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ABSTRACT 

Many lessons in life can only be learned through experience.  In other cases, however, you can learn from the 
mistakes of others.  In this paper, two independent consultants with a combined three decades of SAS programming 
experience share a treasure trove of knowledge aimed at helping the novice SAS programmer avoid common pitfalls 
and establish a firm foundation on which to build.  We'll touch on a variety of topics ranging from proper merging 
technique to good programming practices to understanding the program data vector and much more! 

 

INTRODUCTION 
While SAS may at first seem to be just another programming language, it is actually quite different from most others.  
Both new programmers and those experienced in other programming languages can be tripped up by some of the 
subtler nuances of SAS programming.  This paper aims to give those users a jump start by focusing on aspects of 
SAS software that are fundamental to its use but perhaps not terribly intuitive. 

It is our hope that the reader can avoid some of the confusion and frustration that many SAS programmers face when 
they start moving beyond the most basic tasks in SAS programming.  We present a series of “pearls of wisdom” 
obtained through experience.  Each one can stand on its own.  Taken together, they provide a solid grounding for the 
novice programmer looking to move to the next level.  In each case, we provide a high-level overview and refer the 
reader to additional resources when more depth is required. 

  

PEARL #1: THE BIG PICTURE 
It will be helpful for the reader to first grasp the big picture of how a SAS program runs.  This is a fairly complex 
subject, much of which is beyond the scope of this paper.  We will limit our discussion to a broad framework which 
will provide the necessary context for proper understanding of some of the topics discussed later in this paper. 

A SAS program is a sequence of one or more steps.  Each step is either a DATA step or a PROC step.  SAS runs 
them one at a time, completing one step before moving on to the next.  The PROC steps are pre-built procedures 
which provide various ways to analyze and present data, while a DATA step is something crafted by the programmer 
to accomplish a particular task.  Our focus here on what happens during the DATA step, which can be the source of 
much confusion. 

When a DATA step is run, whether in batch or interactive mode, there are two distinct phases to the process: 
compilation and execution.  Recognizing what occurs during each phase is key to explaining some of the less intuitive 
idiosyncrasies of SAS programming. 

During the compilation phase, SAS takes its first pass through the DATA step code.  The purpose of the compilation 
phase is to translate the SAS code into machine code which will subsequently be executed.  During compilation, SAS 
parses the code to check for correct syntax and to setup the program data vector. 

The program data vector, or PDV, is a temporary area in memory  which SAS will use during the execution phase.  
Values which are read in from input data sets or are created during the execution of the DATA step will be stored in 
the PDV.  The DATA step code will interact with the values stored in the PDV.  At the end of DATA step execution, 
the values on the PDV will be written to the output data set. 

More will be said about the construction of the PDV later in this paper.  For now, it is enough to remember that the 
PDV is constructed during the compilation phase and then used during the execution phase.  To dig deeper into this 
important topic, refer to Johnson (2012), Li (2013), and Whitlock (2006). 
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PEARL #2: VARIABLE LENGTH 
With the above overview of DATA step processing in mind, we can now turn to a topic which has vexed many a new 
SAS programmer – variable lengths.  Consider the two DATA steps shown below.  Both make use of the 
SASHELP.CARS data set, which is a sample file included in most installations of SAS.  The logic is identical and 
should produce the same results, but a subtle difference in the code produces an unintuitive result. 

 

data cars1; 
 set sashelp.cars; 
 if msrp >= 20000 then price = 'EXPENSIVE'; 
 else price = 'CHEAP'; 
run; 

 
data cars2; 
 set sashelp.cars; 
 if msrp < 20000 then price = 'CHEAP'; 
 else price = 'EXPENSIVE'; 
run; 
 

 

 
Figure 1. CARS Example 

 

Notice that the values of PRICE appear as expected in the CARS1 data set but the CARS2 dataset contains 
“EXPEN” instead of “EXPENSIVE”.  An examination of the data set attributes will show that the PRICE column is a 
character variable of length 9 in the CARS1 data set but instead has a length of only 5 in CARS2.  This can be seen 
by viewing the data set properties in interactive SAS, by viewing the output of PROC CONTENTS, or by using PROC 
SQL to inspect the contents of the DICTIONARY.COLUMNS table, as shown below.  

  

proc sql; 
 select libname, memname, name, type, length 
  from dictionary.columns 
  where upcase(libname)='WORK' and upcase(name)='PRICE'; 
 quit; 
run; 
 
 

  Library                                                                       Column    Column 
  Name      Member Name                       Column Name                       Type      Length 
  ---------------------------------------------------------------------------------------------- 
  WORK      CARS1                             price                             char           9 
  WORK      CARS2                             price                             char           5 
 

Why would these two variables have different lengths when the code that created them is essentially the same?  The 
key to answer this question is understanding how SAS builds the program data vector (PDV) during the compilation 
phase described earlier in this paper. 

CARS1 
MAKE MODEL MSRP PRICE 

Acura MDX $36,945 EXPENSIVE 
Ford Taurus SE $22,290 EXPENSIVE 

Honda Element LX $18,690 CHEAP 
Pontiac Vibe $17,045 CHEAP 
Subaru Outback $23,895 EXPENSIVE 

 

CARS2 
MAKE MODEL MSRP PRICE 

Acura MDX $36,945 EXPEN 
Ford Taurus SE $22,290 EXPEN 

Honda Element LX $18,690 CHEAP 
Pontiac Vibe $17,045 CHEAP 
Subaru Outback $23,895 EXPEN 
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Recall that the PDV is a location in memory in which SAS will construct the output data set row by row.  During the 
compilation phase, SAS builds the PDV by examining the SAS code which was submitted, not the data itself.  When 
compiling the PDV for the CARS1 data set, the first statement processed is the SET statement which tells SAS that 
the SASHELP.CARS data set will be read in, so the PDV needs to contain a variable corresponding to each variable 
in the SASHELP.CARS data set and having the same attributes. 

Next, SAS reads the IF statement.  This statement references two variables:  MSRP and PRICE.  Since MSRP is on 
the input data set, SAS has already included MSRP in the PDV.  However, this is the first time the compiler has 
encountered a variable called PRICE, so it adds a new location for it in the PDV.  SAS sees that PRICE is assigned a 
value of ‘EXPENSIVE’, which is a string of 9 characters.  Based on that, SAS designates PRICE as a character 
variable with a length of 9.  When the compiler eventually reaches the ELSE statement, it sees that there is already a 
variable called PRICE on the PDV, so no further changes are made.  

The important point here is that SAS sets the length of PRICE based on the value being assigned to it in its first 
occurrence in the DATA step.  In the case of the CARS2 data set, a value of ‘CHEAP’ is assigned, so SAS gives 
PRICE a length of only 5.  SAS does not look ahead to see that there are additional assignment statements later, nor 
does it matter that the assignment statement is conditional.  SAS is not executing the code at this point in time.  It is 
merely scanning the code to identify the elements of the PDV. 

It’s worth noting that at no point during this process was an ERROR or a WARNING written to the log.  The log output 
for the DATA steps that created CARS1 and CARS2 are virtually identical.  Thus, it is essential for the SAS 
programmer to understand the process described above in order to avoid frustrating errors and unexpected results 
that can be difficult to debug. 

A simple solution to this problem is to include a LENGTH statement in the DATA step.  The LENGTH statement 
instructs the compiler what length to give a particular variable in the PDV.  It does nothing at execution time.  
Naturally, the LENGTH statement must occur prior to our first assignment statement so that the compiler will 
encounter it first. 

 

data cars2; 
 set sashelp.cars; 
 length price $9; 
 if msrp < 20000 then price = 'CHEAP'; 
 else price = 'EXPENSIVE'; 
run; 

 

This a very simple example.  The situation can be much more complex if there are multiple input data sets being 
merged or if the value being assigned to a new character variable is the result of a built-in SAS function.  For 
additional information about the way in which SAS determines character variable lengths, refer to Whitlock (2006). 

 

PEARL #3:  VARIABLE ORDERING 
Another topic that is often confusing to novice SAS programmers is how SAS determines the order of the variables 
that make up the dataset.  Once again, understanding how the program data vector (PDV) is constructed during the 
compilation phase as discussed earlier is the key. 

The order in which variables appear on an output data set will be the same as the order in which those variables 
appear on the PDV, although the PDV may also contain additional variables that are not written to the output data set 
(because of a DROP or KEEP statement, for example).  As the PDV is constructed during compilation, variables are 
added to it in the order in which they are encountered by the compiler. 

Consider the DATA step code above (the modified version near the end of Pearl #2) which constructs the CARS2 
data set.  As the compiler parses the syntax, the first thing encountered is a SET statement which reads in the data 
set SASHELP.CARS.  At this point, all of the variables from SASHELP.CARS are placed on the PDV for CARS2 in 
the same order in which they appear in the input data set. 

Next, the compiler comes to the LENGTH statement which includes a variable called PRICE.  This is a new variable 
which does not yet exist on the PDV, so it is added.  Since it is being added after the variables read in from 
SASHELP.CARS, it will appear after these variables in the PDV and hence in the output data set.  In other words, 
when the CARS2 data set is viewed on screen using one of the many available tools (VIEWTABLE, SAS Universal 
Viewer, Enterprise Guide, etc.), PRICE will appear to the right of the other variables. 
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Armed with this knowledge, the savvy SAS programmer can now manipulate the program data vector to achieve a 
desired result.  If we had wanted PRICE to instead appear as the first variable in the output data set, we could modify 
the program code so that the compiler will encounter it first.  In this case, we can simply move the LENGTH 
statement above the SET statement.  Since the LENGTH statement does nothing during the execution phase, 
moving it elsewhere in the DATA step will not change the values in the output data set at all.  It will only affect the 
order in which the variables appear. 

What if we would like to gain more control over the PDV and change the order of the variables which were read in 
from SASHELP.CARS?  There are several ways to do this.  One of the simplest and most common is through the use 
of a RETAIN statement placed at the top of the DATA step.  If the variables are listed in the desired order on a 
RETAIN statement at the top of the DATA step, it will be the first thing encountered by the compiler as it builds the 
PDV.  Thus, it will have the desired effect of making those variables listed the first variables on the output data set. 

However, this method must be used with caution.  The RETAIN statement can alter the output of a DATA step 
because it allows values from one record to be carried into the next record.  Variables read in using a SET, MERGE, 
MODIFY, or UPDATE statement are automatically RETAINed anyway.  Newly created variables and those read in 
using an INPUT statement are initialized to missing for each record.  Including such a variable on the RETAIN 
statement for the purpose of reordering the PDV will also eliminate this initialization. 

 

PEARL #4: MERGING WITH CAUTION 
One task that causes problems for many inexperienced SAS programmers is merging data sets together.  This is a 
complex topic upon which much has been written.  We will point out a few common misconceptions and then point 
the reader to resources which can provide a more thorough treatment of the subject. 

The first misconception has to do with what happens when a variable (other than the BY variable(s)) exists on more 
than one of the data sets being merged.  Many programmers believe that values from a data set named later on the 
MERGE statement will overwrite values from identically-named variables found in data sets named earlier in the 
MERGE statement.  This is true in many cases, but this belief can result in unexpected results in some situations. 

To understand what is truly going on, we need to revisit the discussion above regarding the RETAIN statement.  As 
we mentioned there, variables read in from a MERGE statement are automatically RETAINed.  In other words, these 
variables are not initialized to missing each time a record is written out.  Rather, the values read in will persist on the 
PDV across multiple records until they are overwritten by another value. 

To see how this can produce unexpected results, consider the following example.  We wish to merge together the two 
data sets shown below in Figure 2. 

 

 
Figure 2. VITALS Example 

 

Our goal is to create a merged dataset which will include the subject ID number, age, visit number, the pulse at each 
visit, and the weight.  However, we wish to carry the baseline weight forward and disregard the weights recorded at 
subsequent visits.  Thus, we will list the BASELINE data set after the VITALS data set on the MERGE statement so 
that the values of WEIGHT from BASELINE will overwrite the values coming from VITALS.  Here is the code: 

 

data merge1; 
 merge vitals baseline; 
 by subjid; 

BASELINE 
SUBJID AGE WEIGHT 

1 35 190 
2 48 175 

 

VITALS 
SUBJID VISIT WEIGHT PULSE 

1 1 188 60 
1 2 191 57 
1 3 193 58 
2 1 177 72 
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run; 

 

The resulting data set is shown below in Figure 3. 

 

 
Figure 3. VITALS Example – Incorrect Result 

 

A careful examination of the values in the WEIGHT column shows that the first and fourth rows came from the 
BASELINE data set while the second and third rows came from the VITALS dataset.  It is crucial for the professional 
SAS programmer to understand why this happened. 

The explanation goes back to our previous discussion of the program data vector (PDV) and the implied loop of the 
DATA step.  During the first iteration of the DATA step, the weight of 188 is read from the first record of VITALS into 
the PDV and is then overwritten by the 190 read in from BASELINE.  At the end of the DATA step, the value is 190 is 
still in the PDV and is written to the first record of the output data set.  The 190 is still retained in the PDV as well 
since all variables read in on a MERGE statement are automatically RETAINed. 

During the second loop of the DATA step, the second record is read from VITALS and a value of 191 overwrites the 
190 that is still in the PDV.  However, there are no more records in the BASELINE data set for the current BY group 
(SUBJID = 1), so no value is read.  At the end of the second iteration, the value in the PDV is 191 and that is what is 
written to the output data set. 

Execution continues in this manner.  No more records can be read from BASELINE until the next BY group begins, 
which occurs during the fourth iteration of the DATA step.  At that point, the fourth record from VITALS is read with a 
value of 177, followed by the second record from BASELINE with a value of 175.  At the end of the step, the PDV 
contains 175 and that is written to the final record.  

This was not what we intended when we wrote the code.  A simple way to solve this is to drop the weight from the 
VITALS data set by using the DROP= data set option on the MERGE statement as follows: 

 

data merge2; 
 merge vitals(drop=weight) baseline; 
 by subjid; 
run; 

 

This produces the desired result shown in Figure 4. 

 

MERGE1 
SUBJID VISIT WEIGHT PULSE AGE 

1 1 190 60 35 
1 2 191 57 35 
1 3 193 58 35 
2 1 175 72 48 
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Figure 4. VITALS Example – Corrected Result 

 

As you can see, you cannot always rely on variables being overwritten by variables having the same name on a data 
set listed later in the MERGE statement.  To make your code more robust, eliminate or rename variables as needed 
to avoid duplicate same-named variables (other than those on the BY statement).  In any case, having a thorough 
understanding of how the DATA step works will serve the programmer well. 

This is just one of the ways in which a data set merge can produce unexpected results.  To explore other merge traps 
waiting to ensnare the unsuspecting programmer, refer to Foley (1997) or Lew and Horstman (2013). 

 

PEARL #5: THE OUTPUT STATEMENT 
Every SAS programmer who has ever written a DATA step has used the OUTPUT statement, although they may not 
know it.  The OUTPUT statement tells SAS to write the contents of the Program Data Vector (PDV) as a new record 
of the output data set.  If a DATA step does not contain an explicit OUTPUT statement, SAS adds an implied one at 
the end of the DATA step.  It is this implied OUTPUT statement that is responsible for the default behavior of writing 
out a record at the end of each loop through the DATA step. 

However, there are many situations where it is useful to override this default behavior.  You may wish to write the 
output record at some point before the end of the DATA step, or to write out multiple records for each iteration of the 
DATA step.  In other situations, you might want to write an output record only when certain conditions are met.  You 
might even need to write to multiple output data sets from the same DATA step.  The savvy SAS programmer can 
accomplish these things and much more through the clever use of the OUTPUT statement. 

Let’s look at a simple example which highlights the strength and versatility of the OUTPUT statement.  Consider the 
physical exam data set PHYSICAL shown below in Figure 5. 

 

 
Figure 5. PHYSICAL Example: Input Data Set 

 

Notice that this data is in a normalized (“tall and skinny”) structure with one row for each subject for each test.  Our 
goal is to add an additional row in which the subject’s body mass index (BMI) is computed based on their weight and 
height.  One way to do this would be to use PROC TRANSPOSE to get each subject’s weight and height on a single 
record, compute the BMI, and then use PROC TRANSPOSE again to return the data to the original structure.  
Observe below how the use of the OUTPUT statement allows to perform this operation in a single DATA step. 

 

MERGE2 
SUBJID VISIT PULSE AGE WEIGHT 

1 1 60 35 190 
1 2 57 35 190 
1 3 58 35 190 
2 1 72 48 175 

 

PHYSICAL 
SUBJID TEST RESULT 

1 WEIGHT 85 
1 HEIGHT 185 
2 WEIGHT 93 
2 HEIGHT 172 
3 WEIGHT 112 
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data physical_plus_bmi; 
 set physical; 
 by subjid; 
 retain weight height; 
 if first.subjid then do; 
  height=.; 
  weight=.; 
 end; 
 if test='WEIGHT' then weight=result; 
 if test='HEIGHT' then height=result; 
 output; 
 if last.subjid and not nmiss(weight, height) then do; 
  test='BMI'; 
  result = round(weight / ((height/100)**2), 0.1); 
  output; 
 end; 
 drop height weight; 
run; 

 

First, notice that this data step includes a BY statement even though it is not a merge.  This has the effect of creating 
the FIRST.SUBJID and LAST.SUBJID variables which are used to indicate whether the current record is either the 
first or last record of the BY group corresponding to a particular value of SUBJID.  Note also that this requires the 
input data set to be sorted by the BY variable.  See Choate and Dunn (2007) for more on this functionality. 

Secondly, notice the use of the RETAIN statement to allow values of WEIGHT and HEIGHT to persist across multiple 
iterations of the DATA step.  Without the RETAIN statement, these variables would have been initialized to missing at 
the beginning of each iteration.  However, we still want them to be initialized to missing when we encounter a new 
value of SUBJID (so that data from a previous subject isn’t carried forward), so this is done manually. 

Finally, observe that there are two occurrences of the OUTPUT statement in this DATA step.  This first is 
unconditional and therefore executes with each iteration of the DATA step.  This ensures that all of the original 
records are written to the output data set.  The second one is conditional and occurs only when a BMI is calculated, 
which can be done only when a non-missing WEIGHT and HEIGHT are present for a given subject.  If these 
conditions are met, the values of TEST and RESULT are updated and an additional record is written to the output 
data set.  Figure 6 below shows the resulting output data set. 

 

 
Figure 6. PHYSICAL Example: Output Data Set 

 

As mentioned earlier, the OUTPUT statement can also be used to write to multiple output data sets.  Each output 
data set must also be listed on the DATA statement at the beginning of the DATA step.  For example, recall the 
SASHELP.CARS data set from Pearl #2 above. Suppose rather than adding a PRICE variable to indicate whether the 
car is cheap or expensive, we wish to split the records into two data sets on the same basis.  The following code 
could be used to accomplish this. 

 

PHYSICAL_PLUS_BMI 
SUBJID TEST RESULT 

1 WEIGHT 85 
1 HEIGHT 185 
1 BMI 24.8 
2 WEIGHT 93 
2 HEIGHT 172 
2 BMI 31.4 
3 WEIGHT 112 
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data cheap expensive; 
 set sashelp.cars; 
 if msrp < 20000 then output cheap; 
 else output expensive; 
run; 

 

The result of this code will be two data sets:  one called CHEAP containing all of the records from CARS with retail 
prices under $20,000 and another called EXPENSIVE containing those with prices of $20,000 or more.  Each record 
is written to one or the other.  Of course, it need not be the case that each record only goes to one of the output data 
sets.  This is demonstrated in the following code. 

 

data domestic foreign heavy light; 
 set sashelp.cars; 
 if origin = 'USA' then output domestic; 
 else output foreign; 
 if weight > 3500 then output heavy; 
 else output light; 
run; 

 

The above code creates four output data sets.  Each record from the input data set is either written to the DOMESTIC 
data set or the FOREIGN data set, and then is also written out to either the HEAVY data set or the LIGHT data set.  
Notice that even after a record has been written to the output data set, the contents remain on the Program Data 
Vector (PDV) and are available for further programming within the same iteration of the DATA step. 

For additional information about the use of the OUTPUT statement, refer to pages 164-169 of the SAS Institute 
publication entitled Step-by-Step Programming with Base SAS® Software (2001). 

 

CONCLUSION 
Understanding how SAS works “underneath the hood” is essential for the SAS programmer.  Mastery of the concepts 
discussed in this paper will allow the SAS professional to avoid common errors and quickly diagnose and resolve 
problems that occur.  We’ve only scratched the surface here.  There is much more to be learned.  The papers 
referenced within are a good starting point. 
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