (“orange” and “blue”) or an
RGB (red/green/blue) value. Another is HLS (hue/light/saturation) or even an English description of an HLS value.
For example, you could code “very dark grayish yellow,” if that’s your thing. The shape, in a broad sense, can be
specified by a font-definition, a SAS format, an integer list, a line pattern or marker symbol (e.g., ArrowDown,
CircleFilled, or Star). The size can be specified by a number and the units of measure (CM=centimeters, IN=inches,
MM=millimeters, PCT=percentage, PT=point size, PX=pixels).

With that brief background, let’s look at some ways to customize the appearance of our graphs.

M AR K E R S

Markers are common in plots and customizing them to provide other information is very valuable. We’ve already
seen this concept when we used SCATTER to make a data table. The “markers” were the numeric values we wanted
to show. The two relevant options are

• MARKERCHAR=variable

• MARKERCHARATTRS=style-element <(options)> | (options)

The “variable” can be any quantitative or categorical variable, and if there’s a format on the variable then it’s applied
as well.

17

The other Marker options are

• MARKERATTRS=style-element <(options)> | (options)

• MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

• MARKEROUTLINEATTRS=style-element <(options)> | (options)

• FILLEDOUTLINEDMARKERS

These are used to customize the built in marker symbols for the dot, scatter, series, step, line, needle and fit plots by
specifying either a Style Element or specific Style Attributes. The first three have an interaction with
FILLEDOUTLINEDMARKERS. If we don’t use FILLEDOUTLINEDMARKERS, then MARKERATTRS can control the
COLOR, SIZE and SYMBOL, whether we pick a filled symbol or not. The PROC also ignores MARKERFILLATTRS
and MARKEROUTLINEATTRS.

If we do use FILLEDOUTLINEDMARKERS, then the COLOR option in MARKERATTRS is ignored. Instead the color
is controlled by the MARKERFILLATTRS and the MARKEROUTLINEATTRS options. The MARKEROUTLINEATTRS
can also control the THICKNESS of the outline on the marker. Note also, that when the
FILLEDOUTLINEDMARKERS option is used, then a FILLED symbol must be used, either specified explicitly
(MARKERATTRS) or defaulted from the active style.

proc sgplot data=whovill;

 scatter x=villain y=episodes / filledoutlinedmarkers

 markerattrs=(symbol=CircleFilled size=15);

run;

Figure 16

proc sgplot data=whovill;

 scatter x=villain y=episodes / filledoutlinedmarkers

 markerattrs=(symbol=CircleFilled size=15) markerfillattrs=(color="#003865")

 markeroutlineattrs=(color=red);

run;

18

Figure 17

C Y C L E AT T R S

As we mentioned, the GraphDataX style elements are used when multiple plots of the same type are created or the
data is plotted in groups so that different attributes, such as color, are used for different lines. Sometimes we want to
force different colors to be used and sometimes we want to use all the same color. We have control over this
through the CYCLEATTRS and NOCYCLEATTRS options. CYCLEATTRS means to cycle the attributes through the
available options. In our example above, we have a VLINE and an HBAR chart that both have the same attributes.
Adding the CYCLEATTRS option on the SGPLOT statement

proc sgplot data=who_seasons cycleattrs;

 hbar first_aired / response=num_episodes stat=sum;

 hline first_aired / response=ave_viewers x2axis;

run;

gives this graph.

19

Figure 18

Since the HBAR is first it is drawn in blue and the HLINE is drawn in red. The attributes that ODS cycles through
depends on the style being used. The style in effect here is the default (HTMLBLUE). If we had been using the
JOURNAL style, then ODS would have changed the line pattern as below, since it does not use colors.

Figure 19

Going the other direction, we can force the second example above to show the same colors by adding the
NOCYCLEATTRS option. We might want this if we are being very specific about some of the attributes we want
displayed and we want the other attributes to stay consistent.

20

S T Y L E AT T R S

The CYCLEATTRS option is nice, but it’s a far cry from everything that can be done. We touched upon some of
those capabilities in the previous paper. One of the newer features is the STYLEATTRS statement for SGPLOT and
SGPANEL. This statement shortcuts a lot of the work of creating a new ODS style template that was previously
required. Now the programmer can control the colors, contrast colors, line patters and marker symbols of graphic
elements. The STYLEATTRS statement can be used in conjunction with the ATTRPRIORITY option on the ODS
GRAPHICS statement, but this is still rudimentary. If the user community finds it helpful, then I expect it to be
expanded in future releases.

This statement is pretty straightforward to understand and use (like most things in ODS Graphics!). The simple
scatter plot below shows the average number of viewers for each season. We’ve grouped the display of the
information by which incarnation of the Doctor was in the show.

Figure 20

This graph comes because we are using the default style, HTMLBLUE, whose pattern for differentiating is based on
colors. If we wanted to differentiate the markers by symbol also, then we would use the following statements.

ods graphics / attrpriority=none;

proc sgplot data=who_seasons nocycleattrs;

 styleattrs datasymbols=(ibeam circle circlefilled diamond diamondfilled

 hash starfilled triangle trianglefilled square

 squarefilled);

 scatter x=first_aired y=prem_viewers / group=doctor;

run;

The ATTRPRIORITY option on the ODS GRAPHICS statement is important because it tells ODS to not give color the
highest priority for differentiating. If we had not used that option, then ODS would have displayed a bunch of multi-
colored ibeams. Essentially, we tell it to not set a priority because we define it in the STYLEATTRS statement. Here,
we have set the symbols as the first attribute to be changed and we get this plot.

21

Figure 21

Notice that the colors change with each of the symbols. They change because we are still in HTMLBlue with groups
and it is still using GraphData1, GraphData2, …. To go all the way and have the symbol be the only differentiator, we
would have to specify one color as in the following code snippet.

styleattrs datasymbols=(ibeam circle circlefilled diamond diamondfilled hash

 starfilled triangle trianglefilled square squarefilled)

 datacontrastcolors=(blue);

We specified a different symbol for each level of the group. If we had not, then ODS would have started over with the
ibeam once it got through the list. This cycling also works across attribute specs. If we had used
DATACONTRASTCOLORS=(BLUE RED) instead, then the symbols would alternate between blue and red as below.

22

Figure 22

Stepping back now, there are 4 attributes that can be changed in the STYLEATTRS statement.

Argument Controls

DATACOLORS Fill colors

DATACONTRASTCOLORS Contrast colors for lines and markers

DATALINEPATTERNS Line patterns

DATASYMBOLS Marker symbols

When you include a STYLEATTRS statement with one or more of these arguments, you are redefining the
GraphData1, GraphData2, … GraphDatan style elements (discussed above and shown in the table below) which are
then applied to each graphic element to determine its look.

Style Element Color Contrast Color Marker Symbol Line Pattern

GraphData1 cx7C95CA cx2A25D9 CIRCLE 1

GraphData2 cxDE7E6F cxB2182B PLUS 4

GraphData3 cx66A5A0 cx01665E X 8

GraphData4 cxA9865B cx543005 TRIANGLE 5

GraphData5 cxB689CD cx9D3CDB SQUARE 14

GraphData6 cxBABC5C cx7F8E1F ASTERISK 26

GraphData7 cx94BDE1 cx2597FA DIAMOND 15

GraphData8 cxCD7BA1 cxB26084 20

GraphData9 cxCF974B cxD17800 41

GraphData10 cx87C873 cx47A82A 42

GraphData11 cxB7AEF1 cxB38EF3 2

23

GraphData12 cxDDD17E cxF9DA04

When we changed the DATASYMBOLS we replaced the default values of CIRCLE, PLUS, X, etc. with IBEAM,
CIRCLE, CIRCLEFILLED, etc. When we included the DATACOLORS=(BLUE RED) the table becomes

Style Element Color Contrast Color Marker Symbol Line Pattern

GraphData1 blue cx2A25D9 IBEAM 1

GraphData2 red cxB2182B CIRCLE 4

GraphData3 blue cx01665E CIRCLEFILLED 8

GraphData4 red cx543005 DIAMOND 5

GraphData5 blue cx9D3CDB DIAMONDFILLED 14

GraphData6 red cx7F8E1F HASH 26

GraphData7 blue cx2597FA STARFILLED 15

GraphData8 red cxB26084 TRIANGLE 20

GraphData9 blue cxD17800 TRIANGLEFILLED 41

GraphData10 red cx47A82A SQUARE 42

GraphData11 blue cxB38EF3 SQUAREFILLED 2

GraphData12 red cxF9DA04

If a 12
th

 group had shown up, then the patterns would have been repeated to give us a red ibeam next. (NB: Even
though the show is on the twelfth incarnation of the Doctor, there are only 11 groups, because the 8

th
 Doctor is not in

the dataset. He only appeared in a show twice: once in the 1996 TV movie Doctor Who and then in the 2013
YouTube video The Night of the Doctor. On the other hand, it is interesting to note that outside of the screen, he has
appeared in more stories than any other Doctor. [tardis.wikia.com/wiki/Eighth_Doctor])

AT T R I B U T E M AP S

Another way to control the appearance of grouped data is with Attribute Maps. Attribute Maps are overkill for
controlling attributes in single, one-time graphs. They really come into play when you want to create graphs with an
attribute scheme that is independent of the data structure and/or consistent across graphs.

The map is a data set (isn’t everything?) where each observation assigns attributes to one level of the group. Each
element is connected to a series of attributes sort of like a SAS format. Like the Annotation data sets and the format
data sets, the attribute map data set has a specific structure.

Variable

ID (required) The connector between the data set and the graphing
element. This ID is used in the ATTRID option. It is like
the FMTNAME variable in a CTRL data set for user
defined formats.

VALUE (required) The connector between the record of attributes and the
level of the group. It is like the START variable in a
CTRL data set. Because groups can only be categorical
(and not ranges like in a format), VALUE is a case
sensitive CHAR variable.

MISSING and _OTHER_ are also valid values to
handle missing values and group values not explicitly
defined, respectively.

and one or more attributes such as FILLCOLOR, MARKERSYMBOL, LINEPATTERN, etc.

24

By defining these maps it doesn’t matter what order the input data is in, whether any group levels are missing, or
what other graph items are on the plot. The attributes will always be as you specified. Let’s look at a simple example.

Suppose we wanted a bar chart that shows the average number of viewers for each doctor. We would like to group
the output by the decade that the episodes were shown. Below is the first example with all the data.

proc sort data=who_seasons;

 by doc_no;

run;

proc sgplot data=who_seasons;

 hbar doctor / response=ave_viewers group=decade;

 yaxis discreteorder=data;

run;

Figure 23

GraphData1 … GraphData4 use the blue, red, green, brown and violet colors to differentiate the groups (1960s,
1970s, 1980s, 2000s, and 2010s respectively). Now suppose that next month we are given different requirements for
what to show. In this case, since we are deciding which shows to re-air and many of the early episodes are lost, we
only care about the average number of viewers for those seasons with all episodes complete. The graph below
shows this plot created with the following code.

proc sgplot data=who_seasons(where=(some_missing="No"));

 hbar doctor / response=ave_viewers group=decade;

 yaxis discreteorder=data;

run;

25

Figure 24

Note that the colors are the same – blue, red and green – but they are associated with different decades because
the 1960s are missing. If we don’t want to confuse our managers, then maybe we should keep the colors the same.
Data attribute maps are the best way to do this.

We can define a data attribute map data set (DAMPD) to be the following.

ID Value Fillcolor Linecolor

decades 1960s brown black

decades 1970s green black

decades 1980s red black

decades 2000s blue black

decades 2010s purple black

With this attribute map we modify the previous code in the following simple ways. First, we add the DATTRMAP
option to the PROC SGPLOT statement so that we can connect the data set to the PROC (1). Then we add the
ATTRID= option to the plot statement so that we can connect the appropriate ID (decades) to the values plotted (2).

proc sgplot data=who_seasons dattrmap=dampd;

 hbar doctor / response=ave_viewers group=decade attrid=decades;

 yaxis discreteorder=data;

run;

proc sgplot data=who_seasons(where=(some_missing="No")) dattrmap=dampd;

 hbar doctor / response=ave_viewers group=decade attrid=decades;

 yaxis discreteorder=data;

run;

1

1

2

2

26

Figure 25

Figure 26

Now we see that each group level has the same color across graphs, even though some are missing. Note that we
can use attribute maps for any graph with grouped data to achieve this consistency.

Just like formats, two or more maps may be combined in a single data set. The ID variable is what keeps them
distinct. The other variables have values specific to the group being mapped. The two restrictions that apply are that
one group cannot be associated with two maps in the same dataset, and that the data set must be sorted by ID
values so that they are consecutive.

27

BLOCKS

The BLOCK plot is a new plot that, most of the time, is used to enhance another plot. For example, Suppose we
want to show a line plot of the number of viewers who watched the premiere of each season versus the date the
season first aired. We also want to identify the doctor associated with each season. We could do that by using
Doctor as a group variable and we would get different colors or symbols or line patterns for each doctor. We can
also use blocks as a background over which the lines would be laid. The code below does just that.

proc sgplot data=who_seasons;

 block x=first_aired block=doctor / transparency=0.3 valuefitpolicy=splitalways;

 series x=first_aired y= prem_viewers / markers;

 yaxis label="# of Premiere Viewers (millions)";

 xaxis label="Date First Aired";

run;

Figure 27

We create the blocks first and then plot a SERIES line with MARKERS. The blocks come out by default with a darker
color than we want, since it hides the lines and the text. To reduce this we set the TRANSPARENCY of the blocks to
0.3. The block labels (“First Doctor”, “Second Doctor”, etc.) are also cumbersome. We can’t fix that completely, but
we can use one of the VALUEFITPOLICY options to make it better. Here we chose SPLITALWAYS so that it always
splits the text. We use the default SPLITCHAR which is a blank space. [Note: the documentation for the BLOCK
statement under PROC SGPLOT is wrong. It says that VALUEFITPOLICY=SPLITALWAYS (and SPLIT) has no
effect unless the split character is defined with the SPLITCHAR= option. The BLOCKPLOT statement under the GTL
section seems to be the correct description of the PROC’s behavior.

As always you can control most of the appearance of the BLOCK plots: fill, outline, values, and text.

CONCLUSION

Each release the SAS ODS Graphics development team adds many new features. They listen to their customers
and add minor options and major capabilities based on the requests they get. This paper is intended to highlight a
few of the more advanced and some of the newer capabilities. There are so many more that they have made
available to us. The documentation and the Data Visualization blog are wonderful reads. Enjoy!

28

REFERENCES

 Graphically Speaking, http://blogs.sas.com/content/graphicallyspeaking/

ACKNOWLEDGMENTS

Thank you to the SAS ODS Development team for their ideas in the conception of this paper and for answering
questions along the way.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Chuck Kincaid
Experis Business Analytics
5220 Lovers Lane
Portage, MI 49002
269-553-5140
chuck.kincaid@experis.com
www.experis.us/analytics

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

