
Paper RF-08-2014

Burst Reporting With the Help of PROC SQL

Dan Sturgeon, Priority Health, Grand Rapids, Michigan
Erica Goodrich, Priority Health, Grand Rapids, Michigan

ABSTRACT

Many SAS® programmers need a solution for creating a large amount of reports for multiple customers in an
automated fashion using one piece of code. While there are many different ways to accomplish this, I will be talking
about one method using PROC SQL and the SAS® macro language. This method creates a custom SAS® macro
that needs two data sets, one for metadata and one with the actual data. The macro loops through the procedures
written within and plugs in the information that is needed, creating many customized reports in a short amount of
time.

INTRODUCTION

For those of us who create reports for multiple customers the idea of a quick, automated solution is an important one.
In my job there are times where I need to output multiple pages of reports for hundreds of different groups (Which can
consist of provider groups, networks of care, hospitals, members or other groups). Doing this one at a time would not
be feasible and standard output options like class or by statements do not provide flexibility. The solution is a macro
that can loop through each group and create a report for those groups individually.

While there are many different ways to accomplish this in SAS®, I will be looking at one way I came up with that
takes advantage of PROC SQL. This method was then applied to a macro that can be adjusted based on the
situation you are in.

MACRO

The first step for this method is to define the inputs that are needed for this macro. A dataset with a column that
identifies each group in question and a name to go with each group is necessary. These are identified in the code as
‘unique_id’ and ‘group_name’ while the dataset itself is identified as ‘data.’ From unique_id and group_name the
macro then outputs two variables during the looping process discussed later, those variables are ‘ID’ and ‘Name’ and
these variables need to be leveraged within the code that the user has written. This code needs to be wrapped within
a new macro so that it can be used within this macro. It is identified as “code.”

Input Variable Use Output from column
Unique_id Column that has unique identifier for

group
ID

Group_name Column that has assigned name Name
Data Name of the dataset being used N/A
Code Macro where the code is stored N/A

The macro itself is split up into two parts, the initial table creation and the loop. The initial table creation consists of a
PROC SQL statement with two parts in it. The first takes the dataset used in the data input and creates a metadata
table of only the unique ID’s and names plus we will add a row number for our counter that comes up later. For the
traditional data step programmers this is done by using something like N = _N_, but this example leverages PROC
SQL so the monotonic function is used instead. The following code is used:

PROC SQL NOPRINT;
 CREATE TABLE meta AS
 SELECT distinct unique_id,
 group_name,
 monotonic() AS rank
 FROM
 (SELECT distinct &unique_id AS unique_id,
 &group_name AS group_name
 FROM &data);

It should be noted that the code above is creating a table from an inline view. The inline view (the lower select clause
in parenthesis) pulls the unique ID’s and names specified from the dataset specified and names them ‘unique_id’ and
‘group_name.’ Then the main query queries that and creates a table from it and adds rank numbers using the
monotonic function. The new table ‘meta’ is now a normal SAS® dataset in the work folder.

From here, but still within the same PROC SQL statement we have the second piece of code:

SELECT count(*)
 INTO :group_cnt /*Works similarly to CALL SYMPUT in the data step*/
 FROM meta;
QUIT;

Some more notes: The quit at the end goes with the initial PROC SQL statement. This statement is just pulling the
number of lines are in the dataset meta and putting them into a macro variable (group_cnt) using the INTO statement.
Now we have a variable that represents how many groups we have to create reports for.

For the loop section one line from the meta data is pulled at a time. Each line has those pieces put into macro
variables.

The code for this method looks like this:

%DO I = 1 %TO &group_cnt;
 PROC SQL NOPRINT;
 SELECT unique_id,
 group_name
 INTO :id, /*Variable for unique ID*/
 :name /*Variable for grouping name. This does not need to be unique*/
 FROM meta
 WHERE rank = &I;
 QUIT;

This first part counts from 1 to the number of groups in the set. Each loop grabs the unique ID and the name of each
group and puts them into the macro variables id and name. These will be used in any where statements used in the
code that you use and in any title statements. After pulling these variables the loop continues:

 %LET Name = %SYSFUNC(strip(&name));
 %LET id = %SYSFUNC(strip(&id));

&Code

%END;

The two LET statements are removing leading and trailing spaces in case we want to use the variable in a title. The
&Code is where the code will be placed within the loop. So to review the loop will pull a unique ID and group name for
each group, one at a time and apply them to whatever method you choose to use below.

EXAMPLE

For our example I will use de-identified data from our provider incentive program to show exactly how this works. The
data contains five randomly chosen groups, labeled as GROUP1 through GROUP5. The set contains 219 rows,

Main Query

Inline view

covering multiple measures and products (HMO, ASO, Medicaid, and Medicare). The unique identifier is
‘PIP_LEV_ID’ and the group name is ‘GROUP.’

Figure 1. Partial Dataset

PROC MEANS is used in the example below:

%MACRO lean_mean();
ODS PDF file="&personal\MWSUG\&Name._Means.pdf" style=journal2;
TITLE1 "Testing Variables: ID = &ID. Group = &Name.";
PROC MEANS DATA=personal.dummy;
 WHERE pip_lev_id = &ID;
 VAR score;
 CLASS pip_meas_desc;
RUN;
ODS PDF CLOSE;

%MEND;

The macro above outputs the contents of a PROC MEANS into PDF files into my MWSUG folder .The macro needs
the output information from the main macro (ID and Name) to work. The “Name” macro variable in the filename is
used in this example. If the “Name” macro is not unique then an additional unique ID is necessary (e.g. the counter
used) to set it apart from the others. The Name macro variable is also used in the title. The ID macro variable is used
in both the title and, more importantly, in the where clause where it is used to differentiate the data.

The MACRO statement needs to be in this form:

%burst(unique_id,group,dataset,code);

Which in this example becomes:

%burst(pip_lev_id,group,personal.dummy,%lean_mean());

The results are as follows:

Here is what the meta dataset looks like this:

Figure 2. 'Meta' Dataset

This information is then fed into the code provided by the user. An example of how it looks the first time through is as
follows:

ODS PDF file="&personal\MWSUG\GROUP1_Means.pdf" style=journal2;
TITLE1 "Testing Variables: ID = 1 Group = GROUP1";
PROC MEANS DATA=personal.dummy;
 WHERE pip_lev_id = 1;
 VAR score;
 CLASS pip_meas_desc;
RUN;
ODS PDF CLOSE;

Which produces the below files:

Figure 3. View of Created Files

And creates and output that looks like this:

Figure 4. Output Created

CONCLUSION

The macro described within this paper is a useful tool for those of us who need to create many reports for many
different groups. While there are many different ways to do this, this method is the preferred method for us in our day
to day work activities because of the simplicity of the code and because it is better suited for the data we deal with on
a regular basis. The full macro for burst reporting is seen in its entirety in the appendix at the end of this paper.

Contact Information

Your comments and questions are valued and encouraged. Contact the authors at:

Name: Erica Goodrich
Enterprise: Priority Health
Address: 1231 East Beltline Ave NE
City, State ZIP: Grand Rapids, MI 49525
Work Phone: 616-464-8142
Fax: 616-942-0024
E-mail: erica.goodrich@priorityhealth.com

Name: Daniel Sturgeon
Enterprise: Priority Health
Address: 1231 East Beltline Ave NE
City, State ZIP: Grand Rapids, MI 49525
Work Phone: 616-575-5740
Fax: 616-942-0024
E-mail: daniel.sturgeon@priorityhealth.com

Appendix: Code

%MACRO BURST(unique_id, group_name,data,code);
 PROC SQL NOPRINT;
/*Creating a dataset with the unique ID's and Names, plus a row
counter*/ CREATE TABLE meta AS
SELECT distinct unique_id,
 group_name,
 monotonic() AS rank /*similar to using n = _n_ in the datastep*/
 FROM (SELECT distinct &unique_id AS unique_id,
 &group_name AS group_name
 FROM &data);

/*Creates a macro variable for how many groups are in the meta set*/

 SELECT count(*)
 INTO :group_cnt /*Works similarly to CALL SYMPUT in the data step*/
 FROM meta;
QUIT;

/*Here is the start of the loop that grabs the information based on the row number*/
%DO I = 1 %TO &group_cnt;
 PROC SQL NOPRINT;
 SELECT unique_id,
 group_name
 INTO :id, /*Variable for unique ID*/
 :name /*Variable for grouping name. This does not need to be unique*/
 FROM meta
 WHERE rank = &I;
 QUIT;

/*The Below LET statements remove leading and trailing blanks*/

 %LET Name = %SYSFUNC(strip(&name));

 %LET id = %SYSFUNC(strip(&id));

/*Here is where the MACRO is put*/

&Code

 %END;

%MEND;

