
1

Putting on the Ritz: New Ways to Style Your ODS Graphics to the Max
Dan Heath, SAS Institute, Inc., Cary, NC

ABSTRACT
Do you f ind it diff icult to dress up your graphs for your reports or presentations? In SAS® 9.4, w e have introduced

new capabilities in the ODS Graphics system that give you the ability to style your graphs w ithout creating or

modifying ODS styles. Some of the new capabilities include the follow ing:

 a new option to control the behavior of how ODS styles are applied

 graph syntax to override ODS style attributes for grouped plots

 enhanced attribute map support

 the ability to define font glyphs and images as plot markers

In this presentation, w e w ill discuss these new features in detail, show ing examples in both a Graph Template

Language (GTL) context and a statistical graphics (SG) procedure context.

INTRODUCTION
Styles are an important part of an effective data visualization. Poor style choices can obscure the data and make it

diff icult to see the message in the graph, w hile good style choices can enhance the visual and convey the information

clearly. There have been a number of papers that have discussed the principles of effective graphics, including “Make

a Good Graph” (Matange 2013) and “Creating Presentation-Quality ODS Graphics Output” (Heath 2010). How ever,

this presentation w ill focus on syntax enhancements to the Graph Template Language (GTL) and the statistical

graphics (SG) procedures that w ill make it easier to style your graphs.

To understand how some of these new features w ork, it is important to understand how graph style classes w ork

w ithin an ODS style. The part of the style that is important for this discussion involves the follow ing classes:

proc template;

 define style styles.mystyle;

 parent=style.listing

 class GraphData1;

class GraphData2;

class GraphData3;

class GraphData4;

class GraphData5;

class GraphData6;

class GraphData7;

class GraphData8;

class GraphData9;

class GraphData10;

class GraphData11;

class GraphData12;

/* More GraphDataN classes can be added */

end;

run;

The GraphData1through GraphDataN classes can not only be referenced directly from syntax like other style classes,

but they are also used automatically w hen a group option (such as GROUP and COLORGROUP) is specif ied. Within

each GraphDataN class, the follow ing attributes are possible:

class GraphData1 /

 color = cxFF0000 /* Used for fill colors */

 contrastcolor = cxcc0000 /* Used for line/marker colors */

 linestyle = 1

 markersymbol = "circle"

end;

2

It is not required that GraphDataN classes contain all of these attributes. How ever, it is required that an attribute be

specif ied contiguously, starting from GraphData1. This means, for example, that I can specify colors for GraphData1

through GraphData12 but specify marker symbols for only GraphData1 through GraphData5. If I w ere to accidentally

specify marker symbols for GraphData1 through GraphData4 and also for GraphData6, the marker symbol in

GraphData6 w ould be ignored because of the “hole” in GraphData5. Only the marker symbols in GraphData1 through

GraphData4 w ould be used. The table in Table 1 makes it easier to visualize how the attributes are mapped to each

unique group value.

Style Class Color ContrastColor LineStyle MarkerSymbol

GraphData1 Blue Blue 1 Circle

GraphData2 Red Red 4 Plus

GraphData3 Green Green 8 Triangle

GraphData4 Yellow Yellow 5

GraphData5 Cyan Cyan

Table 1. Style Example

If w e w ere creating a grouped scatter plot, the f irst group value w ould be draw n as a blue circle, w ith all of the

attributes coming from GraphData1. The next tw o unique group values w ould get all of their attributes from

GraphData2 and GraphData3, respectively. How ever, for the next group value, GraphData4 has a color defined, but

not a marker symbol. Therefore, the style processor w ill loop back up to GraphData1 and use its symbol, giving us a
yellow circle. The next value w ould be a cyan plus, and so on, until all unique group values are mapped. If the colors

w ere exhausted, they, too, w ould loop back to the beginning. Therefore, it is good to use a prime number of attribute

values to help maximize the number of attribute combinations for a large number of group values. For this reason,

most of the ODS styles shipped w ith SAS specify 12 colors, 11 line patterns, and 7 markers.

ATTRIBUTE PRIORITY
Now that you understand how style attributes are applied to group values, it’s time to introduce a new option that can
modify that behavior. Using our previous example, the f irst unique group value w ould be rendered as a blue circle,

the next as a red plus, and so on. But w hat if you w anted just circle markers for all colors, iterating to the next marker

only if you run out of colors? In the past, you w ould have had to make a custom style that contained enough

GraphDataN style classes to embody this behavior (Table 2).

Style Class Color ContrastColor MarkerSymbol

GraphData1 Blue Blue Circle

GraphData2 Red Red Circle

GraphData3 Green Green Circle

GraphData4 Yellow Yellow Circle

GraphData5 Cyan Cyan Circle

GraphData6 Blue Blue Plus

GraphData7 Red Red Plus

GraphData8 Green Green Plus

GraphData9 Yellow Yellow Plus

GraphData10 Cyan Cyan Plus

GraphData11 Blue Blue Triangle

GraphData12 Red Red Triangle

GraphData13 Green Green Triangle

GraphData14 Yellow Yellow Triangle

GraphData15 Cyan Cyan Triangle

Table 2. Style Expanded on Marker Symbol

3

Creating custom styles for these types of situations can be quite cumbersome. How ever, w e now have a new option

called ATTRPRIORITY that enables you to set the behavior for group attribute mapping. The default value is NONE,

w hich gives you normal behavior described in the introduction. If you set the ATTRPRIORITY to be COLOR, the color

change is given priority w hen multiple attributes are needed to draw the plot. For example, the line char t in Figure 1

w as draw n using the LISTING style w ith the default attribute priority.

Figure 1. Line Chart w ith ATTRPRIORITY=NONE

ods listing;

proc sgplot data=sashelp.class;

 vline age / response=weight stat=mean group=sex markers;

run;

For a simple plot like this, you might w ant the plot lines to stay solid and use the same marker shape. Instead of

creating a custom style for that look, you can now just change the attribute priority (Figure 2).

Figure 2. Line Chart w ith ATTRPRIORITY=COLOR

ods listing;

ods graphics / attrpriority=color;

proc sgplot data=sashelp.class;

 vline age / response=weight stat=mean group=sex markers;

run;

4

Attribute priority can be specif ied in any of the follow ing three locations (in order of precedence):

1. in the BEGINGRA PH statement in GTL

2. in the ODS GRAPHICS statement

3. in an ODS style

For graph template creators, there might be certain plot templates that you create w here you w ant to guarantee color

priority, regardless of the user’s settings or the style settings. In that case, use ATTRPRIORITY=COLOR in the

BEGINGRA PH statement (Figure 3). In general, how ever, the option in BEGINGRA PH should not be used in order to

maximize f lexibility for users of the template.

Figure 3. ATTRPRIORITY=COLOR in the BEGINGRAPH Statement

ods listing;

proc template;

define statgraph mileage;

begingraph / attrpriority=color;

 layout overlay;

 scatterplot x=msrp y=mpg_city / group=type name="scatter";
 loessplot x=msrp y=mpg_city;

 discretelegend "scatter" / location=inside valign=top halign=right;
 endlayout;

endgraph;

end;

run;

proc sgrender data=sashelp.cars template=mileage;

run;

Most users w ill change the priority via the ODS GRAPHICS statement. (See Figure 2.) This option enables you to

easily change the priority for different graphs w ithin the same program. In addition, the option enables you to change

the priority of any ODS style in the system w ithout having to modify the style.

The location of least precedence for attribute priority is in the ODS style. Using this option in the style enables a style

creator to enforce a default priority in the style w hile still creating the style in a w ay that supports changing the priority.

To set the option in the style, set ATTRPRIORITY in the GRAPH style class. We use this option in our production

HTMLBLUE style to enforce color priority. The follow ing code can take your favorite ODS style and turn it into a color

priority style.

5

proc template;

define style styles.my_favorite;

parent=styles.listing; /* substitute your favorite style here */

class Graph / attrpriority = "color";

end;

run;

Make sure that your parent style is not one of the SAS production black and w hite or grayscale-based styles, as the

color for the markers does not vary.

The ATTRPRIORITY option can also have an effect on non-grouped plots that make direct style references from plot

attributes. When ATTRPRIORITY is set to COLOR, the internal style is expanded as described in Table 2. Suppose

you had tw o overlaid scatter plots in the same graph, w ith MARKERATTRS=GraphData1 in the f irst plot and
MARKERA TTRS=GraphData2 in the second. Instead of getting red circles and green squares (Table 1), you w ill get

red circles and green circles (Table 2). Figures 4 and 5 demonstrate this behavior using the LISTING style.

Figure 4. Scatter Plot w ith Plot Style Attribute Overrides

Figure 5. Scatter Plot w ith Plot Style Attribute Overrides and ATTRPRIORITY=COLOR

ods listing;

ods graphics / attrpriority=color; /* Use NONE to get Figure 4 */

6

Title "Class Physiology";

proc sgplot data=sashelp.class;

 scatter x=age y=weight / markerattrs=GraphData1;

 scatter x=age y=height / markerattrs=GraphData2 y2axis;

run;

OVERRIDING ODS STYLES USING GRAPH SYNTAX
There are many users w ho are not comfortable w ith creating or modifying ODS styles, yet they still have the need to

control the ODS style attributes used for the graph. For overlaid plots w ithout groups, the attributes for each plot can

be modif ied directly for each plot, as demonstrated in Figures 4 and 5.

Even for grouped plot situations, it is possible to control attributes using the plot syntax rather than modifying the

ODS style. Using the example from Figure 1 and Figure 2, if you w ant to guarantee that your grouped lines are solid

w hile the other attributes vary, you can use the plot syntax to hold the line pattern constant (Figure 6). The danger,

how ever, is that if the number of group values exceed the number of colors, then duplicate plot lines w ill appear. If

there is the possibility of color overrun, it is safer to use the ATTRPRIORITY option instead so that the line pattern w ill

be incremented if the colors are exhausted.

There are now tw o w ays to modify group colors w ithout editing the ODS style. In SAS® 9.3, w e introduced new

functionality called an attribute map that enables you to map visual attributes to specif ic group values. Now , in SAS

9.4, w e have introduced new options to enable you to replace the attributes from GraphData1 through GraphDataN

w ith the values you specify. The follow ing sections describe these tw o features in detail.

Figure 6. Line Chart w ith PATTERN=SOLID

ods listing;

proc sgplot data=sashelp.class;

 vline age / response=weight stat=mean group=sex

 markers lineattrs=(pattern=solid);

run;

REPLACING STYLE ATTRIBUTES
We introduced a new statement in the SG procedures called STYLEATTRS that contains the options to override the

GraphData1 through GraphDataN style classes. For GTL users, those options are in the BEGINGRA PH statement.

The follow ing options are used to replace the style attributes:

 DATACOLORS—used to replace the f ill colors from the GraphDataN classes

 DATACONTRASTCOLORS—used to replace the line and marker colors from the GraphDataN classes

 DATALINEPATTERNS—used to replace the line patterns from the GraphDataN classes

 DATASYMBOLS—used to replace the marker symbols from the GraphDataN classes

7

Referring back to our example from Table 1, w e can use these options to replace an entire attribute column. For

example, you could specify DATACOLORS = (cxedf8fb cxb2e2e2 cx66c2a4 cx2ca25f cx006d2c) and

DATACONTRASTCOLOR = (Black), and the resulting attribute table w ould look like Table 3.

Style Class Color ContrastColor LineStyle MarkerSymbol

GraphData1 cxedf8fb Black 1 Circle

GraphData2 cxb2e2e2 4 Plus

GraphData3 cx66c2a4 8 Triangle

GraphData4 cx2ca25f 5

GraphData5 cx006d2c

Table 3. Line Patterns Replaced by DATALINEPATTERNS

Notice that the existing colors w ere removed and replaced by the specif ied colors. Because these attribute lists are

replaced, the effect of direct style references w ill also change f or non-grouped plots, as described earlier w ith the

ATTRPRIORITY option. Figure 7 show s an example of replacing the style colors for both the f ill colors and the line

colors.

Figure 7. Bar Chart w ith New Style Colors

proc sgplot data=sashelp.prdsale noautolegend;

 where year=1993 and quarter<=2;

 styleattrs datacolors=(cxedf8fb cxb2e2e2 cx66c2a4 cx2ca25f cx006d2c)

 datacontrastcolors=(black);

 hbar product / response=actual group=product;

run;

The DATACONTRASTCOLORS option w as used to force the outline colors to be all black. Otherw ise, the existing

contrast colors from the style w ould be used for each bar outline. The code for doing the same chart in GTL w ould

look like the follow ing:

proc template;

define statgraph barchart;

begingraph / dataColors=(CXEDF8FB CXCCECE6 CX99D8C9 CX66C2A4 CX2CA25F CX006D2C)

 dataContrastColors=(CX000000);

EntryTitle "1993 sales for Q1 and Q2";

layout overlay;

 BarChart X=PRODUCT Y=ACTUAL / orient=horizontal Group=PRODUCT;

endlayout;

endgraph;

end;

8

run;

proc sgrender data=sashelp.prdsale template=barchart;

where year=1993 and quarter<=2;

run;

When the style override options are used w ithin the context of an SG procedure, the scope of those options applies

only during the run of that procedure. How ever, w hen you use these options w ithin a GTL template, the options are

used by any procedure that uses that template. For the DATALINEPATTERNS and DATAMARKER options, this

usage is usually not much of an issue, but if you specify color overrides, you should use great care. Color overrides

should not be used in any GTL templates that are part of a production library in your organization. The reason for this

w arning is that you do not know w hat ODS styles w ill be used w ith your graph template. Using the w rong ODS style

w ith those color overrides could negatively affect the appearance of your graph, or w orse, obscure some of the data.

Color overrides in GTL should be made only w ith templates that are run by people w ho are aw are of the colors in the

template.

ATTRIBUTE MAPS
Although the style override options are good for generally controlling the appearance of grouped plots, there might be

times w hen you need to associate specif ic style attributes to certain group values. You can try sorting your data to

line up w ith your style attributes, but if some of your group values drop out from your data from one run to the next,

then your style attributes w ill be out of alignment again. In SAS 9.3, w e introduced attribute maps to enable you to

directly associate group values to attributes, regardless of data order and data drop-out.

Attribute maps can be defined in tw o w ays. For the SG procedures (and now for GTL in SAS 9.4), you can define the

map in a SAS data set. For GTL only, you can define the attribute map directly in the template syntax. Currently, the

data set version supports only discrete group values (either inherently discrete or made discrete by a SAS format).
The GTL syntax supports both discrete attribute maps and range attribute maps (used for c ontinuous variables).

Range maps can control only colors, w hile discrete maps can be used to control the follow ing attributes:

 color

 contrast color

 line patterns

 line thickness (new for SAS 9.4)

 marker symbol

 marker size (new for SAS 9.4)

 f ill and marker transparency (new for SAS 9.4)

 text attribute support for AXISTABLE statements (new for 9.4)

Data-based discrete attribute maps used reserved column names to associate group values w ith attributes. Except

for the ID and VALUE columns, all other columns contain attribute values that affect the appearance of the graph.

These attribute columns are optional, meaning that you need to define only the columns you need for your graph.

How ever, if you are using attribute maps for many different plot types, it is helpful to go ahead and define the map
enough to create a consistent appearance across all of the graphs in your report.

The ID and VALUE columns are required. The ID column is used to identify a particular map in the data set, because

you can define multiple attribute maps w ithin the same data set. This ID value is referenced from the procedures that

use the map. The VALUE column contains the group values to map to the attributes. It is important to note that the

values in the attribute map data set are treated as case-sensitive, meaning that the raw data values or the resulting

formatted values must have the same case as the map values. Otherw ise, the values w ill not match and the map

attributes for that value w ill not be used.

Figure 8 contains a simple example using a data set attribute map. The light blue and the pink need to be associated

w ith the correct gender to enhance the gender-based plot. The data set w as defined w ith only w hat w as needed for

this plot.

9

proc format;

 value agefmt 20-29="20-29"

 30-39="30-39"

 40-49="40-49"

 50-59="50-59"

 60-69="60-69";

run;

data attrmap;

retain id "gender";

length value $ 6 fillcolor $ 9 linecolor $ 8 makercolor $ 8;

input value $ fillcolor $ linecolor $ markercolor $;

cards;

Male lightblue blue blue

Female pink maroon maroon

run;

Title "Cholesterol Levels by Age Group and Gender";

proc sgplot data=sashelp.heart dattrmap=attrmap;

 format AgeAtStart agefmt.;

 vbox cholesterol / category=AgeAtStart group=sex attrid=gender;

 keylegend / location=inside;

run;

Figure 8. Box Plot w ith Discrete Attributes Map

The attribute map is bound to the SGPLOT output by tw o options: the DATTRMA P option to reference the data set

and the ATTRID option on the plot to reference the desired map w ithin the data set.

In the f irst maintenance release for SAS 9.4, the ability to specify attribute maps in data sets has been extended to

GTL output via PROC SGRENDER. Keeping the same format code and DATA step in Figure 8, the GTL coding

equivalent for Figure 8 w ould be the follow ing:

proc template;

define statgraph boxplot;

begingraph;

EntryTitle "Cholesterol Levels by Age Group and Gender" /;

10

layout overlay;

 BoxPlot x=AgeAtStart y=Cholesterol / group=sex legendLabel="Cholesterol"

 name="VBOX" groupdisplay=cluster;

 DiscreteLegend "VBOX" / Location=Inside autoAlign=(TopLeft TopRight BottomRight

 BottomLeft Bottom Top Right Left);

endlayout;

endgraph;

end;

run;

proc sgrender data=sashelp.heart template=boxplot dattrmap=attrmap;

 format AgeAtStart agefmt.;

 dattrvar sex="gender";

run;

In this case, the binding for the attribute map occurs in the DATTRVAR statement of PROC SGRENDER. The value

on the left of the equal sign (=) is the group variable to bind to the map. The quoted value on the right is the attribute

map ID from the data set. Multiple assignments can be made in the DATTRVAR statement, or multiple statements

can be specif ied.

Using attribute map data sets instead of embedded GTL attribute map syntax is strongly encouraged, for several

reasons:

1. You can create or modify attribute maps w ithout having to recompile the GTL template.

2. As mentioned earlier, you w ant to avoid embedding colors in your GTL templates used in a library.

3. You can create and reference multiple maps that have colors customized for different ODS styles w hile

using the same GTL template.

4. The data set approach removes any attribute map dependency from the GTL template.

How ever, if you are using GTL in SAS 9.3, or you need to define a range attribute map for continuous variables, it is

important for you to understand how the syntax is constructed. Using Figure 8 again, the GTL template w ith an
embedded discrete attributes map w ould look like the follow ing:

proc template;

define statgraph boxplot;

begingraph;

DiscreteAttrMap name="__ATTRMAP__GENDER";

 Value "Male" / markerattrs=(color=CX0000FF) lineattrs=(color=CX0000FF)

 fillattrs=(color=CXADD8E6);

 Value "Female" / markerattrs=(color=CX800000) lineattrs=(color=CX800000)

 fillattrs=(color=CXFFC0CB);

EndDiscreteAttrMap;

DiscreteAttrVar attrvar=GENDER_SEX var=SEX attrmap="__ATTRMAP__GENDER";

EntryTitle "Cholesterol Levels by Age Group and Gender" /;

layout overlay;

 BoxPlot X=AgeAtStart Y=Cholesterol / Group=GENDER_SEX LegendLabel="Cholesterol"

 name="VBOX" groupdisplay=cluster;

 DiscreteLegend "VBOX" / Location=Inside autoAlign=(TopLeft TopRight BottomRight

 BottomLeft Bottom Top Right Left);

endlayout;

endgraph;

end;

proc sgrender data=sashelp.heart template=boxplot;

 format AgeAtStart agefmt.; run;

The DISCRETEA TTRMA P block is used to associate formatted discrete values w ith visual attributes. The attributes

are specif ied using standard GTL syntax for defining f ill, line, and marker attributes. The DISCRETEATTRVAR

statement is used to bind the attribute map to the group variable. The group variable is specif ied in the VAR option,

and the map name is specif ied in the ATTRMAP option. The name specif ied in the ATTRVAR option is then used as

the group variable in the plot. If the original variable is used in the plot instead of the ATTRVAR name, the attribute

map is completely ignored.

Range attribute maps have a similar construction, but instead of assigning the ATTRVAR name to a discrete group

option, you must assign it to a continuous variable option, such as COLORRESPONSE or

11

MARKERCOLORGRA DIENT. In Figure 9, the range map is used to discretely color the bubbles based on the

average cholesterol level for the age group. The size of the bubble (and the label) is based on the number of people

in each age group.

proc template;

define statgraph bubble;

begingraph;

RangeAttrMap name="__ATTRMAP__CHOL";

 Range 100-<200 / rangecolor=green;

 Range 200-<240 / rangecolor=yellow;

 Range 240-400 / rangecolor=red;

EndRangeAttrMap;

RangeAttrVar attrvar=chol_range var=cholesterol attrmap="__ATTRMAP__CHOL";

EntryTitle "Average Cholesterol Levels by Age Group";

layout overlay / xaxisopts=(type=discrete);

 BubblePlot X=AgeAtStart Y=Cholesterol size=_freq_ / datalabel=_freq_

 datalabelattrs=graphdatatext colorresponse=chol_range name="scat";

 ContinuousLegend "scat";

endlayout;

endgraph;

end;

proc summary data=sashelp.heart nway;

 format AgeAtStart agefmt.;

 class AgeAtStart;

 var cholesterol;

 output out=heart mean=;

run;

proc sgrender data=heart template=bubble;

run;

Figure 9. Bubble Plot w ith Range Attributes Map

Typically, you w ould use the MIN/MAX keyw ords (or possibly OVERFLOW/UNDERFLOW) to ensure that all of the

plotted data w as affected by the map. In this case, how ever, none of the mean values fell into the desirable range.

Because of that, using the MIN keyw ord w ould not have allow ed all of the cholesterol ranges to appear in the legend.
Therefore, I used ranges that I knew included all data so that all ranges w ould appear in the legend.

When you need to create gradient color transitions across ranges, the range attribute map syntax is currently the only

w ay to accomplish this task. How ever, w hen mapping continuous ranges to discrete colors (as in Figure 9), it is

possible to use a combination of SAS formats and discrete attribute maps to display the plot in a similar w ay. That

12

w ay, you can create the plot w ith either the SG procedures or GTL, and you can use data-driven maps if desired

(Figure 10).

Figure 10. Bubble Plot w ith Discrete Attributes Map

proc format;

value cholfmt low-<200 = "Desirable"

 200-<240 = "Borderline"

 240-high = "High";

run;

data attrmap;

retain id "cholrange";

length value $ 10 fillcolor $ 6 linecolor $ 9;

input value $ fillcolor $ linecolor $;

cards;

Desirable green darkgreen

Borderline yellow gold

High red maroon

;

run;

proc summary data=sashelp.heart nway;

format AgeAtStart agefmt.;

class AgeAtStart;

var cholesterol;

output out=heart mean=;

run;

data heart2 (drop=_temp_);

set heart;

label cholgroup="Cholesterol Level";

if (_n_ = 1) then do;

 temp=cholesterol;

 cholgroup = 100;

 cholesterol=.;

 output;

 cholgroup=_temp_;

 cholesterol=_temp_;

 output;

end;

else do;

 cholgroup=cholesterol;

13

 output;

end;

run;

Title "Average Cholesterol Levels by Age Group";

proc sgplot data=heart2 dattrmap=attrmap;

 format AgeAtStart agefmt. cholgroup cholfmt.;

 xaxis type=discrete;

 bubble x=ageatstart y=cholesterol size=_freq_ / group=cholgroup datalabel=_freq_

 datalabelattrs=GraphDataText attrid=cholrange;

run;

The CHOLFMT format w as created to map the cholesterol values to discrete ranges that can be mapped in the

ATTRMAP data set. The DATA step for the HEART2 data does tw o important things for us:

1. It copies the cholesterol values to another column called CHOLGROUP so that w e can assign the CHOLFMT

format w ithout affecting the axis variable.

2. It prepends a dummy observation w ith a CHOLGROUP value in the desirable range so that the entry w ill appear

in the legend.

MARKERS, MARKERS, AND MORE MARKERS
As of SAS 9.4, there are 31 pre-defined markers in the ODS Graphics, including 9 f illed markers. Now , w ith the f irst
maintenance release for SAS 9.4, the possible markers have been greatly extended w ith the ability to use font glyphs

or images as markers.

USING FONT GLYPHS AS MARKERS
The SGPLOT and SGPANEL procedures, as w ell as GTL, have a new statement called SYMBOLCHA R that is used

to define a new marker name from a font glyph reference. After the symbol is defined, it can be used in any location

that takes a marker symbol value, including the new DATASYMBOLS option used to override the ODS style marker

symbols. Figure 11 show s an example of defining tw o markers (male and female) and using them as style overrides

for a gender-based variable.

Figure 11. Scatter Plot w ith Custom Symbols

title "Class Physiology";

proc sgplot data=sashelp.class;

 symbolchar name=female char='2640'x;

 symbolchar name=male char='2642'x;

 styleattrs datasymbols=(male female);

 scatter x=weight y=height / group=Sex markerattrs=(size=20px);

 keylegend / location=inside title="Sex";

run;

14

The SYMBOLCHAR statement takes either a Unicode character specif ication or one of our predefined keyw ords for

commonly used Unicode symbols. Optional capabilities include modifying text attributes, scaling, rotating, and

offsetting the symbol around the plot location.

USING IMAGES AS MARKERS
In addition to the SYMBOLCHA R statement, w e also have the SYMBOLIMAGE statement for defining a marker from

an image file. The required arguments are the new symbol name and the image file. The same scaling, rotating, and

offsetting options from SYMBOLCHA R also exist on this statement.

At SAS Global Forum 2011, I presented a paper called "Now You Can Annotate Your Statistical Graphics Procedure

Graphs" (Heath 2011). On pages 11 and 12, I show ed examples of how you could use annotation to draw images as

scatter points and curve labels on a series. At the time, annotation w as the only w ay you could use images as points.
Now , no annotation is required! Figure 12 show s a similar example using the SYMBOLIMA GE statement.

Figure 12. VLINE Plot w ith Image Symbols

data meat_consumption;

informat year monyy7.;

format year year.;

input year chicken beef pork;

cards;

jan1970 40 82 55

jan1975 39 85 43

jan1980 47 75 57

jan1985 52 77 51

jan1990 61 66 49

jan1995 69 65 51

jan2000 77 67 51

;

run;

Title1 "U.S. Per Capita Meat Consumption";

title2 "1970-2000";

proc sgplot data=meat_consumption noautolegend;

xaxis display=(nolabel);

yaxis label="Retail Cut Equiv. / Lb. per Person";

symbolimage name=chicken image = "C:\chicken.png";

symbolimage name=cow image = "C:\cow.png";

symbolimage name=pig image = "C:\pig.png";

series x=year y=chicken / markers markerattrs=(symbol=chicken size=23px)

 lineattrs=(color=CXa5aace pattern=solid);

series x=year y=pork / markers markerattrs=(symbol=cow size=23px)

15

 lineattrs=(color=CX84b2b3 pattern=solid);

series x=year y=beef / markers markerattrs=(symbol=pig size=23px)

 lineattrs=(color=CXd69e94 pattern=solid);

run;

When using images as markers, there are a couple of important considerations. First, try to use an image that is

approximately the size of the desired plot point size. That w ay, you w ill get the best quality rendering of the image.

Second, use transparency in w hitespace (non-important) parts of the image. For example, if you used a circular

company logo, you w ould w ant the four corner areas to be transparent. The reason for this is so that, w hen you use

this marker image in a series plot, the line w ill appear to go all the w ay to the logo. In Figure 12, notice how the line

goes all the w ay up to the animals' bodies. If the w hitespace area w as not transparent, the line w ould have appeared

to be clipped. Having transparent w hitespace is also important for standard scatter plot applications, because
w hitespace on one scatter point could cause unnecessary clipping on an adjacent point.

CONCLUSION
We have discussed a few different w ays to override the ODS style for grouped plots w ithout having to modify the

actual style. The ATTRPRIORITY option helps you address a very common case w here you w ant the plot lines to be

solid across all group values, w hile still having the f lexibility to change to another line pattern if the colors are

exhausted. The STYLEATTRS statement and the style attribute override options are great for changing the overall
look of a grouped plot w hen you do not care how the attributes are assigned to the group values. One other thing to

consider before using these override options: if you are creating a report w ith a large number of graphs, and you w ant

all of the graphs to have the same styling, you might w ant to consider deriving a new style from an existing ODS style

to store your settings. Doing this could make it easier to create and maintain your program. Finally, w e discussed how

the number of available plot marker shapes has been greatly extended by the new support for using font glyphs and

images. Hopefully, you w ill f ind these new features useful in your ow n w ork.

REFERENCES
 Heath, Dan. 2010. “Creating Presentation-Quality ODS Graphics Output.” Proceedings of the SAS Global Forum

2010 Conference. Cary, NC: SAS Institute, Inc. Available at

support.sas.com/resources/papers/proceedings10/TOC.html.

 Heath, Dan. 2011. “Now You Can Annotate Your Statistical Graphics Procedure Graphs .” Proceedings of the

SAS Global Forum 2011 Conference. Cary, NC: SAS Institute, Inc. Available at

support.sas.com/resources/papers/proceedings11/TOC.html.

 Matange, Sanjay. 2013. “Make a Good Graph.” Proceedings of the SAS Global Forum 2013 Conference. Cary,
NC: SAS Institute, Inc. Available at support.sas.com/resources/papers/proceedings13.

ACKNOWLEDGMENTS
Special thanks to Cynthia Brew er and her excellent site colorbrew er2.org for the colors used in Figure 7.

RECOMMENDED READING
 Graphically Speaking Blog (blogs.sas.com/content/graphicallyspeaking/)

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Dan Heath

SAS Institute, Inc.

SAS Campus Dr.

Cary, NC 27513

(919) 677-8000

Dan.Heath@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings10/TOC.html
http://support.sas.com/resources/papers/proceedings11/TOC.html
http://support.sas.com/resources/papers/proceedings13
http://colorbrewer2.org/
http://blogs.sas.com/content/graphicallyspeaking/
http://blogs.sas.com/content/graphicallyspeaking/

