
1

Sailing Over the ACROSS Hurdle in PROC REPORT

Cynthia L. Zender, SAS Institute Inc., Cary, NC

ABSTRACT

To get the full benefit from PROC REPORT, the savvy programmer needs to master ACROSS usage and the
COMPUTE block. Timing issues with PROC REPORT and absolute column references can unlock the power of
PROC REPORT.

This presentation illustrates how to make the most of ACROSS usage with PROC REPORT. Use PROC REPORT
instead of multiple TRANSPOSE steps. Find out how to use character variables under an across usage item. Learn
how to impact the column headers for ACROSS items. Learn how to use aliases. Find out how to perform row-wise
trafficlighting and trafficlighting based on multiple conditions.

INTRODUCTION

At first glance, using ACROSS with PROC REPORT seems like a walk in the park. You like PROC REPORT syntax
better than PROC TABULATE syntax. You like not having the big empty box area at the intersection of row headers
and column headers. You like the PROC REPORT spanning headers. But then, all of a sudden, you need to use a
character variable as the ACROSS item on the report.

Or, perhaps you just don’t know about PROC REPORT and all it can do. So, I’m going to start the paper with a
simple usage of ACROSS.

WITH A LITTLE HELP FROM MY FRIENDS

Display 1 shows a SAS Community forum question (or part of it). To review the full posting and all the responses, visit
the Community forum website (https://communities.sas.com/message/189755#189755).

Display 1. SAS Community Forum Post with a “TRANSPOSE” Question

2

The original poster (OP) of this question got quite a few responses that jumped immediately on his PROC
TRANSPOSE question. But, one crucial piece of the question said that the OP needed to transpose and “report as”.
PROC TRANSPOSE is a great procedure, but it creates a SAS data set, not a report. So, if the OP did a transpose
and then the ARRAY processing that might be required after the transposition, that would be two passes through the
data. And that’s just two passes if you don’t count the PROC PRINT for the report piece.

Both PROC TABULATE and PROC REPORT would have produced a “transposed” report with every unique date
value as a column and the sum of the VALUE variable inside the data cells. Assuming the data looks like the original
data set example posted in the track, consider the code below. It produced the output shown in Output 1.

ods html file='c:\temp\want_report.html' style=sasweb;

proc tabulate data=ex1 f=comma6.;

 title '1) PROC TABULATE';

 class study datetime category;

 var value;

 table study*Category all*{style=Header},

 datetime='Date'*value=' ' all*value=' ';

 keylabel sum=' '

 all='Total';

 keyword all / style={vjust=b};

 format datetime date7.;

run;

proc report data=ex1 nowd

 style(summary)=Header;

 title '2) PROC REPORT';

 column study category value,datetime value=tot;

 define study / group style(column)=Header;

 define category / group style(column)=Header;

 define datetime /across order=internal f=date7. 'Date';

 define value / analysis sum f=comma6. ' ';

 define tot / analysis sum 'Total' f=comma6. ;

 rbreak after / summarize;

 compute after;

 study='Total';

 endcomp;

run;

ods html close;;

The PROC REPORT and TABULATE output is the same, so only the REPORT results are shown in Output 1. In
addition, both PROC REPORT and PROC TABULATE can produce grand totals for the report or as a final column.
Notice that PROC REPORT uses the DATETIME variable as an ACROSS item on the report definition. Also notice
that, in the COLUMN statement, the syntax that puts VALUE underneath (or nested within) each DATETIME is the
use of the comma operator:

 column study category value,datetime value=tot;

The comma operator in this instance is causing VALUE to be summarized underneath every unique value for
DATETIME. Then, VALUE is used a second time on the report to produce the final TOTAL column.

So, PROC TRANSPOSE might have been the first choice for the OP, but by using one of the “powerhouse” report
procedures capable of creating a cross-tabular report, the final result was produced without using PROC
TRANSPOSE.

3

Output 1. Output from PROC REPORT with Transposed Columns and Totals

Let’s take a brief look at one of the hurdles that people frequently face when they first use the comma operator with
PROC REPORT. What if the order of VALUE and DATETIME had been reversed in the COLUMN statement?

 column study category datetime,value value=tot;

Then the results would take show that PROC REPORT has allocated space for the header, even when the header is
blanked out, as shown in Output 2.

Output 2. Output from PROC REPORT with a Different COLUMN Statement

There is a way to overcome this automatic allocation of space for the column header. The method is to use spanning
headers in the column statement and make sure that the whole row (where the repeated headers for “Value” appear)
is blank. PROC REPORT will suppress a row that is entirely composed of blanks. This final report is shown in Output
3, using the code below. The ODS HTML statements are not shown for this code snippet.

4

proc report data=ex1 nowd

 style(summary)=Header;

 where category in ('Category1', 'Category2');

 title '3c) PROC REPORT';

 column ('Study' study) ('Category' category) datetime,value ('Total' value=tot);

 define study / group style(column)=Header ' ';

 define category / group style(column)=Header ' ';

 define datetime /across order=internal f=date7. 'Date';

 define value / analysis sum f=comma6. ' ';

 define tot / analysis sum ' ' f=comma6. ;

 rbreak after / summarize;

 compute after;

 study='Total';

 endcomp;

run;

Output 3. Output from PROC REPORT with Spanning Headers

Notice that the COLUMN statement still shows DATETIME,VALUE but most of the other variables have their headers
specified in the COLUMN statement, which gives PROC REPORT an entirely blank header row, which it can
suppress.

So, either way the ACROSS items are defined and given headers, and it is possible to get PROC REPORT to
transpose and summarize data for report purposes without creating an output data set first.

PLEASE, LOUISE PULL ME OFF A MY KNEES

Sometimes though, you don’t want PROC REPORT to summarize data in the data cells; sometimes you want to
display values underneath columns and the variables are character variables. In this case, PROC REPORT can bring
you to your knees. What if you have some team data that shows the captain for every combination of League and
Team. And, what you want is a transposed report that shows a League on every row and a Team for every column,
with the Captain value (a character variable) in the data cell. That is exactly what another SAS Community forum
question (or part of it) asked. To review the full posting and all the responses, visit the SAS Community forum
(https://communities.sas.com/message/168440#168440). Here’s what the revised sample data
looks like. All the variables are character variables in the WORK.EX2 data set.

Display 2. Data Set with Character Variables

5

As described, the report should show the captain’s name in every data cell, as shown in Output 4.

Output 4. Desired Results with ACROSS and Character Variables

Again, PROC REPORT helps you jump this hurdle. But not without some stumbles. The first attempt, shown in the
screenshot of the SAS Log below, tells you what the problem is. There is no statistic associated with the variable
CAPTAIN (which is nested underneath the ACROSS variable, TEAM).

Display 3. SAS Log After First Try

There are two ways to generate the desired report. One way is to put a “dummy” numeric variable on the report, and
the other way is to put a calculated statistic (such as N) on the report. The code below produces Output 5.

proc report data=ex2 nowd;

 title1 '2nd try with dummyvar';

 column league team,captain dummyvar;

 define league / group;

 define team / across;

 define captain / display;

 define dummyvar / computed;

 compute dummyvar;

 dummyvar = 1;

 endcomp;

run;

Note how the DUMMYVAR computed item is assigned a value of 1 in the COMPUTE block. Eventually, this item will
be defined as NOPRINT, which means that the number being assigned doesn’t make a difference.

6

Output 5. Creating a COMPUTED item called DUMMYVAR

However, note the difference in the value when the N statistic is requested in the code. The code below produces
Output 6.

proc report data=ex2 nowd;

 title1 'Use N instead of DUMMYVAR';

 column league team,captain n;

 define league / group;

 define team / across;

 define captain / display;

 define n / 'Count';

run;

If you compare the N or count value for each row, you will see it is 3 versus the 1 from the other report.

Output 6. Using the N Statistic

Using GROUP with ACROSS and having a numeric variable on the report is what allows this “transposed” report to
use character variable values in the data cells and display only one row per League value. If you did not use GROUP
for the first column, but used ORDER instead, then you would see what I call “stairstep” output, as shown in Output 7.

This will be true whether you use the “dummyvar” technique or the “N” technique. The code snippet below (showing
the usage of League as ORDER) is the only change made to either of the previous two programs.

define league / order;

7

Output 7. “Stairstep” Output using ORDER and ACROSS with Character VARIABLE

The only change to the original program to produce the final report, as shown in Output 4, was putting the NOPRINT
option on either the DEFINE statement for DUMMYVAR

define dummyvar / computed noprint;

or the DEFINE statement for N.

define n / 'Count' noprint;

So far, using ACROSS has allowed us to take data in one form and create a cross-tabular report without using PROC
TRANSPOSE; without making multiple passes through the data; and without using PROC TABULATE. And it’s
allowed us to do something unique, such as showing the value of a character variable instead of a numeric variable
underneath the unique values of the ACROSS variable. Next, we’re going to tackle absolute column numbers and
PROC REPORT.

OFF WE GO, INTO THE WILD BLUE YONDER

We will launch ourselves so high over the absolute column number hurdle that we’re going to be touching the clouds
in the blue sky! So far, the ACROSS items we’ve used haven’t been that difficult, mostly because we haven’t needed
to calculate a new item nested under an ACROSS variable.

All that’s going to change. Consider this code:

 proc report data=sashelp.class nowd out=abscols

 style(summary)=Header;

 where age le 13;

 title '1) Proc Report Crosstab Report';

 column age (sex,(weight height))

 ('Overall' weight=wta height=hta);

 define age / group style(column)=Header;

 define sex / across 'Gender Avg';

 define weight / mean f=7.2;

 define height / mean f=7.2;

 define wta / mean f=7.2 style(column)=Header;

 define hta / mean f=7.2 style(column)=Header;

 rbreak after / summarize;

8

 run;

The results of this program are shown in Output 8.

Output 8. Two Variables under Each ACROSS Variable Value

So far, so good. If you’ve used PROC REPORT before, the COLUMN statement is straightforward. The AGE variable
is a GROUP usage; while the SEX, the ACROSS variable, is nested with WEIGHT and HEIGHT. This is how a
separate set of columns appears in Output 8 for the F value and another separate set of columns appears for the M
value. Then, WEIGHT and HEIGHT are assigned aliases (WTA and HTA, respectively) and used a second time on
the report to give the overall mean or average for every row.

But, what if you need to calculate the DIFFERENCE between WEIGHT and HEIGHT for Females and WEIGHT and
HEIGHT for Males? Oh, and also calculate the DIFFERENCE between the OVERALL WEIGHT and HEIGHT for the
AGE value?

The first syntax you might try is shown below.

 proc report data=sashelp.class nowd

 style(summary)=Header;

 where age le 13;

 title '2a) Proc Report with Calculated Column Specified Incorrectly';

 column age (sex,(weight height Diff))

 ('Overall' weight=wta height=hta Diffa);

 define age / group style(column)=Header;

 define sex / across 'Gender Avg';

 define weight / mean f=7.2;

 define height / mean f=7.2;

 define diff / computed f=7.2;

 define wta / mean f=7.2 style(column)=Header;

 define hta / mean f=7.2 style(column)=Header;

 define diffa / computed f=7.2 style(column)=Header;

 compute diff;

 diff = weight.mean - height.mean ;

 endcomp;

 compute diffa;

 diffa = wta - hta;

 endcomp;

 rbreak after / summarize;

 run;

You were a good PROC REPORT programmer. You used WEIGHT.MEAN and HEIGHT.MEAN in your COMPUTE
block. But, it’s not going to work. The SAS Log for the 2a report is shown in Display 4. Ah, now, you’re singing the
blues. PROC REPORT treats you so mean!

9

Display 4. SAS Log with Incorrect Usage for ACROSS Nested Items

But, there were no complaints about the COMPUTE block for DIFFA! Why does PROC REPORT do that? When you
use an ACROSS item on your report, PROC REPORT has a pre-processing step that it performs before it ever starts
writing report rows. Behind the scenes, PROC REPORT assigns absolute column numbers to every item under the
ACROSS item. So let’s take a look at what that really means for the original report, with the DIFF and DIFFA columns
added to the headers.

Display 5. COLUMN Headers Showing Absolute Column Numbers Assigned by PROC REPORT

Now, the formula that we need is easy to see. The Female difference needs to be calculated as:

Female Diff Value = Female Weight – Female Height or

c4 = _c2_ - _c3_

and the Male difference column needs to be calculated as:

Male Diff Value = Male Weight – Male Height or

c7 = _c5_ - _c6_.

And this is the only change to the COMPUTE block that we need to make to get the desired differences calculated.

 compute diff;

 c4 = _c2_ - _c3_;

 c7 = _c5_ - _c6_;

 endcomp;

The output from this change to the program is shown in Output 9.

10

Output 9. Difference Calculated Correctly

And, now, I know you’re thinking, “But wait! What if I have more than two ACROSS values? What if I don’t know how
many ACROSS values I might have from report period to report period?” There’s a macro program for that. Look in
Allison McMahill’s 2007 paper on PROC REPORT.

What happens if I not only have a calculated item, but I want to do trafficlighting on that item and other items related
to it? Take a look at Output 10 to see what I mean.

Output 10. Using ACROSS Values to Perform Trafficlighting

In the above report snippet, the columns for Actual Sales and Predicted Sales under each Product value are given a
background color to match the background color for the Pct of Predict column. So more absolute columns are going
to be involved. There is a user-defined format to create the background color for the percent column.

proc format;

 value fpct low-<.95='lightyellow'

 .95-<1.00 = 'lightblue'

 1.00-<1.075 = 'lightpink'

 1.075-<1.10='lavender'

 1.10-<1.50 = 'peachpuff'

 1.50-high='verylightgreen';

run;

In this COMPUTE block, all the values were hard-coded for the absolute column numbers. This program has not
been “macroized”, so it uses the hard-coded values for the absolute column numbers. Basically, what you need to
know is that Actual Sales for the BED product is _c3_, Predicted Sales for the BED product is _c4_, and the
calculated Pct of Predict for the BED product is _c5_.

This means that there is a “set” of three columns underneath every value for the PRODUCT variable. So, Actual
Sales for the DESK product will be _c6_, for Predicted sales _c7_, and for DESK Pct of Predict the absolute column
number will be _c8_. Study Display 6 to see the absolute column numbers for every column underneath every
product. The COLUMN statement is shown in the screenshot. The DEFINE usage for COUNTRY and DIVISION is
GROUP. The DEFINE usage for PRODUCT is ACROSS. The DEFINE statement for PRTCALC specifies the user-
defined format in a STYLE= override:

define pctcalc / computed 'Pct of Predict' f=percent9.2

 style(column)={background=fpct.};

This is the simplest form of trafficlighting to use with PROC REPORT. The secondary form of trafficlighting that you
can perform with PROC REPORT involves using the CALL DEFINE statement. This is what must be used for the
Actual and Predicted Sales columns underneath each product. But, again, I need to know that there are five products
and that will help me verify the absolute column numbers for my code (or my macro program).

11

Display 6. COLUMN Headers Showing COLUMN statement and Absolute Column Numbers

One of the things that makes this report tricky is that I need to know the color for _C5_, _c8_, and so on, before I can
set the background color for Actual and Predicted Sales columns. Luckily, PROC REPORT helps us out. Although I
cannot specify the CALL DEFINE for Actual and Predicted Sales in a separate COMPUTE block, PROC REPORT
allows me to put a CALL DEFINE statement in the Pct of Predict COMPUTE block (the computed item is called
PCTCALC) for any variable that is to the left of the PCTCALC column. This makes it possible for me to calculate each
of my percent values in one COMPUTE block and to assign colors in the same COMPUTE block.

When PROC REPORT executes the COMPUTE block, it knows which data cells have already been put on the report
row and it uses the correct assignment statement.

Next, I need a very long text string as my style variable value for the CALL DEFINE statement. Note that I have a
LENGTH statement in my COMPUTE block for the temporary variable SVAR5 (and there are more), one for each
PCTCALC column. Again, these variables are hard-coded in the program. If I wanted to “macroize” the COMPUTE
block, this would be a good section of code to turn into a macro call. Finally, I use the SVAR5 variable in the CALL
DEFINE statements for _c3_ (Actual Sales for BED product) and for _c4_ (Predicted Sales for BED product).

 compute pctcalc;

 length svar5 svar8 svar11 svar14 svar17 $50;

 c5 = _c3_ / _c4_;

 c8 = _c6_ / _c7_;

 c11 = _c9_ / _c10_;

 c14 = _c12_ / _c13_;

 c17 = _c15_ / _c16_;

 svar5 = 'style={background='||put(_c5_,fpct.)||'}';

. . . more svar creation . . .

 call define('_c3_','style',svar5);

 call define('_c4_','style',svar5);

. . . more call define statements. . .

 endcomp;

This is the abbreviated version of the COMPUTE block. To see the full code for the COMPUTE block, download the
ZIP file of programs that will out on the R&D website on support.sas.com. As a bonus, there is a “macroized” version
of this program in the ZIP file, too.

In our next example, I’m going to use ACROSS to change the background color of a spanning header. Consider this
code and the simplified report output that is produced, as shown in Output 11. There are no absolute columns in this
code because we are focusing on the spanning headers.

proc report data=sashelp.prdsale nowd;

 column ('Group Variables' country division) product,(actual predict);

 define country / group style(header)={background=lightgreen};

 define division / group style(header)={background=lightgreen};

 define product / across ' ' style(header)={background=lightyellow};

 define actual / sum style(header)={background=lightyellow};

 define predict / sum style(header)={background=lightyellow};

run;

12

Output 11. Spanning Header Is Original Background Color

There is one easy way to fix this, if what you want is both Country and Division to be light green and to have them
share a spanning header. That method is to specify a style override for the header color in the PROC REPORT
statement and then alter the PRODUCT and numeric variable headers.

proc report data=sashelp.prdsale nowd

 style(header)={background=lightgreen};

 column ('Group Variables' country division) product,(actual predict);

The full code which produced Output 12 is contained in the ZIP file of programs for the paper.

Output 12. Easy Background for Single Spanning Headers

As shown in Output 13, it is also the easy code method that allows COUNTRY and DIVISION to both have a light
green background color for separate spanning headers.

Output 13. Easy Background for Multiple Spanning Headers

But what if you wanted multiple spanning headers and you wanted the Country headers to be light green and Division
headers to be the “peachpuff” color, as shown in Output 14?

Output 14. Different Colors for Spanning Headers

This is when we turn to ACROSS variables to help out. First, we need to add some helper variables to a data set.
Here’s the complete code to make the new version of the SASHELP.PRDSALE data set. The helper variables are
FAKEVAR, FAKEDIV, X, and Y. FAKEVAR is assigned the same value as COUNTRY; and FAKEDIV is assigned the
same value as DIVISION. X is set to the string “Three Values,” which will span COUNTRY, and Y is set to the string
“Current,” which will span DIVISION.

data prdsale;

 length x y fakevar fakediv $25;

 set sashelp.prdsale;

 x='Three Values';

 y='Current';

 fakevar = country;

 fakediv = division;

run;

Let’s look at a partial display of the WORK.PRDSALE data set.

13

Display 7. Partial Viewtable Display of WORK.PRDSALE

Now, using WORK.PRDSALE for PROC REPORT, we use FAKEVAR and FAKEDIV to guarantee that the rows are
going to be in the same order as on the original report. That’s needed because now X is going to become an
ACROSS item that is crossed with COUNTRY using the comma operator, and Y is an ACROSS item that is crossed
with DIVISION.

proc report data=prdsale nowd out=abscol;

 column fakevar fakediv x,(country) y,(division) product,(actual predict);

 define fakevar / group noprint ' ';

 define fakediv / group noprint ' ';

 define x / across ' ' style(header)={background=lightgreen};

 define country / group style(header)={background=lightgreen};

 define y / across ' ' style(header)={background=peachpuff};

 define division / group style(header)={background=peachpuff};

 define product / across ' ' style(header)={background=lightyellow};

 define actual / sum style(header)={background=lightyellow};

 define predict / sum style(header)={background=lightyellow};

run;

Since PROC REPORT requires that there is a GROUP or ORDER item to the left of an ACROSS item, FAKEVAR
and FAKEDIV will be used to maintain the order of the rows. They do not need to be displayed on the report, which is
why they are specified as NOPRINT items in the DEFINE statement.

With X as the ACROSS item nested on top of COUNTRY, both X and COUNTRY can have their background color
changed to light green. With Y as the ACROSS item nested on top of DIVISION, both Y and DIVISION can have their
background color changed to peachpuff, as shown in Output 14, based on the above code.

In our last example, I want to return to the concept of trafficlighting in order to showcase something that PROC
REPORT does well, and which cannot be done by other procedures. PROC REPORT can perform trafficlighting
based on multiple conditions. This is something that I discussed in my paper last year, with this example from
SASHELP.CLASS:

 compute age;

 if age = 13 and name = 'Alice' then do;

 call define(_row_,'style','style={background=cx9999cc}');

 call define(_col_,'format','5.2');

 end;

 endcomp;

14

Output 15. Trafficlighting Based on Multiple Conditions

But, last year’s example did NOT use ACROSS variables. Let’s revisit this earlier report:

Output 16. Using ACROSS Values to Perform Trafficlighting

What if you wanted trafficlighting to be performed only on the CHAIR and DESK columns when COUNTRY was
CANADA? This means trafficlighting needs to be performed based on a GROUP item value and on an ACROSS item
value.

Because we now understand how absolute column numbers work, we understand that the CHAIR items are columns
c6, _c7_, and _c8_, while the DESK items are columns _c9_, _c10_, and _c11_. This makes it easy to perform
trafficlighting for the CANADA cells based on those two pieces of information. In this last example, the user-defined
format was changed slightly to highlight only the cells where the value was GT 100% for the Pct of Predict column for
CHAIR and DESK in Canada. Partial results are shown in Output 17.

Output 17. Using Multiple Conditions to Perform Trafficlighting

The CHAIR cells for CANADA were not given a different background color because the Pct of Predict is under 100%.
However, the other cells do have the appropriate background colors. In addition, the Pct of Predict is given a green
foreground color when the Pct of Predict is over 100% for the other data cells.

The heart of the COMPUTE block, where the multiple conditions are tested, is in this IF statement. The absolute
columns _c5_, _c14_, and _c17_ are given a foreground of green when their Pct of Predict is greater than 100% (or
1.0). However, that code is simpler and is not shown here. We want to focus only on highlighting based on a complex
condition, such as the ELSE condition below for CANADA.

if altcountry in ('GERMANY', 'U.S.A.') then do;

 if _c8_ gt 1.0 then

 call define('_c8_','style',

 'style={foreground=green background=white fontweight=bold}');

 else call define('_c8_','style',

 'style={foreground=black background=white fontweight=medium}');

 if _c11_ gt 1.0 then call define('_c11_','style',

 'style={foreground=green background=white fontweight=bold}');

 else call define('_c11_','style',

 'style={foreground=black background=white fontweight=medium}');

15

end;

else if altcountry = 'CANADA' and (_c8_ gt 1.0 or _c11_ gt 1.0) then do;

** only want to highlight CHAIR and DESK for Canada when PctCalc gt 100%;

 svar8 = 'style={background=' || put(_c8_,ovrpct.)||'}';

 svar11 = 'style={background=' || put(_c11_,ovrpct.)||'}';

 call define('_c6_','style',svar8);

 call define('_c7_','style',svar8);

 call define('_c8_','style',svar8);

 call define('_c9_','style',svar11);

 call define('_c10_','style',svar11);

 call define('_c11_','style',svar11);

 end;

Refer to the program in the ZIP file for the entire code. Note how the code for trafficlighting is applied differently for
GERMANY and USA. versus how the comparison for CANADA and a test for _c8_ and _c11_ are used in the ELSE
condition. This ensures that only the columns for CHAIR and DESK will get the desired trafficlighting

CONCLUSION

The possibilities with PROC REPORT are almost endless. What initially seems like report hurdles ends up being
unique ways to use PROC REPORT to create unique reports. Whether you need to “transpose” without using PROC
TRANSPOSE or use character variables with an ACROSS item, or perform difficult trafficlighting, or use CALL
DEFINE, the bottom line is that using ACROSS with PROC REPORT is easier than you think and well worth the
investment of time to learn how to sail over the ACROSS hurdle.

REFERENCES

Booth, Allison McMahill. 2010. "Evolve from a Carpenter’s Apprentice to a Master Woodworker: Creating a Plan for
Your Reports and Avoiding Common Pitfalls in REPORT Procedure Coding." Proceedings of the SAS Global Forum
2010 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings10/133-2010.pdf.

Booth, Allison McMahill. 2011. "Beyond the Basics: Advanced REPORT Procedure Tips and Tricks Updated for
SAS® 9.2." Proceedings of the SAS Global Forum 2011 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings11/246-2011.pdf.

Booth, Allison McMahill. 2012. "PROC REPORT Unwrapped: Exploring the Secrets behind One of the Most Popular
Procedures in Base SAS® Software." Proceedings of the Pharmaceutical Industry 2012 SAS Users Group
Conference. Cary, NC: SAS Institute Inc. Available at http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-
2012-TF20-SAS.pdf.

McMahill, Allison. 2007. "Advanced PROC REPORT Tips and Tricks." Proceedings of the SAS Global Forum 2007
Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/rnd/papers/sgf07/sgf2007-report.pdf.

SAS Institute Inc. 2008. "The REPORT Procedure: Getting Started with the Basics." Available at
http://support.sas.com/resources/papers/ProcReportBasics.pdf.

SAS Institute Inc. 2008. "Using Style Elements in the REPORT and TABULATE Procedures." Available at
http://support.sas.com/resources/papers/stylesinprocs.pdf.

Zender, Cynthia L. 2008. "Creating Complex Reports." Proceedings of the SAS Global Forum 2008 Conference.
Cary, NC: SAS Institute Inc. Available at http://www2.sas.com/proceedings/forum2008/173-2008.pdf.

Zender, Cynthia L., and Allison M. Booth. 2013. "Turn Your Plain Report into a Painted Report Using ODS Styles."
Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings13/366-2013.pdf.

http://support.sas.com/resources/papers/proceedings10/133-2010.pdf
http://support.sas.com/resources/papers/proceedings11/246-2011.pdf
http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF20-SAS.pdf
http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF20-SAS.pdf
http://support.sas.com/rnd/papers/sgf07/sgf2007-report.pdf
http://support.sas.com/resources/papers/ProcReportBasics.pdf
http://support.sas.com/resources/papers/stylesinprocs.pdf
http://www2.sas.com/proceedings/forum2008/173-2008.pdf
http://support.sas.com/resources/papers/proceedings13/366-2013.pdf

16

ACKNOWLEDGMENTS

The author would like to thank Michele Ensor, Linda Jolley, and Allison Booth, who generously read the paper for
content and made suggestions for improving the paper. In addition, thanks are due to Caroline Brickley, who edited
the paper and made it more readable. Finally, many thanks are due to Tim Hunter, for help with PROC REPORT and
the PROC REPORT team in Tech Support for answering endless questions about why things work the way they work
with PROC REPORT. All song snippets in the section headers are from song lyrics about helping, jumping, and flying
that became the “soundtrack” for this paper. (And, yes, my middle name is Louise.)

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Cynthia Zender
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Cynthia.Zender@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Cynthia.Zender@sas.com

