
Paper SA15-2014

SAS®: Data Manipulation Tools
Audrey Yeo, Athene USA, West Des Moines, Iowa

Abstract
Let’s face it, the data provided to us is typically never easy to work with. Missing values, dates that aren’t populated
the way we need (e.g. Year, Month, Day vs. Month, Day, Year), leading zeros that need to be removed from a string,
leading zeros that need to be added to a string, to name a few. We must work through and massage the data before
we can start creating reports with it. In this paper, we present a collection of basic data manipulation tools that should
help make the data cleaning easier.

1. PROC STDIZE – Can be used to replace missing values

It is easy to change missing values to a zero from a . (dot) in a DATA step, as shown below

IF MISSING(VAR) THEN VAR = 0;

However, PROC STDIZE is a much simpler and effective tool to do that.

Data set (Input):

Code:

PROC STDIZE DATA=CARS REPONLY MISSING=0 OUT=CARS2;
 VAR MSRP;
RUN;

Data set (Output):

Let’s say we have the input data set above, where there are some missing values in the MSRP column, and we want
to replace all missing values in that column with the value 0.

The REPONLY option in the code above tells SAS to replace only missing data and the MISSING=0 option tells SAS
that we want the missing value to be replaced with a value 0.

Let’s say we have multiple columns with missing numeric values (as shown below) and we want to substitute all the
numeric missing values with 0s.

Data set (Input):

Code:

PROC STDIZE DATA=CARS3 REPONLY MISSING=0 OUT=CARS4;
 VAR _NUMERIC_;
RUN;

Data set (Output):

We can do that by changing the specific variable name from MSRP to _NUMERIC_, this tells SAS that we want all
numeric columns with missing values be substituted with the value 0.

We can also tell SAS to change the missing values to values other than 0s.

Code:

PROC STDIZE DATA=CARS3 REPONLY MISSING=-1 OUT=CARS5;
 VAR _NUMERIC_;
RUN;

Data set (Output):

All we need to do is to change the MISSING=0 option to the value that we want. In the example above, we changed
all the missing values to a value of -1.

2. INPUT function – Use to convert character variables into numeric variables

For this example, we have information in the form of character which we want to be numeric information. This can be
done using the INPUT function with an informat.

Code:

DATA NUMERIC;
 NUM_STRING1 = '12345';
 NUM_STRING2 = '123';

 NUM1 = INPUT(NUM_STRING1,8.);
 NUM2 = INPUT(NUM_STRING2,8.);
RUN;

Data set (Output):

In the example above, we have two character strings, num_string1 and num_string2. We use the INPUT function with
an 8. informat to tell SAS to “read” in num_string1 and convert it to a numeric string and assign that value to a new
variable num1. We did the same thing to convert num_String2 to num2. The numeric informat of 8 tells SAS how to
read in the form of the values that needs to be converted.

In addition to numeric string, we’ve also included an example on using the INPUT function to convert a character
string of numbers to a date.

Code:

DATA DATES;
 DATE_STRING1 = '20140508';
 DATE_STRING2 = '03082014';
 DATE_STRING3 = '21082014';

 DATE_NUMERIC1 = INPUT(DATE_STRING1,YYMMDD10.);
 DATE1 = INPUT(DATE_STRING1,YYMMDD10.);
 FORMAT DATE1 YYMMDD10.;

 DATE_NUMERIC2 = INPUT(DATE_STRING2,MMDDYY10.);
 DATE2 = INPUT(DATE_STRING2,MMDDYY10.);
 FORMAT DATE2 MMDDYY10.;

 DATE_NUMERIC3 = INPUT(DATE_STRING3,DDMMYY10.);
 DATE3 = INPUT(DATE_STRING3,DDMMYY10.);
 FORMAT DATE3 DDMMYY10.;
RUN;

Data set (Output):

We have three different date strings in the data set above, date_string1, date_string2, and date_string3 respectively.
Date_string1 is in the year, month, day informat; date_string2 is in the month, day, year informat while date_string3 is
in the day, month, year informat.

Next, we used the INPUT function with the respective date informats to change the character information into numeric
values, as shown in the output data set above, date_numeric1, date_numeric2, and date_numeric3, respectively. To
make it easier to read the dates, we add a date format with the FORMAT statement and results can be seen in date1,
date2, and date3.

3. PUT function – Use to convert numeric variables into character variables

Now that we know how to change character variables into numeric variables, it only makes sense to demonstrate
how to convert character variables into numeric variables. In the example below, the variable “code” is in numeric
format, and we wish to add leading zeros to it if the variable has less than five characters.

Code:

DATA NUMBERS;
 INPUT CODE 5.;
 DATALINES;
34639
34234
93473
 5495
23748
 4857
 548
 4589
 45
 459
 345
43555
 3458
;
RUN;

DATA NUMBERS2;
 SET NUMBERS;
 CODE2 = PUT(CODE, z5.);
RUN;

Data set (Output):

We have a list of code in numeric format in the input data set above that we would like to add leading zeros in front of
it if the value has less than five characters. This can be done using the PUT function with a format. The format (2nd
argument of the PUT function) tells SAS how we want the output to be presented.

As can be seen in the data set output above, we have the original “code” column in numeric format, after using the
PUT function with a z5. format, we’re able to convert the numeric column into a character string with leading zeros for
variables that has less than five characters.

In addition, we can also use PUT function to convert a numerical value to a date character.

Code:

DATA DATES_C;

 DATE1 = 19758;
 DATE2 = 1;

 CHAR_DATE1 = PUT(DATE1,DATE9.);
 CHAR_DATE2 = PUT(DATE2,DATE9.);
RUN;

Data set (Output):

In the code above, we have DATE1 and DATE2 in numeric format and we want to convert it into a date character
string. Using a DATE9. format as the 2nd argument of the PUT function tells SAS the format that we want DATE1 and
DATE2 to be formatted and assign them to CHAR_DATE1 and CHAR_DATE2 respectively.

4. LAG function – Can be used to access a previous numeric value

We have a list of S&P Indexes collected daily and we want to compare today’s index value to the previous day’s
index value. We can use the LAG function to do this.

Code:

DATA SP500MAP1;
 INPUT INDEXDATE DDMMYY10. SP500;
 DATALINES;
01/01/2008 1468.4
02/01/2008 1447.2
03/01/2008 1447.2
04/01/2008 1411.6
05/01/2008 1411.6
06/01/2008 1411.6
07/01/2008 1416.2
08/01/2008 1390.2
09/01/2008 1409.1
10/01/2008 1420.3
11/01/2008 1401.0
;
RUN;

DATA SP500MAP2;
 SET SP500MAP1;
 SP500_PREVIOUS = LAG(SP500);
RUN;

Data set (Output):

In order to compare today’s index values to the previous day’s index value, we created a new column named
sp500_previous, using the LAGn function. The LAG function in the example code can also be written as LAG1, which
tells SAS to return one missing value and the values of sp500 lagged once.

Let’s say we want to compare the index values five days apart, or even ten days apart, we can do this by changing
LAG1 to LAG5 (for five days apart) or LAG10 (for ten days apart), as shown in the examples below.

Code:

DATA SP500MAP3;
 SET SP500MAP1;
 SP500_PREVIOUS = LAG5(SP500);
RUN;

Data set (Output):

LAG5 in the example above tells SAS to return five missing values and the values of sp500 lagged five times.

Code:

DATA SP500MAP4;
 SET SP500MAP1;
 FORMAT INDEXDATE MMDDYY10.;
 SP500_PREVIOUS = LAG10(SP500);
RUN;

Data set (Output):

LAG10 in the example above tells SAS to return ten missing values and the values of sp500 lagged ten times.

5. SUBSTR function – Use to parse a text string

Let’s say we have an ID column that can be split into two different columns. We can use the SUBSTR function to do
that.

Code:

DATA TEXT_SPLIT;
 INPUT ID $9.;
 DATALINES;
234367ABC
314631XYZ
347834PDQ
348324ABC
343267PDQ
346327PDQ
234673AIL
734627XYZ
482137XYZ
346328XYZ
;
RUN;

DATA TEXT_SPLIT2;
 SET TEXT_SPLIT;
 ID_NO = SUBSTR(ID,1,6);
 ID_CODE = SUBSTR(ID,7,3);
RUN;

Data set (Output):

In this example, we have a column called ID that can be split into two different columns, ID_no and ID_code. The first
6 characters of the ID column is the ID_no and the remaining 3 characters make up the ID_code. Here, we use two
SUBSTR functions to split the ID up.

In the first SUBSTR function, we named the new column as ID_no, and tell SAS to pull the first character from the ID
column and we want up to the sixth character of the ID column.

In the second SUBSTR function, we tell SAS to pull the seventh character from the ID column and up to three
characters and assign it to the ID_Code column.

6. SCAN function – Searches a string for a defined substring of text

The SUBSTR function is a very useful function if we want to parse a text string. The SCAN function is another useful
function for parsing text, especially if we have delimiters in it.

Code:

DATA ALL;
 INPUT VALGROUP $35.;
 DATALINES;
ABC 10-High
ABC 10-Low
ABC 6-High
ABC 6-Low
ABC Bonus Pro-High
ABC Bonus Pro-Low
ABC Bonus-High
ABC Bonus-Low
ABC Ultra-High
ABC Ultra-Low
XYZ 10-High
XYZ 10-Low
XYZ 5-High
XYZ 5-Low
XYZ 7-High
XYZ 7-Low
;
RUN;

DATA PROD_BAND;
 SET ALL;
 PRODUCT = SCAN(VALGROUP,1,"-");
 BAND = SCAN(VALGROUP,-1,"-");
run;

Data set (Output):

In this example above, we have a column called valgroup which consists of the product name and whether it is a high
band product or a low band product. Using the SCAN function, we are able to parse the information into two different
types of information.

In the first SCAN function, we are asking SAS to extract the first word, as indicated by the 2nd argument of the
function, from the variable valgroup until we see a ‘-‘ and assign that word to the column product.

Using a negative value in the 2nd argument of the function tells SAS to proceed to scan from right to left and extract
the first word until we see a ‘-‘ and assign that word to the column band.

7. UPCASE, LOWCASE, PROPCASE function – Changes the case of the text variables
into uppercase, lowercase and proper case respectively

Sometimes we get information that has inconsistent cases, especially if it is inputted manually. We can always
standardize the variable by changing it to all uppercase, lower case, or proper case.

Code:

DATA CASE;
 INPUT STATE $15.;
 UPPER = UPCASE(STATE);
 LOWER = LOWCASE(STATE);
 PROPER = PROPCASE(STATE);
 DATALINES;
NeW York
cAlifornIA
CHicago
SEATTLE
;
RUN;

Data set (Output):

The ability to standardize the case of a variable is very useful. It is difficult to subset or filter a variable if they differ by
case. Using the UPCASE function, we are able to change all the text into upper case text; LOWCASE function
changes the text into lower case test; and PROPCASE function changes the text into their appropriate cases.

Summary:

Data cleaning can be time consuming and frustrating. Having a few tricks up your sleeve could really expedite the
process and make things easier.

Contact Information
Name: Audrey Yeo
Enterprise: Athene USA
Address: 7700 Mills Civic Parkway
City, State, ZIP: West Des Moines, IA 50316
Work Phone: 515-342-3759
E-mail: AYeo@Athene.com

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

