
Paper: SA02-2014
SAS® 101 For Newbies--Not Too Little, Not Too Much--Just Right

Ira Shapiro UnitedHealth Group, Minnetonka, MN
ABSTRACT

The intent of this paper is an overview of the important step-by-step basic features and functions of SAS® and then introduce more complex

SAS® features.

INTRODUCTION

Although you may think this paper is long and overwhelming, the reader should approach this paper in baby steps taking one step at a time. The
data file most used in this paper (Shoes) has been provided by SAS® and should be available to each reader in their SAS environment. I would
suggest copying snippets of the provided code, running it and then experimenting by modifying the code where applicable.

Basic SAS Coding Techniques
SAS Programs have Job Steps and SAS Procs such as:

/*A Sample of a Job Step*/
Data out; Set in;
Run;

/*A Sample of a SAS Proc*/
Proc print data=out;
run;

SAS handles alphanumeric and numeric data. Character strings are surrounded by single quotes such as ‘Ira Shapiro’.
SAS dates are processed as numbers and printed with a date Format statement.

/*Temporary and ‘Permanent’ files defined in autoexec*/
/*An actual autoexec is much more complicated*/
libname temp '/dss/ira temp files';
libname is '/dss/ira perm files';

The code examples will be using a Shoes file found in the SASHELP library and coded as SASHELP.SHOES.
Part of SASHELP.SHOES Input File:

Region Product Subsidiary Stores Sales Inventory Returns

Africa Boot Addis Ababa 12 $29,761 $191,821 $769

Africa Men's Casual Addis Ababa 4 $67,242 $118,036 $2,284

Africa Men's Dress Addis Ababa 7 $76,793 $136,273 $2,433

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861

Africa Slipper Addis Ababa 14 $68,641 $279,795 $1,771

Figure 1: Partial Sashelp.shoes contents

Ouput Delivery System is used to provide reports in a manner that can be provided to customers. This example provides the ‘Presentation.xls’
spreadsheet on a server.
/*ODS – Output Delivery System – Proc Print printed above*/
ods html body="/userid/Presentation03.xls";
proc print noobs data=sashelp.shoes;
run;
ods html close;

Mathematical operators such as < (less than), > (greater than) and = (equal to) are used in program logic to limit or allow rows of data to be
processed. The operators can be combined such as >= (equal to or greater than).

options obs=5;/*Mathematical Operators and examples*/
data temp.issug_presentation;set SASHELP.SHOES;
 * Operators are < > = and can be combined;
 if stores =<4 then delete; /*Data/Row Exclusion*/
 if returns > 1000; /*Data/Row Inclusion*/
Run;

Region Product Subsidiary Stores Sales Inventory Returns

Africa Men's Dress Addis Ababa 7 $76,793 $136,273 $2,433

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861

Africa Slipper Addis Ababa 14 $68,641 $279,795 $1,771

Figure 2: Partial output of the use of mathematical operators

A null numeric field means that the field is blank. SAS assisgn a period (.) to this field which a user can test. A null character field is also a blank
or blanks depending on the size of the field. A user can test a character field for blank(s).

For numeric fields, if a user detects a null field, the user can reset that field to any numeric value that would make logical sense for processing.
Simarly, a user can change a null character field to any character string surrounded by single quotes.

/*Missing Data - Null numeric and null character fields*/
/* Input File for work.Missing_data
iId First Last DOB Money
 1 John 1/2/1946 123.45
 2 Jane Smith 7/12/1944 1234.89
 Tom Jones 3/6/1950 12345.69*/

data work.Book03;set work.Missing_data;
 if ID=. then delete;/*Missing numeric data is represented by . (period)*/
 if LAST=' ' then delete;/*Missing character data is represented by ' ' (space or spaces)*/
Run;
proc print noobs data=work.Book03;run;

Figure 3: Resultant output file when null ID or null LAST fields have been processed

Users can create new character (or numeric fields) as shown. For new character fields, a Format statement is strongly advised giving the
maximum length of the newly defined field which, in this case, is 15 characters. The ‘$’ in the format tells the program that the new field is a
character field.
/*Setting new variables*/
data temp.issug_presentation;set SASHELP.SHOES;
 format Product_Other $15.;
 if Product='Boot' then Product_Other='Tall Boot';
Run;

Region Product Subsidiary Stores Sales Inventory Returns Product_Other

Africa Boot Addis Ababa 12 $29,761 $191,821 $769 Tall Boot

Africa Men's
Casual

Addis Ababa 4 $67,242 $118,036 $2,284

Africa Men's Dress Addis Ababa 7 $76,793 $136,273 $2,433

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861

Africa Slipper Addis Ababa 14 $68,641 $279,795 $1,771

Figure 4: Creating a new character field

If/then/else logic allows the user to first (IF) see if a field contains a given value with the given mathematical logic. If the field is true (meets that
condition) the THEN condition is executed. If the field is not true (does not meets that condition) the ELSE condition is executed. Note that the
ELSE portion of the code does not have exist. The ELSE portion is optional.

/* If/Then/Else logic*/
data temp.issug_presentation;set SASHELP.SHOES;
 if Product='Sandal' then Sandal_Found=1; else Sandal_Found=0;
 Run;

Region Product Subsidiary Stores Sales Inventory Returns Sandal_Found

Africa Boot Addis Ababa 12 $29,761 $191,821 $769 0

Africa Men's Casual Addis Ababa 4 $67,242 $118,036 $2,284 0

Africa Men's Dress Addis Ababa 7 $76,793 $136,273 $2,433 0

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861 1

Africa Slipper Addis Ababa 14 $68,641 $279,795 $1,771 0

Figure 5: Partial output of If/then/else logic

The IN logic allows for testing of multiple true conditions for a given field. Not shown- If the field is numeric, the user can test for a series of
numbers i.e. if area_code in (201,202,203) then Area_code_found=1; else Aread_code_found=0;

/*Use of IN for qualification*/
data temp.issug_presentation;set SASHELP.SHOES;
 if Product in ('Boot','Sandal') then Boot_Sandal='Yes'; else Boot_Sandal='No ';
Run;

Region Product Subsidiary Stores Sales Inventory Returns Boot_Sandal

Africa Boot Addis
Ababa

12 $29,761 $191,821 $769 Yes

Africa Men's
Casual

Addis
Ababa

4 $67,242 $118,036 $2,284 No

Africa Men's
Dress

Addis
Ababa

7 $76,793 $136,273 $2,433 No

Africa Sandal Addis
Ababa

10 $62,819 $204,284 $1,861 Yes

Africa Slipper Addis
Ababa

14 $68,641 $279,795 $1,771 No

Figure 6: Partial output of IN test

The Delete statement is used to delete row(s) of data.

/*Excluding rows of data – Delete*/
data temp.issug_presentation;set SASHELP.SHOES;
 if Product in ('Boot','Sandal') then Delete;
Run;

Region Product Subsidiary Stores Sales Inventory Returns

Africa Men's Casual Addis Ababa 4 $67,242 $118,036 $2,284

Africa Men's Dress Addis Ababa 7 $76,793 $136,273 $2,433

Africa Slipper Addis Ababa 14 $68,641 $279,795 $1,771

Africa Sport Shoe Addis Ababa 4 $1,690 $16,634 $79

Africa Women's Casual Addis Ababa 2 $51,541 $98,641 $940

Figure 7: Partial sample output of use of the delete to omit rows of data

The unqualified IF statement only includes row(s) that meet the IF criteria.

/*Including rows of data –Unqualified IF*/
data temp.issug_presentation;set SASHELP.SHOES;
 if Product in ('Boot','Sandal');
Run;

Region Product Subsidiary Stores Sales Inventory Returns

Africa Boot Addis Ababa 12 $29,761 $191,821 $769

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861

Africa Boot Algiers 21 $21,297 $73,737 $710

Africa Sandal Algiers 25 $29,198 $84,447 $1,530

Africa Boot Cairo 20 $4,846 $18,965 $229

Figure 8: Partial output sample of the unqualified if statement to include rows of data

Character input fields can be put together (concatenate) fields to create a new field. In this case two concatenated fields are created from
concatenating region to subsidiary. In the first case, the new field Region_subsidiary is created from region and subsidiary with no intervening
space. In the second case, the new field Region_subsidiary_1 is created from region and subsidiary with an intervening single space.

/*Simple concatenation of character fields*/
proc sort data=SASHELP.SHOES out=temp.issug_presentation_sort;by Region;run;
data temp.issug_presentation;set temp.issug_presentation_sort;by region;
 format Region_Subsidiary Region_Subsidiary_1 $50.;
 if last.Region;

 Region_Subsidiary= trim(region) || trim(Subsidiary);/*Trim function removes spaces from variable*/
 Region_Subsidiary_1= trim(region) || ' ' ||trim(Subsidiary);
 keep region subsidiary r_s Region_Subsidiary Region_Subsidiary_1;
Run;

Region Subsidiary Region_Subsidiary Region_Subsidiary_1

Africa Nairobi AfricaNairobi Africa Nairobi

Asia Tokyo AsiaTokyo Asia Tokyo

Canada Vancouver CanadaVancouver Canada Vancouver

Central America/Caribbean San Juan Central America/CaribbeanSan Juan Central America/Caribbean San Juan

Eastern Europe Warsaw Eastern EuropeWarsaw Eastern Europe Warsaw

Figure 9: Partial sample of output showing concatenation of two character fields with and without an intervening space

To minimize the size of output data files especially when they can be very large, a user can code a Keep which contains the name(s) of field(s)
the user wishes to have on the output data file. In this exampe the issug_presentation datset only contains the region, subsidiary and product
field.

/*Keep (Keeps one or more variables in the output file)*/
data temp.issug_presentation;set SASHELP.SHOES;
 format Region_Subsidiary $125.;
 Region_Subsidiary_product= trim(product) || ' ' || trim(region) || ' ' || trim(Subsidiary);
 keep Region_Subsidiary_product;
Run;

Region_Subsidiary_product

Boot Africa Addis Ababa

Men's Casual Africa Addis Ababa

Men's Dress Africa Addis Ababa

Sandal Africa Addis Ababa

Slipper Africa Addis Ababa

Figure 10: Sample output of the use of a keep statement

The Drop statement is the reverse of a keep in which the coded fields in the Drop are not placed on the output data file. By using the drop, the
user can also minimize the size of the output file. In the example, region and subsidiary are dropped from being placed on the output data file.

/*Drop (Reverse of Keep- Drops one or more variables from the output file)*/
data temp.issug_presentation;set SASHELP.SHOES;
 format Region_Subsidiary $25.;
 Region_Subsidiary= trim(region) || trim(Subsidiary);
 Drop Region Subsidiary;
Run;

Product Stores Sales Inventory Returns Region_Subsidiary

Boot 12 $29,761 $191,821 $769 AfricaAddis Ababa

Men's Casual 4 $67,242 $118,036 $2,284 AfricaAddis Ababa

Men's Dress 7 $76,793 $136,273 $2,433 AfricaAddis Ababa

Sandal 10 $62,819 $204,284 $1,861 AfricaAddis Ababa

Slipper 14 $68,641 $279,795 $1,771 AfricaAddis Ababa

Figure 11 Sample output of the use of the drop statement

The Retain statement is quite useful if it is understood. A Retain field(s) maintains its value whether it is null or a value through multiple
observations (or rows) of data until it is reset by the user. In this case the new character Sandal_Found is initialized to spaces. If (and only if) the
product field is ‘Sandal’ does Sandal_Found becomes the character value Yes. When the next row of data for the product is Slipper,
Sandal_Found remains Yes because it hasn’t bee changed!

/*Retain (The vampire that lives forever)*/
data temp.issug_presentation;set SASHELP.SHOES;
 Format Sandal_Found $3.;
 Sandal_Found=’ ‘;
 if product='Sandal' then Sandal_Found='Yes';
 retain Sandal_Found;
 keep product Sandal_Found;
Run;

Product Sandal_Found

Boot

Men's Casual

Men's Dress

Sandal Yes

Slipper Yes

Figure 12: Sample output use of the retain statement

Self-defined variables similarly retained their value unless changed. In the case below, the new numeric variable count has an implied initial
value of 0 (zero). As Figure 13 shows, for the first row of data count is 1, for the second count is now 1+1 or 2. Notice that ‘count+1’ has no equal
sign in the statement. If you wish to increment a self-defined variable, do NOT put an = in the code.

/* Self-defined retained variables */
data temp.issug_presentation;set SASHELP.SHOES;
 count+1;/*NOTE: NO use of = sign for a self-defined variable*/
 keep count product Region;
Run;

Region Product count

Africa Boot 1

Africa Men's Casual 2

Africa Men's Dress 3

Africa Sandal 4

Africa Slipper 5

Figure 13: Same output of a self-defined retained variable

AND logic is used to check two (or more) variables to see if they are true. In this case, the code is an unqualified If statement which will allow the
output file to have those rows of data which have fields Region being Africa and Stores greater than 4.

/*AND logic*/
data temp.issug_presentation;set SASHELP.SHOES;
 if Region='Africa' and Stores > 4;
Run;

Region Product Subsidiary Stores Sales Inventory Returns

Africa Boot Addis Ababa 12 $29,761 $191,821 $769

Africa Men's Dress Addis Ababa 7 $76,793 $136,273 $2,433

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861

Africa Slipper Addis Ababa 14 $68,641 $279,795 $1,771

Africa Women's Dress Addis Ababa 12 $108,942 $311,017 $3,233

Figure 14: Sample and logic output

OR logic is used to check two (or more) variables to see if any of the variables being tested are true. In this example the output file will contain
those rows where Product is Sandal OR Returns are less than 1000.

/*Or logic*/
data temp.issug_presentation;set SASHELP.SHOES;
 if Product='Sandal' or Returns < 1000;
Run;

Region Product Subsidiary Stores Sales Inventory Returns

Africa Boot Addis Ababa 12 $29,761 $191,821 $769

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861

Africa Sport Shoe Addis Ababa 4 $1,690 $16,634 $79

Africa Women's Casual Addis Ababa 2 $51,541 $98,641 $940

Africa Boot Algiers 21 $21,297 $73,737 $710

Figure 15: Sample output using or logic

The simple unqualified DO loop is used to set more than one variable’s value. In this example, if Product is Boot and Returns < 100 then the
varialble Boot_Yes_No is set to Yes and variable Returns_lt_1000 is also set to Yes.
/*Simple unqualified do loop*/
data temp.issug_presentation;set SASHELP.SHOES; format Boot_Yes_No Returns_lt_1000 $3.;

if Product='Boot' and Returns < 1000
 then do;
 Boot_Yes_No='Yes';
 Returns_lt_1000='Yes';
 end;
 keep Product Returns Boot_Yes_No Returns_lt_1000;

Run;

Product Returns Boot_Yes_No Returns_lt_1000

Boot $769 Yes Yes

Men's Casual $2,284

Men's Dress $2,433

Sandal $1,861

Slipper $1,771

Figure 16: Sample unqualified do loop output

The user can create Multiple Output Files in a single job step depending on input data. In this example, if the Product is Boot the code creates a
temp.Boot file. If the Product is Sandal, the code creates a temp.Sandal file. If the Product is neither Boot nor Sandal, the code creates a
temp.presentation file.

/*Multiple Output files*/
data temp.Boot temp.Sandal temp.presentation;

 set SASHELP.SHOES;
 if Product='Boot' then output temp.Boot;else
 if Product='Sandal' then output temp.sandal;else
 output temp.presentation;
 keep Product Returns;

Run;

presentation boot sandal

Product Returns

Product Returns

Product Returns

Men's Casual $2,284

Boot $769

Sandal $1,861

Men's Dress $2,433

Slipper $1,771

Figure 17: Sample multiple output files

Before you can use First. And Last. Code, the Set file will have to be sorted. In this example, the SASHELP.Shoes file is sorted by Subsidiary within
region creating the temp.Shoes file by Proc Sort. The objective of the Data Step is to create summary totals of stores, inventory and returns by
subsidiary within region. To accomplish this objective, the set statement for the input file has a by clause of region subsidiary because that is

what temp.shoes is sorted by. ‘First.subsidiary’ if the first occurrence of the value of subsidiary within a given region. ‘Last.subsidiary’ if the last
occurrence of the value of subsidiary within a given region. The first occurrence of the value of subsidiary causes the code to initialize new self-
defined variables called total_stores, total_inventory and total_returns all to a value of 0 (zero). For any row of data for any given value of
subsidiary, the self-defined variables get totaled by their respective row variable. When the last occurance of subsidiary is reached, the
last.subsidiary puts out via an output statement the summarized inventory, returns and stored value as shown.

/*Set BY clause with First. and Last.*/
proc sort data=SASHELP.SHOES out=temp.SHOES_sort;by region subsidiary;run;

data temp.presentation;set temp.SHOES_sort;by region subsidiary;
format total_inventory comma11.0 total_returns dollar11.0;
 if first.subsidiary then do; total_stores=0;total_inventory=0;total_returns=0;end;

 total_stores+stores;
 total_inventory+inventory;
 total_returns+returns;
 if last.subsidiary then output temp.presentation;
 keep region subsidiary total_stores total_inventory total_returns;
Run;

• Region • Subsidiary • total_inventory • total_returns • total_stores

• Africa • Addis Ababa • 1,356,501 • $13,370 • 65

• Africa • Algiers • 1,212,116 • $12,763 • 101

• Africa • Cairo • 2,245,536 • $22,477 • 88

• Africa • Johannesburg • 375,534 • $3,962 • 51

• Africa • Khartoum • 588,019 • $7,051 • 71

Figure 18: Sample First./Last. User summarized report

SAS has user debugging tools to help the user hone in on possible data concerns. These tools, particularly the Put, have to be used extremely
carefully otherwise the user could easily fill up SASLOG and possibly terminating the SAS session. The _N_ variable is a SAS reserved variable. It
contains the current input record number. In the example’s code by checking the value of _N_ to < 6, it guarantees that the the ensuing Put
statement will only put out five line of the variables and constants being requested.

/*Debugging use of _N_ and put*/
data temp.issug_presentation;set SASHELP.SHOES;

 if _n_ < 6 then put _N_ 'REGION=' Region 'Subsidiary=' subsidiary 'Product=' product;
Run;

 Results in SASLOG:
1 REGION=Africa Subsidiary=Addis Ababa Product=Boot
2 REGION=Africa Subsidiary=Addis Ababa Product=Men's Casual
3 REGION=Africa Subsidiary=Addis Ababa Product=Men's Dress
4 REGION=Africa Subsidiary=Addis Ababa Product=Sandal
5 REGION=Africa Subsidiary=Addis Ababa Product=Slipper

Figure 19: Sample use of _N_ variable with a Put statement

The Format allows the user to report the data that is understandable to the customer. There are many formats available in SAS for numbers and
especially for dates (and times). The Dollar format puts a leading dollar sign and possible commas in the reporting of the data. The two date
formats put out the dates with normal month numbers/days/year in either 2 digit or 4 digit form. A general warning – If you use ODS to put out
your report in Excel (xls,xlsx), Excel formats the data, particularly numeric, the way it wants to not necessarily the way the user wants to see it.

/*Intro to some Formats*/
data temp.issug_presentation;set SASHELP.SHOES;

 format returns dollar12.2 dt mmddyy10. dt2 mmddyy8.;
 if _N_=1 then dt='01Jan2011'd;else dt+1;
 dt2=dt+31;
 returns=returns+0.01;
 keep returns dt dt2;

Run;
 *Watch out for Excel!!;

Returns Dt dt2

$769.01 1/1/2011 02/01/11

$2,284.01 1/2/2011 02/02/11

$2,433.01 1/3/2011 02/03/11

$1,861.01 1/4/2011 02/04/11

$1,771.01 1/5/2011 02/05/11

Figure 20: Sample dollar and date reporting formats

When running code, the user MUST review the SASLOG file to see errors, warnings and comments. The errors must be corrected. The warnings
should be looked at with a determination by the user if remediation needs to take place. Comments also can be useful because they contain
record (row) counts of input and output records for each job step. This information can be somewhat useful in determining potential logic
errors.

/*SASLOG Error*/
data temp.issug_presentation;set SASHELP.SHOES;

 if Product='Boot' and Returns < 1000
 then do;Boot_Yes_No='Yes';Returns_lt_1000='Yes';
 keep Product Returns Boot_Yes_No Returns_lt_1000;

Run;
Partial SASLOG
326 data temp.issug_presentation;set SASHELP.SHOES;
327 if Product='Boot' and Returns < 1000
328 then do;Boot_Yes_No='Yes';Returns_lt_1000='Yes';
329 keep Product Returns Boot_Yes_No Returns_lt_1000;
330 Run;
 -
 117

ERROR 117-185: There was 1 unclosed DO block.

Figure 21: Sample SASLOG errors

Advanced SAS Techniques

It’s almost a guarantee that you will be using Pro SQL whether it be strictly in SAS mode or extracting data from a database. This paper will not
address using Proc SQL to extract database data (DB2, Oracle, SQL Server, Teradata). There are whole books written on that subject and will be
dependent on your working environment.

In the following example, all bold items are the skeletal Proc SQL required words. The Create Table creates an output dataset with fields listed
after the Select from the table designated with the From. Order by is optional and orders the output file by stated field(s).

/*Introduction to Proc SQL*/
proc sql;

create table temp.sql01 as
select Product

, Region
, Subsidiary
, Stores

 , Inventory
 , Sales
 , Returns

FROM sashelp.shoes a
ORDER BY product,region,subsidiary;
quit;

Product Region Subsidiary Stores Inventory Sales Returns

Boot Africa Addis Ababa 12 $191,821 $29,761 $769

Boot Africa Algiers 21 $73,737 $21,297 $710

Boot Africa Cairo 20 $18,965 $4,846 $229

Boot Africa Johannesburg 14 $33,011 $8,365 $483

Boot Africa Khartoum 24 $105,370 $19,282 $700

Figure 22: Basic Proc SQL sample with output

Proc SQL has a lot of power including the capability to do calculations. The following example shows the power of creating a sum within Proc SQL
in combination with Group By. The sums various fields including a count and formatting the summed field grouping by each different Product.
The Order By, orders by the Product field when producing the temp.sql02 output file.

/*PROC SQL Group By and Order By*/
proc sql;

create table temp.sql02 as
select Product
 , sum(Stores) as stores_sum format comma11.
 , sum(Inventory) as inventory_sum format dollar12.
 , sum(Sales) as sales_sum format dollar12.
 , sum(Returns) as returns_sum format dollar12.
 , sum(1) as Count format comma11.
FROM sashelp.shoes a GROUP by product
ORDER BY product;quit;

Product stores_sum inventory_sum sales_sum returns_sum Count

Boot 864 $9,724,671 $2,350,543 $98,622 52

Men's Casual 399 $17,085,253 $7,933,707 $311,035 45

Men's Dress 480 $14,507,340 $5,507,243 $164,099 50

Sandal 564 $3,232,275 $868,436 $38,170 49

Slipper 794 $22,231,380 $6,175,834 $209,940 52

Sport Shoe 616 $3,322,702 $651,467 $25,179 51

Women's Casual 270 $9,696,651 $4,137,861 $131,394 45

Women's Dress 614 $19,304,779 $6,226,475 $193,653 51

Figure 23: Example of summing and grouping by in Proc SQL.

The Proc SQL does a Full Join of SASHELP.shoes with temp.sql02 only by product. Proc SQL can do many types of calculations. This example takes
the temp.sql02 dataset created in the prior example and calculates a percent of stores.

/*PROC SQL with Computed Value*/
proc sql;

create table temp.sql03
as select a.Product
 , Region

, Subsidiary
, Stores
, stores_sum

 , stores/stores_sum as stores_pc format percent6.2
 , Inventory

, inventory_sum
 , Sales
 , sales_sum
 , Returns
 , returns_sum

FROM temp.sql02 a
full join sashelp.shoes b
 on a.product=b.product
ORDER BY product;quit;

Product Region Subsidiary Stores stores_sum stores_pc Inventory inventory_sum Sales sales_sum Returns returns_sum

Boot Canada Vancouver 31 864 3.60% $882,080 $9,724,671 $286,497 $2,350,543 $9,160 $98,622

Boot Middle East Al-Khobar 10 864 1.20% $44,658 $9,724,671 $15,062 $2,350,543 $765 $98,622

Boot Eastern
Europe

Warsaw 26 864 3.00% $363,358 $9,724,671 $78,992 $2,350,543 $3,246 $98,622

Boot Africa Johannesburg 14 864 1.60% $33,011 $9,724,671 $8,365 $2,350,543 $483 $98,622

Boot Asia Bangkok 1 864 0.12% $9,576 $9,724,671 $1,996 $2,350,543 $80 $98,622

Figure 24: Full join with summed dataset calculating percent of stores

Proc SQL supports a where including clause. The example only puts Boot and Sandal Products into temp.sql04.

/*Proc SQL with WHERE clause*/
proc sql;

create table temp.sql04 as
select Product

 , Region
 , Subsidiary

 , Stores
 , Inventory

 , Sales
 , Returns
FROM sashelp_shoes a
where product in ('Boot','Sandal')
ORDER BY region,subsidiary;quit;

• Product • Region • Subsidiary • Stores • Inventory • Sales • Returns

• Sandal • Africa • Addis Ababa • 10 • $204,284 • $62,819 • $1,861

• Boot • Africa • Addis Ababa • 12 • $191,821 • $29,761 • $769

• Boot • Africa • Algiers • 21 • $73,737 • $21,297 • $710

• Sandal • Africa • Algiers • 25 • $84,447 • $29,198 • $1,530

• Boot • Africa • Cairo • 20 • $18,965 • $4,846 • $229

Figure 25: Proc SQL with where

Proc Sql with a Left Join example. The Join of temp.sql04 (from Figure 25) with temp.sql02 (from Figure 23) on Product. The file Sql012 has
Product and summary values for stores, inventory, sales and returns. The file Sql04 has Product, stores_pc, and detail values for Product of Boot
and Sandal. The Left Join joins the two files in the From clause. In the from clause, the coding show an ‘a’ after sql02 and aa ‘lj’ after sql04. These
are used as shorthand identifiers for both the ‘on’ portion of the From clause and in the fields enumerated in the Select.

/*Proc SQL Left Join*/
proc sql; create table temp.sql05 as

 select a.Product
, lj.Region

 , lj.Subsidiary
, lj.Stores
, a.stores_sum

 , lj.stores
,a.stores_sum as stores_pc format percent6.2

 , lj.Inventory
 , a.inventory_sum
 , lj.Sales
 , a.sales_sum
 , lj.Returns
 , a.returns_sum
FROM temp.sql02 a left join temp.sql04 lj
 on a.product=lj.product
ORDER BY region;quit;

Product Region Subsidiary Stores stores_sum stores_pc Inventory inventory_sum Sales sales_sum Returns returns_sum

Slipper . 794 . . $22,231,380 . $6,175,834 . $209,940

Men's Dress . 480 . . $14,507,340 . $5,507,243 . $164,099

Sport Shoe . 616 . . $3,322,702 . $651,467 . $25,179

Men's Casual . 399 . . $17,085,253 . $7,933,707 . $311,035

Women's Casual . 270 . . $9,696,651 . $4,137,861 . $131,394

Women's Dress . 614 . . $19,304,779 . $6,226,475 . $193,653

Boot Africa Algiers 21 864 2.40% $73,737 $9,724,671 $21,297 $2,350,543 $710 $98,622

Boot Africa Khartoum 24 864 2.80% $105,370 $9,724,671 $19,282 $2,350,543 $700 $98,622

Sandal Africa Johannesburg 13 564 2.30% $63,003 $3,232,275 $17,337 $868,436 $809 $38,170

Figure 26: Sample output of Proc SQL Left Join example

This summary of Proc SQL gives the user an outline of many, but not all Proc SQL key words. The Case statement is introduced here. You might
consider the Case statement as an IF/THEN/ELSE alternative. It allows a usere to check for various true field values and setting a new variable
with different values. In this code, the receiving variable is Checkit. If Product is Boot, then Checkit is set to B. If Product is Sandal, then Checkit is
set to S. If neither is true, Checkit is set to a space. Also note that one useful feature of Proc SQL is that within the ON clause the fields being
checked for equality can have different names. Note though within the ON clause, the fields being checked for equality both have to be
character or both have to be numeric.

/* Summary of SQL key words*/
proc sql;
 create table temp.sql07 as
select a.Product
 , lj.stores
 , sum(1) as Count
 , lj.stores/a.stores_sum as stores_pc format percent6.2
 ,case when Product eq 'Boot' then 'B'
 when Product eq 'Sandal' then 'S' else ' '
 end as CheckIt
FROM temp.sql02 a
left join temp.sql04 lj
 on a.product=lj.product /*ON field names can be different*/
where a.product in ('Boot','Sandal')
group by a.product
ORDER BY a.product;
quit;

In preparation for a Merge, all files must be sorted in the same order on all fields to be merged. In addition a job step creates a new variable
before doing the Merge.

/*Preparation of files for a Merge*/
proc sort data=TEMP.ISSUG_SQL04;by product region subsidiary;run;
proc sort data=sashelp.shoe out=ISSUG_Shoess;by product region subsidiary;run;
data TEMP.ISSUG_SQL04_;set TEMP.ISSUG_SQL04;format Boot_sandal $7.;
 if product='Boot' then Boot_sandal= 'BOOT '; else
 if product='Sandal' then Boot_sandal='SANDAL '; else
 Boot_sandal='Neither'; run;

Merge provides the capability to combine the data from two or more files together. As you will see, Merge within a job step can have controls as
to exactly how to combine the files. This simple Merge combines two files together by product, region and subsidiary.

/*Simple Unqualified Merge*/
data ISSUG_merge01;

Merge ISSUG_Shoes(In=A) ISSUG_sql04_(IN=B);by product region subsidiary;
run;

NOTE: There were 395 observations read from the data set sashelp.shoes.
NOTE: There were 101 observations read from the data set TEMP.ISSUG_SQL04_.
NOTE: The data set TEMP.ISSUG_MERGE01 has 395 observations and 8 variables.

Region Product Subsidiary Stores Sales Inventory Returns Boot_sandal

Africa Boot Addis Ababa 12 $29,761 $191,821 $769 BOOT

Africa Men's Casual Addis Ababa 4 $67,242 $118,036 $2,284

Africa Sandal Addis Ababa 10 $62,819 $204,284 $1,861 SANDAL

Figure 27: Sample results of a simple merge

The logical operators of a Merge are created in an In clause as shown. In this example the In variable A is set to 1 if the row of data in
ISSUG_Shoes exists for a combination of the By fields. In this example In variable A is set to 0 if the row of data in ISSUG_Shoes does not exist for
a combination of the By fields. The In variable B is set to 1 if the row of data in ISSUG_sql04_ exists for a combination of the By fields.The In
variable B is set to 0 if the row of data in ISSUG_sql04_ does not exist for a combination of the By fields.

In ths examp of ‘If A and not B;’ means if product region subsidiary values on ISSUG_Shoes exist and product region subsidiary values on
ISSUG_sql04 do not exist, then output this record/row of data.

/*MERGE Negative Logic*/
proc sort data=TEMP.ISSUG_SQL04_;by product region subsidiary;run;
proc sort data=SASHELP.SHOES;by product region subsidiary;run;
data ISSUG_merge02;
 Merge ISSUG_Shoes(In=A) ISSUG_sql04_(IN=B); by product region subsidiary;
 If A and not B;
run;

NOTE: There were 395 observations read from the data set Temp.ISSUG_SHOES.
NOTE: There were 101 observations read from the data set TEMP.ISSUG_SQL04_.
NOTE: The data set TEMP.ISSUG_MERGE02 has 294 observations and 8 variables.

• Region • Product • Subsidiary • Stores • Sales • Inventory • Returns • Boot_sandal

• Africa • Men's
Casual

• Addis Ababa • 4 • $67,242 • $118,036 • $2,284 •

• Africa • Men's
Casual

• Algiers • 4 • $63,206 • $100,982 • $2,221 •

•
Figure 28: Sample output of Negative Merge

This Merge tests if the By fields exist on B (TEMP.SQL04_) but DON’T exist on A (Temp.ISSUG_SHOES). The result is that no data meets that
criteria since ALL By combinations exist on both files.

data temp.merge03;
 Merge Temp.ISSUG_SHOES (In=A) temp.sql04_(IN=B); by product region subsidiary;
 If B and not A;/*Same as If B; */
run;
NOTE: There were 395 observations read from the data set Temp.ISSUG_SHOES.
NOTE: There were 101 observations read from the data set TEMP.SQL04_.
NOTE: The data set TEMP.MERGE03 has 0 observations and 8 variables.
Temp.sql04_(IN=B) Does not have any unique keys which do not exist On Temp.ISSUG_SHOES (In=A)

The job step deletes 16 rows of data in preparation for the next Merge sample.

Data temp.Shoes_; set sashelp.Shoes;
 if Region='Africa' and Product in ('Boot','Sandal') then delete;
run;
NOTE: There were 395 observations read from the data set sashelp.shoes.
NOTE: The data set temp.shoes_ has 379 observations and 7 variables.
 16 rows were deleted by code

Since Temp.Shoes_ has 16 rows of missing combinations of the By fields, ‘If B and not A;’ now places 16 records/rows of data into
temp.merge4.

data temp.merge04;
 Merge temp.Shoes_(In=A) temp.sql04_(IN=B); by product region subsidiary;
 If B and not A;/*Same as If B; */
run;

NOTE: There were 379 observations read from the data set temp.shoes_.
NOTE: There were 101 observations read from the data set TEMP.SQL04_.
NOTE: The data set TEMP.MERGE04 has 16 observations and 8 variables.

Merge Review:
(In=A) (In=B) A and B are logical operators.
If A means that if keyed record for the file associated with A, then process it. If B means that if keyed record for the file associated with B,
then process it.

The Merge is a job step like any other job step for those merged records which exist at that point.
Proc SQL is different from Merge in that the fields is stated on the ON can have different names. Also the Proc SQL file(s) do not have to be
sorted. Proc SQL does handle more than one to more than one combinations but be careful, VERY careful. Merge only handles one to one
and one to many.

Selected Common Procs

A Proc is a SAS procedure with options which perform a process on the input data file. Procs are well-tested and save the analysts time to
develop the equivalent code in data steps.

As far a proc options are concerned, the options can be the same though certainly not always.

There will be maybe a dozen procs that you’ll become expert at by using them over and over again.

The simplest way to learn about procs which you believe apply to a given situation but you’re unfamiliar with is to Google SAS PROC
procname. That will get you to SAS’ excellent documentation. You could also Google SAS PROC procname proceedings to white paper
proceedings usually in pdf format.

In preparation for an explaination of a number of Proc Sort option, a temp shoes file is created.

/*Create a temporary Shoes dataset*/
Data temp.shoes;set sashelp.shoes;
run;

The first Proc Sort example is a non-destructive sort by (ascending assumed) product within (ascending assumed) region. Region is the
primary key and Product the secondary key. A Proc Sort has a single primary key and may contain multiple secondary keys or no secondary
key.

Example 02 is the same as Example 01 but keeping two fields for out=shoes_sorted.

Example 03 is non-destructive as far as shoes are concerned however any time region product are duplicated on the data= side, the
duplicates are eliminated on the out= side via the NODUPKEY option

Example 04 is a non-destructive sort as far as shoes are concerned however any time region product are duplicated on the data= side, the
duplicates are eliminated on the out= side via the NODUPKEY and placed in the dupout= file.

Example 05 >>IS DESTRUCTIVE<< as far as the data= file is concerned the duplicates are eliminated on data= file.

Example 06 is a non-destructive sort by (secondary sort key) Descending product by (primary sort key) ascending region.

/*Proc SORT samples*/
(01) proc sort data=temp.shoes out=temp.shoes_sorted;by region product;run;

(02) proc sort data=temp.shoes (keep=region product) out=temp.shoes_sorted;by region product;run;

(03) proc sort data=temp.shoes out=temp.shoes_sorted NODUPKEY;by region product;run;

(04) proc sort data=temp.shoes out=temp.shoes_sorted NODUPKEY dupout=temp.shoes_duplicate;by region product;run;

(05) proc sort data=temp.shoes_ nodupkey ;by region product;run;

(06) proc sort data=temp.shoes out=temp.shoes_sorted;by region Descending product;run;

Proc Contents is extremely useful in any number of ways as self-documentation documentation for another person’s use of the file.

proc contents data=sashelp.class;run;

The following is an abbreviated report:

Data Set Name TEMP.CLASS Observations 19

Member Type DATA Variables 5

Alphabetic List of Variables and Attributes

Variable Type Len

3 Age Num 8

4 Height Num 8

1 Name Char 8

2 Sex Char 1

5 Weight Num 8

Figure 29: Sample abbreviated Proc Contents

Proc Freq provides an easy way to get a distribution (counts) of a field or fields in a file. Before running a proc Freq you may want run a Proc
Contents and maybe a Proc print (obs=100) to get a feeling for the data you are dealing with. The example shows only one field in the Tables.
You could code Tables age Height Sex and maybe even Weight.

proc freq data=sashelp.class;tables age ;run;

Age Frequency Percent Cumulative Cumulative

Frequency Percent

11 2 10.53 2 10.53

12 5 26.32 7 36.84

13 3 15.79 10 52.63

14 4 21.05 14 73.68

15 4 21.05 18 94.74

16 1 5.26 19 100

Figure 30: Sample output of a simple Proc Freq

This example of a Proc Freq gives you less detail in the report and can be very useful.

proc freq data=sashelp.class;tables age /nocol norow nopercent ;run;

Age Frequency Cumulative

Frequency

11 2 2

12 5 7

13 3 10

14 4 14

15 4 18

16 1 19

Figure 31: Proc Freq sample with simplified output

This example of Proc Freq creates an output file of the results which can be used in subsequent job steps.

proc freq data=sashelp.class;tables age /out=temp.Freq_results nocol norow nopercent;run;
proc contents data= temp.Freq_results;run;
proc print noobs data= temp.Freq_results;run;

Age Frequency Cumulative

Frequency

11 2 2

12 5 7

13 3 10

14 4 14

15 4 18

16 1 19

Figure 32: Output using Out= within a Proc Freq

Partial Proc Contents of Freq_results

Variable Type

1 Age Num

2 COUNT Num

3 PERCENT Num

Figure 33: Partial Proc Contents of the Out= file within a Proc Freq

Partial Proc Print results

Age COUNT PERCENT

11 2 10.5263

12 5 26.3158

Figure 34: Partial Proc Print of the Out file within a Proc Freq

Proc Print is also frequently used reporting method. The following example shows a number of options that can be used to make the output
more useful and readable. The Label= option changes the report column heading. Title can be used for the report title and you can code multiple
title lines (Title, Title1-Title9).

proc print noobs data=temp.Freq_results Label; var Age Count;

label age='Age of Student' Count='Count';
title1 Distribution of Class Ages;
run;

Distribution of Class Ages

Age of Count

Student

11 2

12 5

13 3

14 4

15 4

16 1

Figure 35: Proc Print sample with Label and Title

 Proc Summary is an excellent way to summarize numeric fields with the option of having ‘by’ breaks. ‘Output out=’ creates an output file which
either be used in a Proc Print or in another job step. ‘sum()=’ sums up a given field either by the ‘by’ breaks or totals. The ‘By’ breaks can either
be Class or By. If Class is coded the Class field(s) are internally sorted. Not that with extremely large files, SAS could give you an execution time
error because SAS could run out of memory for the sort. Using By fields(s) instead of Class assumes that the Data= files is coming into the Proc
Summary already sorted by the By field(s).

In this example of using Class, Proc Summary automatically generates two fields: _Type_ and _Frequency_. In this example, the first row out has
a _TYPE_ value of 0 (zero) which contains grand totals for the file. _TYPE_=1 contains the Class break totals for Region. _Frequency_ is a count of
records for the grand total and each Class break. Bothe of these automatically generated fields will come in handy for subsequent job step
processing.

Note that if By is coded instead of Class, no grand totals are generated. If neither Class nor By is coded, the out= file consists of the grand totals
of the field(s) with a _type_ and _frequency_ field.

Proc Summary data=sashelp.shoes;
 output out=temp.Shoes_summary
 sum(Inventory)= sum(Returns)= sum(Sales)= sum(Stores)=;
 class region; /*Can use by here instead of class BUT….*/
run;

Region _TYPE_ _FREQ_ Inventory Returns Sales Stores

 0 395 $99,105,051 $1,172,092 $33,851,566 4601

Africa 1 56 $7,101,073 $74,087 $2,342,588 532

Asia 1 14 $1,176,139 $10,895 $460,231 65

Canada 1 37 $13,110,709 $129,394 $4,255,712 442

Central America/Caribbean 1 32 $10,173,878 $126,898 $3,657,753 539

Eastern Europe 1 31 $7,952,471 $86,701 $2,394,940 379

Middle East 1 24 $14,208,749 $206,880 $5,631,779 397

Pacific 1 45 $7,971,291 $77,129 $2,296,794 356

South America 1 54 $5,986,094 $102,851 $2,434,783 632

United States 1 40 $16,582,397 $187,502 $5,503,986 617

Western Europe 1 62 $14,842,250 $169,755 $4,873,000 642

Figure 36: Proc Summary Out= file output

PROC MEANS will analyze all numeric variables in your input data set and produce an analyses. Five default statistical measures are calculated:

N - Number of observations with a non-missing value of the analysis variable

MEAN - Mean (Average) of the analysis variable’s non-missing values
STD - Standard Deviation
MAX - Largest (Maximum) Value
MIN - Smallest (Minimum) Value

Proc Means data=sashelp.shoes;run;

Variable Label N Mean Std Dev Minimum Maximum

Stores Number of Stores 395 11.6481013 8.8736315 1 41

Sales Total Sales 395 85700.17 129107.23 325 1298717

Inventory Total Inventory 395 250898.86 351514.63 374 2881005

Returns Total Returns 395 2967.32 4611.74 10 57362

Figure 37: Partial Proc Means sample output

Proc Print is capable of summary information in a fairly set format that can be useful. The By field must be coming into the Proc Print already
sorted.

Proc Print data=sashelp.shoes noobs ;
 sum Inventory Returns Sales Stores;
 by region; /*Must be sorted by the ‘by’ field(s)*/
 title1 Sum of Fields by Region;
run;

Partial report:

Sum of Fields by Region

Region=Africa

Product Subsidiary Stores Sales Inventory Returns

Boot Addis Ababa 12 $29,761 $191,821 $769

Region 642 $4,873,000 $14,842,250 $169,755

 4601 $33,851,566 $99,105,051 $1,172,092

Figure 38: Partial sample of a Proc Print with Sum and by

Proc Export can be useful to create files in a non-SAS format. As with other proocs, Proc Export has many options which the user can review
before using. This code was run locally on a PC and not on a server creating an Excel spreadsheet.

/* Run Locally on PC, NOT on server */
proc export data=sashelp.shoes

outfile="H:\Data\ISSAS Users Group\Shoes.xls"
replace dbms=Excel;

run;
*NOTE: File "H:\Data\ISSAS Users Group\Shoes.xls" will be created if the export process succeeds.;

Figure 39: Sample Proc Export creating an Excel xls spreadsheet.

This Proc Export was run locally on a PC and not on a server creating an Excel csv file.

proc export data=temp.shoes /*Proc Export – CSV file*/
 outfile="H:\Data\ISSAS Users Group\Shoes.csv"
 replace ;
run;
*NOTE: 396 records were written to the file 'H:\Data\ISSAS Users Group\Shoes.csv'.;

Proc Import reads in a non-SAS file creating a SAS file. This example reads in the Excel file created in Figure 39. Like Proc Export, Proc Import has
many options which can be useful.The Getnames options if coded as yes takes thecolumn headings from the first row of the Excel spreadsheet
as field names in the Out SAS formatted file.

proc import REPLACE
 Datafile= "H:\Data\ISSAS Users Group\Shoes"
 Out=temp.Shoes_xls_imported
 dbms=Excel;
 getnames=yes;
run;
*NOTE: TEMP.SHOES_XLS_IMPORTED data set was successfully created.;

The Proc Import Guessingrows=n option is only valid with csv files. Guessingrows=n indicate the number of rows the IMPORT procedure scans in
the input file to determine the appropriate data type and length of columns. The scan data process scans from row 1 to the number that is
specified by the GUESSINGROWS option.

proc import REPLACE
 Datafile= "H:\Data\ISSAS Users Group\Shoes.csv"
 Out= temp.Shoes_csv_imported;
 getnames=yes; Guessingrows=100;
run;
*395 rows created in TEMP.SHOES_CSV_IMPORTED from H:\Data\ISSAS Users Group\Shoes.csv.
NOTE: TEMP.SHOES_CSV_IMPORTED data set was successfully created.;
ODS – Output Delivery System

This ODS code writes a report in HTML Excel format on a remote server. The user either can open this file and save it on a PC folder in Excel
Workbook format or copy parts/all of the report to an existing xls or xlsx report file:

Rsubmit;
ods html body="/dss/ishapir/Procs05.xls";
proc print data=sashelp.shoes noobs ;
Title1 Fields by Region;
run;
ods html close;
endrsubmit;
;

Figure 40: Options for saving the ODS output in Excel

This ODS code writes a report in HTML PDF format on a remote server.

Rsubmit;
ods pdf body="/dss/ishapir/Procs05.pdf";
proc print data=shoes noobs ;
 sum Inventory Returns Sales Stores;
 by region;
 title1 Sum of Fields by Region;
run;
ods pdf close;
Rendsubmit;

References and Proceedings
General SAS® questions can be answered online via a search engine search such as:
SAS Proc Format
SAS Conversion of Characters to Numerics
SAS Proceedings Proc tabulate

SAS® Online Information
http://support.sas.com/documentation/
http://support.sas.com/onlinedoc/913/docMainpage.jsp

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries.® indicates USA registration. Other brand and product names are registered trademarks or trademarks of their respective companies.

Conclusion:

You have officially passed SA-02-2014 SAS 101 For Newbies--Not to Little, Not Too Much--Just Right and know how to spell SAS forwards and
backwards
May the SAS Force Be With You

Minion Stuart aka Ira Shapiro
Minion Stuart’s email: ira_shapiro@uhc.com
Phone: 651.247.9906

http://support.sas.com/documentation/
http://support.sas.com/onlinedoc/913/docMainpage.jsp
mailto:ira_shapiro@uhc.com

