

1

SA118-2014

SAS ODS HTML + PROC Report = Fantastic Output
Girish K. Narayandas, OptumInsight, Eden Prairie, MN

ABSTRACT
ODS (Output Delivery System) is a wonderful feature in SAS to create consistent, presentable
reports. Using this feature in combination with the powerful PROC Report can give you a lot of
control over the report structure, design and overall appearance. You can set the column width,
font style and size, add colors where desired, and include a picture or a logo, just to name a
few. This paper contains tips and tricks for producing a presentation-worthy HTML output
making use of some of the key features available in ODS HTML, PROC Report and SAS Macros.

INTRODUCTION
Most companies strive to maintain uniformity and a certain level of consistency across the SAS
reports they generate in order to align with corporate branding. Things such as the logo, colors,
fonts, report structure etc., are some of the key details that define a corporate brand. In the
data reporting world, it is common to see multiple developers/programmers creating reports
separately. Sometimes these programmers are spread out across the country. In the case of
global companies, they might even be located in different nations. The challenge is that
management wants to see all of these individually developed reports rolled into one document.
A unified document requires manual effort by developers or analysts to compile the individual
outputs, and additional time and effort spent making each report look visually consistent with
the corporate brand. This paper demonstrates how to automate the process by using pre-
existing SAS tools and features. This paper also shows how to add additional functionality to a
summary document such as point-and-click access into the granularity of each report, and a
button to export data into Excel. Following this methodology, each time a new report is created
it will append itself to the summary book and keep the compiled report current and consistent.

ODS HTML + PROC REPORT = FANTASTIC OUTPUT: AN EXAMPLE
Figure 1 is a screen shot of a data ETL (extraction transformation and loading process) quality
check report. This report contains a content page and individual load quality control (QC)
summaries. These summaries are available immediately after each data source loads. Because
data comes from different sources at varying times throughout the month, we want to run a
quality check each time a new data set is refreshed. Each individual report contains tables for
the data source, the load type, whether table validation is required, and what the thresholds
are for quality inspection. In this fictional example, a rolling three-month average of the data
counts, including thresholds, is used to determine if new data is valid. New data’s calculated
validity is displayed with a value ‘PASS’ or ‘FAIL’ in the final column, QC_Result. For quick and
easy readability, the ‘compute’ option in PROC REPORT is utilized to change the color of the cell
to be green for pass and red for the tables that failed QC inspection.

2

Figure 1: ETL QC Report

STEPS INVOLVED
Here are the nine steps I used to create the report illustrated in Figure 1 above. Each step is
explained in greater detail in the subsequent sections.

/*--

 STEP-1: Create Summary Macro

---*/

%macro generate_summary ;

/*--

 STEP-2: Check for necessary directories, If they don’t exist,

 Create required directories, assign Library names etc.

---*/

%if %sysfunc (fileexist(load_qc_&run_month.)) ^= 1 %then...

/*--

 STEP-3: USE PROC TEMPLATE to Customize Content Title

---*/

Proc template;

...

/*--

 STEP-4: Initiate the HTML Report

---*/

ODS HTML ...;

3

/*--

STEP-5: DRIVE macro to list all the Final Datasets

ready for reporting

---*/

%MACRO DRIVE(dir);

 ...

/*--

 STEP-6: Create any additional report components that are

 needed, store them into Macro Variables

---*/

 PROC SQL noprint; select distinct INTO: ...

/*--

 STEP-7: Output HTML File for each dataset in the output dir

---*/

ODS HTML FILE =...

/*--

 STEP-8: PROC Report to stylize the output report

---*/

PROC REPORT DATA =...

/*--

 STEP-9: E-Mail Component

---*/

DATA _NULL_;

 FILE mymail; ...

1.

1. STEP-1: CREATE A SUMMARY REPORT MACRO

The generate_summary macro is central to the automation process. It consists of using
a PROC TEMPLATE step, PROC REPORT step, ODS Statements, creating and executing
other macros, email components etc. Depending on the situation, the macro can be
utilized to meet the reporting needs of a single team with multiple users, or could be
enhanced further to handle reports generated by multiple teams across a division or
multiple projects in a company.

/*--

 STEP-1: Create Summary Macro

---*/

%MACRO generate_summary ;

...

%MEND generate_summary ;

4

2. STEP-2: CREATE NECESSARY DIRECTORIES AND LIBRARY NAMES

The purpose of this step is to organize the directories by each run month. We use the
‘sysfunc(fileexist)’ function to determine if the necessary project directory structure is
already set up or if it needs to be created. Because multiple members across a team can
execute the summary macro, and each teammate uses this macro in a new run month
(say, 201410), all the required directories wouldn’t be in place. So, we create the needed
folders and assign library names as shown.This step is an optional step, customized for
the multiple person scenario.

/*--

 STEP-2: Check for necessary directories, If they don’t exist,

 Create required directories, assign Library names etc.

---*/

%if %sysfunc (fileexist(load_qc_&run_month.)) ^= 1 %then %do

 systask command "mkdir -p &loc./&run_month./qc_hub" wait;

 systask command "mkdir -p &loc./&run_month./qc_hub/data" wait;

 systask command "mkdir -p &loc./&run_month./qc_hub/out" wait;

%end;

libname in_data "&loc./&run_month./load_qc_hub/data";

libname output "&loc./&run_month./load_qc_hub/out";

3. STEP-3: PROC TEMPLATE PROCEDURE

I used PROC TEMPLATE procedure to customize the “Table of Contents”: text that is the
default; the result is shown in Figure 2. There are several ready-made styles to choose
from. I changed the default style to ‘seaside’ to suit my needs. However, a deeper dive
into PROC TEMPLATE can provide you with an even greater level of control over the
general style, font, text, border and table attributes. For more information on editing
styles please refer to ‘SAS 9.2 Output Delivery System User’s Guide, SAS Documentation’
available at
http://support.sas.com/documentation/cdl/en/odsug/61723/PDF/default/odsug.pdf.

/*--

 STEP-3: USE PROC TEMPLATE to Customize Content Title

---*/

PROC TEMPLATE;

 define style styles.test;

 parent=styles.seaside;

 style contenttitle from contenttitle /

 pretext = "ETL Load QC Summary List - (&run_month.)";

 end;

run;

http://support.sas.com/documentation/cdl/en/odsug/61723/PDF/default/odsug.pdf

5

Figure 2: Customization of “Table of Contents”

4. STEP-4: INITIATE ODS HTML

The ODS HTML statement opens or closes the HTML destination. The PATH= option
specifies the location of the HTML files. FRAME identifies the file that integrates the table
of contents, the page contents, and the body file. ‘CONTENTS’ opens the HTML
destination and creates the file that contains a table of contents for the output. ODS
HTML automatically creates an ANCHOR for every piece of output generated by the SAS
procedures. An anchor specifies a particular location within an HTML file. In order for the
links from the contents, page, or frame file to work, each piece of output in the body files
must have a unique anchor to link to. For STYLE, we are choosing modified seaside style
names as ‘test’ created in the PROC TEMPLATE step described above. ODS HTML syntax
has improved. See ‘ODS HTML Evolution: HTML that Scrolls, Panels, Floats, Reads, and
Integrates’ by Eric Gebhart (Reference #3) for greater details.

/*--

 STEP-4: Initiate the HTML Report

---*/
ODS HTML frame = "Frame_ETL_Load_QC.html"

 (title="ETL Load QC Summary Report for &run_month.")

 contents = "Contents.html"

 anchor = "data_source"

 path = "&loc./&run_month./summary_rpt/" (url=none)

 style = test;

6

5. STEP-5: MACRO TO PRINT ALL DATASETS OF A DIRECTORY

This macro is a ready-to-use portable macro available on the SAS support website,
http://support.sas.com/kb/25/074.html. It enables you to print all files in a folder with a
specified extension. This macro takes 2 parameters. The first parameter is the directory
that contains the files. The second parameter is the file extension of the files you are
looking for. I made a few modifications to this macro, included in steps 6, 7 and 8
described below to meet my report needs.

/*--

STEP-5: DRIVE macro to list all the Final Datasets

ready for reporting

---*/

%MACRO drive(dir,ext);

 %let filrf=mydir;

 /* Assigns the fileref of mydir to the directory and opens the

directory */

 %let rc=%sysfunc(filename(filrf,&dir));

 %let did=%sysfunc(dopen(&filrf));

 /* Returns the number of members in the directory */

 %let memcnt=%sysfunc(dnum(&did));

 /* Loops through entire directory */

 %do i = 1 %to &memcnt;

 /* Returns the extension from each file */

 %let name=%qscan(%qsysfunc(dread(&did,&i)),-1,.);

 /* Checks to see if file contains an extension */

 %if %qupcase(%qsysfunc(dread(&did,&i))) ne %qupcase(&name)

%then %do;

 /* Checks to see if the extension matches the parameter value */

 /* If condition is true prints the full name to the log */

 %if (%superq(ext) ne and %qupcase(&name) = %qupcase(&ext))

or

 (%superq(ext) = and %superq(name) ne) %then %do;

 %put %qsysfunc(dread(&did,&i));

 %end;

 %end;

 %end;

 /* Closes the directory */

 %let rc=%sysfunc(dclose(&did));

%MEND drive;

/* First parm is the dir of where your files are stored. */

/* Second parm is the extension you are looking for. */

http://support.sas.com/kb/25/074.html

7

/* Leave 2nd parm blank if you want a list of all the files. */

%drive(c:\,sas)

6. STEP-6: BUILD ADDITIONAL REPORT COMPONENTS AS NEEDED

While the summary report is great, sometimes it is useful to have access to other
details. For example you can look up who ran the report, or open the work request
pertaining to the report. We can include such details by creating macro parameters
when the jobs are executed and use them in the report as clickable buttons, shown in
Figure 3 below.

/*--

 STEP-6: Create any additional report components that are

 needed, store them into Macro Variables

---*/

proc sql noprint;

 select distinct compress(fact, " ") into: factname

 from &librf..&fname. ;

 select distinct impact_definition into: impact_def

 from &librf..&fname. ;

 select distinct (developer) into: developer

 from &librf..&fname. ;

 select distinct (rundate) into: rundate

 from &librf..&fname. ;

 select distinct (fact_request) into: fact_request

 from &librf..&fname. ;

quit;

footnote4 J=l "<div align=""left""><input type=""button""

value=""Open Request""

onclick=javascript:window.open('&fact_request')></div>";

footnote5 j=l '<input

onclick="document.execCommand(''SAVEAS'',true,

''c:\\temp\\test.xls'')" value= "Download To Excel"

type="button">';

8

Figure 3: Links on a Report

7. STEP-7: WRITE HTML OUTPUT FILE FOR EACH DATASET OR PROCEDURE

The FILE= option identifies the file containing the HTML version of the procedure output.
Use the ODS PROCLABEL statement to create customized labels in the table of contents.
Since PROCLABEL affects only the SAS procedure immediately following it, it works great
in this situation, since we need different labels to represent different data sources each
time PROC REPORT iterates.

/*--

 STEP-7: Output HTML File for each dataset in the output dir

---*/

ods html file =

"&loc./&run_month./summary_rpt/ETL_Load_QC_&data_source..html"

anchor = "data_source" ;

ods proclabel "&data_source.";

9

8. STEP-8: PROC REPORT TO STYLIZE THE OUTPUT

There is a quite bit of material already available on PROC REPORT procedure if you want
to understand all the intricate details, features and choices it has to offer. The intention
of this paper is to illustrate just a few of these options, combined with ODS HTML and
SAS utilities to develop a refined report. Below is the PROC REPORT statement that I used
to make the output visually more appealing. I described the process in six parts, A-F,
below.

/*--

 STEP-8: PROC Report to stylize the output report

---*/

proc report data = &librf..&fname.

 split='*'

 contents = "ETL Load QC Summary"

 style(header) =

 [just = left

 font_face = calibri

 font_size = 3

 foreground = white

 background = orange

 protectspecialchars=off] ;

 column Table_name Load_Type Book_Month Run_Month

 AVG_Count_3MON CURR_Record_CNT VALIDATE TOLERANCE

 ABS_PCT_DIFF QC_RESULT ;

 define Table_name/display 'TABLE_NAME' style={just=l vjust =b };

 define Load_Type / display 'LOAD_TYPE' style={just=c vjust =b };

 define Book_Month/ display 'BOOK_MONTH'style={just=c vjust =b };

 define Run_Month/ display 'RUN_MONTH' style={just=c vjust =b };

 define AVG_Count_3MON / display '3MON ROLLING AVG'style={just=c

vjust =b };

 define CURR_Record_CNT/ display 'CURR_RECORD_CNT' style={just=c

vjust =b };

 define VALIDATE/ display 'VALIDATE' style={just=c vjust =b };

 define TOLERANCE / display 'TOLERANCE' style={just=c vjust =b };

 define ABS_PCT_DIFF / display 'ABS_PCT_DIFF'style = {just=c

vjust =b };

 define QC_RESULT / display 'QC_RESULT' style={just=c vjust =b };

 compute qc_result;

 if qc_result = 'PASS' then

 call define(_col_,"style","style={background=limegreen}");

 else if qc_result = 'FAIL' then

 call define(_col_,"style","style={background=crimson}");

 else call define(_col_,"style","style={background=crimson}");

 endcomp;

A

E

D

B

C

10

 TITLE1 j=l '';

 TITLE3 j=l c=white bcolor = orange font=calibri h=6 bold "ETL Load

QC Report";

 TITLE5 j=l c=White bcolor = grey font=calibri h=4 bold "Data

Source: &Data_source";

 TITLE6 j=l c=White bcolor = grey font=calibri h=4 bold "Run Month:

&run_month";

footnote J=l "<div align=""left""><input type=""button""

value=""Open Request""

QUIT;

A. PROC REPORT has a regular DATA statement. SPLIT breaks a column heading when it

reaches that character and continues the heading on the next line. The split character
(*) itself is not part of the column heading although each occurrence of the split
character counts toward the 256-character maximum for a label. ‘CONTENTS’ specifies
text for the HTML or PDF table of contents entry for the output.

B. STYLE: option, or rather options, in the PROC REPORT statement can add a great

amount of detail to the report. For example, we have listed six options in that
statement. We are stating that the header be LEFT JUSTIFIED, font style = Calibri, font
size =3, controlling background and foreground colors. When sending output to the
HTML destination using PROC REPORT a number of the usual attributes are not
available. The issue arises when you type something like ‘<MCA />’ into your data
then SAS will protect those characters and output will actually be converted into
character entities that don’t make sense. A simple fix for such situations is to turn off
the ‘protectspecialchars’ attribute within style definitions, so SAS ignores special
characters and output is exactly as entered.

C. COLUMN: The primary function of the COLUMN statement is to provide a list of
variables for REPORT to print in the order from left to right that they are to appear on
the report. Though not demonstrated in this code, the COLUMN statement can be
used to attach a statistic to the variable. It can also add headers to group variables.

D. DEFINE: While COLUMN statement is used to declare the variables of interest, DEFINE
statements provide the details of how to use those variables. In this particular
report, we are using it for DISPLAY of the variable name. Additionally, other STYLE
attributes such as horizontal (left or right or center) and vertical (top or bottom or
center) justification could be chosen.

E. COMPUTE: A compute block can be associated with a report item or with a location
(at the top/bottom of a report/page). A compute block is created with the COMPUTE
window or with the COMPUTE statement. There is enormous flexibility with the

F

11

COMPUTE statement. In our example, we are simply using a ‘compute’ statement to
change colors of the cell based on the QC_RESULT value of a data source table.

F. TITLE and FOOTNOTES: statements can be defined anywhere in the SAS program

9. Step-9: EMAIL COMPONENT:

This is a straight forward SAS utility that most SAS users may are already be aware of.
Several email compositions could be written and used with appropriate conditional logic
if a different email composition is needed to be sent to different team members based
on the quality check result.

/*--

 STEP-9: E-Mail Component

---*/

filename mymail email to="userid@optum.com"

 subject="ETL Load QC Summary Report - &run_month." ;

data _null_;

 file mymail;

 put "Hi %upcase(&&sysuserid)," /;

 put "The ETL Load QC Summary Report for the month of

&run_month. Completed processing."/;

 put "Please review the Load QC Summary Results at the link

below"/;

 put "File://X:&run_month./output/Frame_ETL_QC_Summary.htm" /;

 put "Thank you!"/;

 put " ";

 run;

CONCLUSION

PROC REPORT is a very powerful report generating tool that is fairly easy to use once you get
familiar with it. Initially, the key words and different syntax style may seem complex, but it
becomes more manageable and even enjoyable as you become familiar with the flexibility and
choices available to spruce up your reports. By combining PROC REPORT with ODS HTML, SAS
MACROS and other SAS utilities, you can create impressive and versatile reports for your
company.

REFERENCES

1. Carpenter, Art (2012). Carpenter’s Guide to Innovative SAS Techniques textbook
(Chapter 8.4, Using PROC REPORT to Better Advantage, pages 280 -290)

2. Carpenter, Arther, L. (2012). PROC REPORT Basics: Getting Started with the Primary
Statements

3. Gebhart, Eric (2010). ODS HTML Evolution: HTML that Scrolls, SAS Institute Inc., Cary, NC

12

4. Gebhart, Eric. (2009). Inline Formatting with ODS Markup. Proceedings of the SAS Global
Forum 2009 Conference. support.sas.com/resources/papers/proceedings09/222-
2009.pdf.

5. Olinger, Chris (2000) ODS For Dummies, Proceedings of SUGI 25 (April 9-12, 2000)
6. Concepts for ODS - Colors Concepts, SAS Support Documentation Notes

http://support.sas.com/rnd/base/ods/templateFAQ/Template_colors.html
7. SAS 9.2 Output Delivery System User’s Guide, SAS Documentation’ available at

http://support.sas.com/documentation/cdl/en/odsug/61723/PDF/default/odsug.pdf.
8. Listing all files that are located in a specific directory, SAS Support Documentation,

Sample 25074: http://support.sas.com/kb/25/074.html
9. PROC REPORT Statement – SAS Documentation,

http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#
a002473620.htm

10. Wright, Wendi L. (2000), ODS Step by Step, Educational Testing Service, Princeton, NJ,
proceedings of NorthEast SAS Users Group (NESUG)

TRADEMARK CITATIONS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the author at:
Girish Narayandas
Optum
13625 Technology Drive
Eden Prairie, MN 55344
Email: girish.narayandas@optum.com
www.optum.com

