
1

Paper HW11 - 2014

The Armchair Quarterback:

Writing SAS® Code for the Perfect Pivot (Table, That Is)

Peter Eberhardt, Fernwood Consulting Group Inc., Toronto, ON, Canada

ABSTRACT

 “Can I have that in Excel?" This is a request that makes many of us shudder. Now your boss has discovered Excel
pivot tables. Unfortunately, he has not discovered how to make them. So you get to extract the data, massage the
data, put the data into Excel, and then spend hours rebuilding pivot tables every time the corporate data are
refreshed. In this workshop, you learn to be the armchair quarterback and build pivot tables without leaving the
comfort of your SAS® environment. In this workshop, you learn the basics of Excel pivot tables and, through a series
of exercises, you learn how to augment basic pivot tables first in Excel, and then using SAS. No prior knowledge of
Excel pivot tables is required.

INTRODUCTION

In today’s world the static report, although still required, is no longer enough; analysts and managers at all levels are
looking deeper into interactions in the data. To help look at these interactions most people turn to Online Analytical
Processing, commonly called OLAP cubes. For the more technical analysts, SAS provides exceptional OLAP
capabilities using the OLAP server and SAS Enterprise Guide (EG). However, many business analysts, and business
managers and executives prefer to work within the tool with which they are familiar – Microsoft Excel. Since Excel
pivot tables offer much of the functionality of OLAP cubes, and managers and executives are demanding OLAP type
‘reports’ it is not surprising that more and more we are asked to provide data in the form of pivot tables.

In this paper we will look at the anatomy of an Excel Pivot table – first its components and then how a pivot table is
created and accessed. This will allow us to see the terminology used so we can relate this back to our SAS
emvironment. From there we will look at the SAS technology required to create pivot tables – and ODS markup
destination called tableEditor. The paper will then step through a series of examples first showing how to perfom a
function in Excel (for example, change the default statistic from sum to average) followed by the SAS code needed
to create a pivot table the same way. There are a great number of ways a pivot table can be created and formatted;
this paper will only touch on a few. After following through these examples you will be able to create your own pivot
tables in a format that is consistent with your business requirements.

You do not need any prior experience with Excel pivot tables to follow the examples in the papers. In addition,
anyone with an introductory level of SAS will be able to do the examples. The purpose of the paper is to demonstrate
the use of the tableEditor tagset, so all the SAS examples are extremely simple. It practice, much more data
manipulation would be required.

The examples in this paper closely follow Parker 2010; for more explanation on the how the tagset works refer to that
paper.

DATA

The examples in the paper use data from the SAS supplied data set sashelp.shoes; this will allow anyone with
access to SAS the ability to follow these examples. Although this is a small dataset, it has enough variety to
demonstrate.

TERMINOLOGY

In this paper there are a number of terms that mean the same thing and will often be used interchangeably. Some of
the terms are used in SAS while others are used in Excel. In general we will try to use the term appropriate to the
environment to which it applies; that is, in Excel we will use the Excel term and in SAS we will use the SAS term. The
one term used most will be field (an Excel term), variable (the SAS DATA step term), and column (the SQL term).

The Armchair Quarterback, continued

2

EXCEL PIVOT TABLES – IN EXCEL

What is a Pivot Table

Pivot table is a generic term to describe data summarization in spreadsheets. In simple terms creating a pivot table is
similar to creating a cross-tab report in SAS using PROC Tabulate or PROC Report – tabular data are summarized
with one (or more) variable in the table becoming rows in the report, and one (or more) variables becoming columns
in the report. For example, if our data had five variables – three classification variables Quarter, Product_Group and,
Product_Category, and two analysis variables Sales and Quantity, we could create a cross-tab with values of
Product_group on the rows, values of Quarter as the columns, and total Sales as the cell value. This type of cross-
tab report is easily generated in PROC Tabulate. Like a PROC Tabulate report, a pivot table is built from a data table
(in this case a spreadsheet table). Unlike a SAS PROC Tabulate report, a pivot table can dynamically change the
variables used for rows, columns and cell values. To change the values, rows, or columns in the pivot table you drag
and drop fields through the pivot table interface. To change the values, rows, or columns in the PROC Tabulate
report you must change your code and re-run the PROC. Needless to say, when there are numerous classification
variables, the process of changing the table is simpler in the spreadsheet. Pivot tables can be seen as a simplification
of the more complete and complex OLAP concepts.

Whereas the term pivot table is generic, the term PivotTable is trademarked and specific to Microsoft Excel. In this
paper all examples were shown using Excel 2010. Earlier versions of Excel (2003, 2007) have the similar functionality
however some of the interface components look different.

What are the Components of a PivotTable

The four components of a PivotTable are:

1. Report Filter – to apply a filter to the entire PivotTable. In Figure 1, Year is the report filter. This is not required.

2. Column Labels – the variables (fields) that will be in the columns. In Display 1, Quarter is the column label.

3. Row Labels – the variables (fields) that will be in the row. In Display 1, Product_Group is the column label.

4. Summary values – the variables (fields) and summary statistic to be displayed in the cells. In Display 1, Profit is
the summary field and sum is the statistic.

In Display 1, there is only one field in each component; it is possible to have multiple fields in each component.

http://en.wikipedia.org/wiki/Online_analytical_processing

The Armchair Quarterback, continued

3

Display 1. A PivotTable with the four components highlighted

1. Report Filter

3.Row Labels

2. Column Labels

4. Summary Values

The Armchair Quarterback, continued

4

How is a Pivot Table Created

To create a PivotTable you first need to have a suitable data table in the spreadsheet. By suitable we mean it must
have regular rows and columns in manner of a SAS data table. Normally at least one of the columns (variables) will
be a numeric and several of the columns will be classification variables (commonly character). The classification
variables are used in the Report Filter, Column Labels, and Row Labels components; the numeric variables are used
in the Summary Values component. This is the same type of data that would be used in a PROC Tabulate report.

Once a suitable data table is loaded into Excel, the steps create a PivotTable are:

1. From the Excel menu select Insert tab and select PivotTable. See Display 2

Display 2. Select PivotTable from Insert tab

The Armchair Quarterback, continued

5

2. In the Create PivotTable dialogue box select the data source (Select table or range) and the worksheet that will
hold the PivotTable (Choose where you want the PivotTable to be placed). See Display 3.

Display 3. Select source data and the PivotTable destination

The Armchair Quarterback, continued

6

3. Once you select the data and destination Excel will present the interface to allow you to select the fields that go
into each of the components. You can drag-and-drop fields from the PivotTable Field list into the component
area. If you drop a field into the wrong area you can drag it to the correct area or drag it back to the field list. See
Display 4

Display 4. The interface to drag-and-drop fields to the appropriate component area.

The Armchair Quarterback, continued

7

4. After creating a PivotTable you can easily change the layout/content by changing the fields in the component
areas. For example, in Display 1 Product_Group is in the Row Labels. To change this from Product_Group to
Product_Category simply drag Product_Category into the Row Labels area and drag Product_Group back to the
Field List area. Note, the order in which you drag-and-drop is not important; that is you can first drag the field out
of the area then drag the new field into the area.

Of course there are virtually unlimited amounts of formatting and customization that can be done in Excel. The best
way to discover them is to open a workbook, create a PivotTable, and try out the options.

 EXCEL PIVOT TABLES – FROM SAS

To create PivotTables from SAS you only need Base SAS and the TableEditor tagset ; since the TableEditor tagset

is not included in the SAS distribution you will need to download it from the SAS website. At the time of writing the
location is:

support.sas.com/rnd/base/ods/odsmarkup/tableeditor/index.html

Once the TableEditor file is downloaded you can open and submit it in SAS.

Note that at the time of writing some of the tagset options did not work properly in SAS 9.3; errors are
generated although the PivotTable appears to be created correctly. All of the examples in this paper were
written and tested in SAS 9.2 on a Windows 7 64 bit computer.

As noted, to create PivotTables SAS uses an ODS tagset destination. Since you have access to the tagset source
code you can customize the tagset to meet your specific needs. For this paper no tagset customizations were made.

In order to create a PivotTable you wrap some ODS around code that will create the data table upon which the
PivotTable is based. The ODS will cause SAS will create an HTML page with the data along with a command button.
Through the use of JavaScript the code behind the button on the HTML page will generate the necessary objects to
start Excel and create the PivotTable using the ODS options you supply. For more discussion on the TableEditor
tagset refer to the papers by Parker cited in the references.

Since this paper and the supporting workshop are intended to show the various options that can be used to create
PivotTables the examples are very simple – they have an ODS statement with the options being demonstrated
followed by a simple PROC Print. All the examples can be run by using the sashelp.orasales table distributed with
SAS. There are a number of SAS macro variables used to define paths; see Appendix 2 for the autoexec.sas code
that sets these variables.

TableEditor Options

The TableEditor can take a variety of options; most of the option names are have self-evident meanings. For a list of
all the options available and a brief description of the option see Appendix 1.

Example 1 – Creating a PivotTable

The first example will show how a PivotTable is created in SAS. We have already walked through creating a
PivotTable in Excel.

ods tagsets.tableeditor file="&resultsHome\example1.html"

options(

 button_text = "Create PivotTable"

 auto_excel = "yes"

 pivotrow = "product_line"

 pivotcol = "quarter"

 pivotdata = "profit"

 pivotpage = "year"

 excel_save_file="&JavaResultsHome\example1.xlsx"

 quit="NO"

);

Title1 "Example 1 - Create the First Pivot Table";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

The Armchair Quarterback, continued

8

Example one is the template for all the other examples. As can be seen there is a simple PROC Print surrounded by
ODS commands. In the example we specify the four main PivotTable components; notice that the tagset options
have similar names to the Excel ‘command’. The important mappings all the tables will have are:

Tagset Option Excel Equivalent Description

pivotpage Report (page) filter Subsets the data in the table. NOT REQUIRED

pivotcol Column Labels variable for the PivotTable columns

pivotrow Row Labels variable for the PivotTable rows

pivotdata Summary Values the cell variable

Let’s look at the other options:

 button_text = "Create PivotTable"

The text to put on the command button on the HTML form. The default test is “Exprort”

 auto_excel = "yes"

Start Excel when the page is loaded

 excel_save_file="&JavaResultsHome\example1.xlsx"

Tells Excel to save the file with the name supplied.

 quit="NO"

Automatically quit Excel. Default is NO.

This example will automatically open Excel, create the PivotTable, and save the workbook as example1.xlsx in the
folder specified by &JavaResultsHome. Excel will be automatically opened, but because quit=”NO” was specified
Excel stays open. See Display 5 for the HTML page generated by SAS, and Display 6 to see the Excel PivotTable
created.

Display 5. The HTML Page generated by SAS

The Armchair Quarterback, continued

9

Display 6. The Excel PivotTable generated by SAS

Example 2 – Multiple Summary Values

In the discussion on PivotTables and in Example 1 we only had one Summary Value – Sum of Profit. Excel will allow
us to have multiple Summary Values. We will first look at creating multiple Summary Values in the Excel interface,
then create a PivotTable with multiple Summary Values through SAS.

In Excel. to add Average Profit as one of the Summary Values fields:

1. Drag Profit from the Field List to the Summary Values area. Since the default statistic is sum notice the new
entry in the Summary Values area is listed as Sum of Profit 2. Since I wanted to see the two summary statistics
one under the other I moved statistic from Column Labels to Row Labels. See Display 7

Display 7. A second field added to Summary Values

A second Profit value is created

The Armchair Quarterback, continued

10

2. Right on the “more” arrow beside Sum of Profit 2. This will bring up a menu – select ValueField Settings. (see
Display 8.

Display 8. “More” options for Sum of Profit2

3. Select Average from the list and click OK. See Display 9.

Display 9. Changing the summary to Average

4. The updated PivotTable is displayed. See Display 10.

To create a similar table using SAS we submit the following code. Note, to demonstrate that different fields in addition
to different statistics for the same field can be created this example creates total profit and average quantity. See
Display 11 for the PivotTable.

ods tagsets.tableeditor file="&resultsHome\example2.html"

options(

 button_text = "Excel"

 pivotrow = "product_line"

 pivotcol = "year"

 pivotdata = "profit,quantity"

 pivotdata_stats = "sum,average");

Title1 "Example 2 - Change the Statistics";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

In this code example we see one new option and a different usage of a previous option

The Armchair Quarterback, continued

11

 pivotdata = "profit,quantity"

This tells Excel we want multiple fields in the data area – profit and quantity. We separate the field with a
comma

 pivotdata_stats = "sum,average"

This tells Excel we want two statistics – sum and average. We separate the statistics with a comma. If no
pivotdata_stats are specified, all the fields get the sum statistic. If only one statistic is specified, all fields get
that statistic. It is a good practice to specify the statistic for all fields, even if they will all get the same statistic

As we specified multiple fields to be included in Summary Statistics we can also specify multiple fields in any of the
other areas. In all cases we enter the list of fields separated by a comma.

Display 10. PivotTable after changing the summary statistic in Excel

Two values in the Summary Values

The Armchair Quarterback, continued

12

Display 11. Example 2 PivotTable with two Summary Values from SAS

Example 3 – Multiple PivotTables

In Example 2 we looked at adding multiple fields into the Summary Values area, and by extension into the other
areas of the PivotTable. What if we want each Summary Statistic on a different PivotTable. In Excel we would add a
sheet for each PivotTable we want, then step through the process of creating the PivotTable; see the section
“Creating PivitTables” above for this process.

In SAS we have a options to specify we are going to create multiple PivotTables - pivot_series. Specifying

pivot_series=”yes” will tell Excel to create multiple PivotTables from the one data table. In addition to telling Excel we
want multiple PivotTables we have to indicate what will be in the areas of each of the PivotTables. To do this we
make another change to how we specify the areas:

ods tagsets.tableeditor file="&resultsHome\example3.html"

options(

 button_text = "Excel"

 pivot_series="yes"

 pivotrow="Product_Line | Product_Line | Product_Line"

 pivotcol=" Quarter | Quarter | Quarter"

 pivotdata="Profit | Profit | Profit "

 pivotdata_stats="Min | Max | Average"

);

Title1 "Example 3 - Multiple Sheets";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

To specify we wanted multiple fields in one area of a PivotTable we separated the list of fields using a comma (,). To
specify the fields we want in each area in each PivotTable we separate the fields with the vertical bar (|). In the
example above we

 pivotrow="Product_Line | Product_Line | Product_Line"

we will create three PivotTables, each will have Product_Line as the Row Label

 pivotcol=" Quarter | Quarter | Quarter"

we will create three PivotTables, each will have Quarter as the Column Label

 pivotdata="Profit | Profit | Profit "

Two values in the Summary Values

The Armchair Quarterback, continued

13

we will create three PivotTables, each will have Profit as the Summary Field

 pivotdata_stats="Min | Max | Average"

we will create three PivotTables, the first Summary Field will have the Min statistic, the second the Max
statistic, and the third the Average statistic.

See Display 12 for the Excel workbook created by this code.

Display 12. The Excel Workbook with multiple PivotTables.

Example 4 – Percentages

Instead of showing values in the cells, we may want to calculate the percent of that cell of row total, column total,
table total etc. In Excel we can do this by changing the Value Field Setting; we saw the use of the Value Field
dialogue earlier. To change from a number to a percentage, right click on any value cell in the PivotTable and select
Value Field Settings from the context menu; see Display 13. When the Value Field Settings dialogue appears, select
the Show Values As tab and select the appropriate base for our percentage. In Display 14 the % of Row Total was
selected. Display 14 shows the resulting PivotTable.

First PivotTable with the min statistic.

The Armchair Quarterback, continued

14

Display 13. Getting the Value Field Setting from the context menu

Display 14. Selecting % of Row Total

To perform the same type of calculation in SAS we use the pivotCalc option; the pivotCalc option tells Excel to
create a perentage and the basis of the percentage. In this example we are creating a % of row total. Valid values are
row, column, total, percentOf, index, and runningTotal. See Display 16 for the Excel PivotTable created from this
code.

ods tagsets.tableeditor

file="&resultsHome\example4.html"

options(

 button_text = "Excel"

 sheet_name = "Qty_By_Year"

 pivotrow = "product_category"

 pivotcol = "year"

 pivotdata = "quantity"

 pivotdata_stats = "sum"

 pivotcalc = "row"

);

Title1 "Example 4 - Calculating Pecentages";

proc print data=data.sales;

run;

The Armchair Quarterback, continued

15

ods tagsets.tableeditor close;

Display 15. PivotTable with Percentages

Display 16. PivotTable with Percentages from SAS

Example 5 – Formatting Numbers

When Excel creates a PivotTable any formatting of the source data is not honoured. If you want the values to be
formatted (say as currency) then you must apply the format after the PivotTable is created. As with any standard work
sheet cell or range you can right click and format the cell; although this works you should go through the PivotTable
interface to format the area. Once again you bring up the Value Field Settings dialogue; this time click on the Number
Format button and apply the format that is appropriate. The dialogue box presented is the same dialogue used to
format cells in any worksheet. After you click out of the dialogue the formats are applied.

The Armchair Quarterback, continued

16

When using the Custom Format option in Excel you can specify formats for the four main value types of a number –
when positive, when negative, when zero, and when the cell contains text; different formats for each of these value
types can be entered, sepatated by a semi-colon (;); if only one format is specifies all value types get this format. See
the Excel help for all the of options available to format a number. In our examples we will apply a different colour to
each Summary Field, that is for Profit the cell font will be blue, for Quantity the cell font will be red, and for salesTotal
the cell font will be the default (black). In addition, the Profit and salesTotal fields will have a dollar sign ($). The
PivotTable created by this code is in Display 17.

ods tagsets.tableeditor

 file="&resultsHome\example5.html"

 options(

 button_text="Excel"

 pivotrow="product_line"

 pivotcol="year"

 pivotdata="Profit,Quantity,salesTotal"

 pivotdata_stats="Sum,Average,Max"

 pivotdata_fmt="[blue] #,###~[red] $#,###.##~$#,###.##"

);

Title1 "Example 5 - Formatting Numbers in the Pivot Table";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

The option to format the Summary Vallues is pivotdata_fmt. We must provide one set of formats for each field in our
pivotdata list. Also note that we have another delimiter here, the tilde (~) – each format set is separated with a tilde. In
this example we are only providing one format for each Summay Field (eg [blue] #,### for Profit). If we want to
provide formats for negative and zero values we would use the semi-colon to separate them as we would in Excel ,
for example to provide a format for positive, negative and zero values only for Profit we would use:

 pivotdata_fmt="[blue] #,###;[red] (#,###); #,###~[green] $#,###.##~$#,###.##"

Display 17. PivotTable with Formats from SAS

The Armchair Quarterback, continued

17

Example 6 – Applying Excel Styles

Excel provides a number of built-in styles that can be applied to the PivotTable; these styles are PivotTable design
tab. In Excel 2010, if you run your mouse over any of the styles Excel will display your PivotTable in that style; this
gives you an opportunity to see how the style would appear with your data without having to apply the style. Display
18 shows these styles. In Display 18, the mouse is over Pivot Style Light 8 (note the pop-up window beside the
style). You can use this style name to apply in your code.

Display 18. Previewing a Style in Excel

To apply the same style in SAS we use the pivot_format option. You will need to use the interface and mouse to roll
over the different styles to get the style name. In our experience, not all of the styles get applied correctly so you may
have to experiment with different style names. In this example light8 was applied. See Display 19 for the results.

ods tagsets.tableeditor

file="&resultsHome\example6.html"

options(

 button_text = "Excel"

 pivotrow="product_line,product_category"

 pivotcol="year"

 pivotdata="profit"

 pivot_format="light8"

);

Title1 "Example 6 - Applying Excel Styles";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

The Armchair Quarterback, continued

18

Display 19. A Style Applied by SAS

Example 7 – Placing the PivotTable on the same sheet as the data table

Normally we will be placing the PivotTable on a different sheet than the data table. First, even in Excel, the data
tables can become very large and navigation of the sheet will be more difficult. Second, by separating the two we
minimize the risk that the base table is inadvertently changed as the analyst is examining and changing the
PivotTable. In order to place the PivotTable on the same sheet as the data table you simply select a PivotTable
destination on the data sheet (see Display 3).

In SAS we use the ptdest option; this instructs Excel to write the PivotTable to the same sheet as the data and
starting in the range specified; in the example the PivotTable will start in cell G1. Also note this example told Excel to
apply an AutoFilter to the data table (excel_autofilter="yes"). The results are in Display 20.

ods tagsets.tableeditor

file="&resultsHome\example7.html"

options(

 button_text = "Excel"

 SHEET_NAME="Pivot With Data"

 excel_autofilter="yes"

 ptdest_range="g1"

 pivotrow="product_category"

 pivotcol="year"

 pivotdata="profit"

);

Title1 "Example 7 - Placing the Pivot Table on the Data Sheet";

proc print data=data.sales;

var product_category year salesTotal profit;

run;

ods tagsets.tableeditor close;

The Armchair Quarterback, continued

19

Display 20. Data and PivotTable on the same worksheet from SAS

Example 8 – Adding Sheets to an Existing Workbook

In Excel it is easy to add sheets to an existing workbook. In this example we will add a new sheet and PivotTable to
the workbook created in Example 7. The option to specify we are writing to an existing workbook is update_target;
the value of the option is the fully qualified name of the Excel workbook to update. Display 21 has the results of this
program.

ods tagsets.tableeditor

file="&resultsHome\example8.html"

options(

 button_text = "Excel"

 update_target="&JavaResultsHome.\example7.xlsx"

 sheet_name="Sales"

 pivotrow="product_line"

 pivotcol="year"

 pivotdata="profit"

 pivot_format="medium5"

);

Title1 "Example 8 - Adding Sheets to an Existing Workbook";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

The Armchair Quarterback, continued

20

Display 21. Adding a Data Sheet and PivotTable to Existing Workbook from SAS

Example 9 – Updating a Range in an Existing Workbook

One common problem we often encounter is the need to update a range in an existing Excel workbook; perhaps
there are reports and graphs in Excel that need to be refreshed on a daily basis. By only updating the data in the
range you can keep the existing reports and graphs from having to be recreated every time the data are refreshed. If
you have SAS/Access for PC File Formats you can read/write the named ranges directly, however if you do not have
SAS/Access for PC File Formats you had to be more creative in order to update data in a range. Using the
TableEditor tagset we can update a range. Display 22 shows a worksheet before we update it

To tell Excel we want to update a range in an existing workbook we need to tell which workbook to update, which
sheet in the workbook, and the starting location (row, col) to update. The options are update_target, update_sheet,
and update_range respectively. In this example we are updating workbook Example9.xlsx, sheet Sales, and starting
in row 1 column 11:

ods tagsets.tableeditor file="&resultsHome\example9.html"

options(

 button_text = "Excel"

 update_target="&javaDataHome\example9.xlsx"

 update_sheet="Sales"

 update_range="1,7"

);

Title1 "Example 9 - Updating a Sheet in a Workbook";

proc print data=data.sales (obs=10 where=(year=2010));

var product_line year salesTotal profit;

sum profit;

run;

ods tagsets.tableeditor close;

Sheet from
Example 7

Data
Sheet from
Example 8

PivotTable
from
Example 7

The Armchair Quarterback, continued

21

Display 22. An Existing Worksheet

Display 23. An Existing Worksheet with updates starting in Cell G1 (1, 7)

Example 10 – Placing the PivotTable on the same sheet as the data table

It is a sad reality that there are some that do not originate in SAS; sometimes spreadsheets are updated or created
from other sources. Just because SAS did not generate the source data from the PivotTable does not mean we
cannot use SAS to automate the creation of the PivotTable. In this example we will add PivotTables to a workbook
with three existing data sheets. See Display 24.

Once again we need to identify the workbook (update_target) and sheet (sheet_name) with the data from which the
PivotTable will be built; since we are also creating PivotTables we also need to supply the necessary options for the
PivotTables. In this example we are creating three PivotTables, one for each of the sales, profit, and quantity sheet;

The Armchair Quarterback, continued

22

note the sheet names are separated by commas in the option. We are using the same field as the Row Label so it is
specified three time separated by the vertical bar (|). Finally we specify the summary field for each of the PivotTables,
again separated by the vertical bar.

Since this example is not creating the data in an HTML page, we will create a “dummy” page with the DATA _NULL_.
The results of this code are in Display 25.

ods tagsets.tableeditor file="&resultsHome\example10.html"

options(

 update_target="&javaDataHome\example10.xlsx"

 sheet_name="Profit, Quantity, Sales"

 pivotrow="Product_line |Product_line |Product_line"

 pivotdata="Profit |Quantity |Sales"

);

Title1 "Example 10 - Using An Existing Worksheet As A Data Source";

data _null_;

file print;

put "Create Pivot Tables";

run;

ods tagsets.tableeditor close;

Display 24. Data Sheets in an Existing Workbook

The Armchair Quarterback, continued

23

Display 25. New PivotTables in an Existing Workbook

Example 11 – Creating PivotCharts

It is almost inevitable that when data are added to Excel, charts and graphs are soon to be built. In this example we
will use SAS to create our first PivotChart. To create PivotCharts we use the option pivotcharts=”yes” ; this tells
Excel to build a chart based on the PivotChart it creates. We will also need to tell Excel the type of chart to produce
with the chart_type option. In this example we are creating a conecol chart. See Display 26 for the results of the
program.

ods tagsets.tableeditor

 file="&resultsHome\example11.html"

options(

 button_text = "Excel"

 pivotrow="product_line"

 pivotcol="year"

 pivotdata="profit"

 pivotdata_fmt="#,###"

 pivotcharts="yes"

 chart_type="conecol"

);

Title1 "Example 11 - Creating a Pivot Chart";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

Three new sheets with PivotTables

The Armchair Quarterback, continued

24

Display 26. A PivotChart

Example 12 – Enhancing PivotCharts

There are numerous chart options within the tagset; see Appendix 1 for the full list of options. In this example we will
change the chart title (chart_title), the axis titles (xhart_yaxes_title, chart_xaxes_title) and the x-axis orientation
(chart_xaxes_orientation). The results are in Display 27.

ods tagsets.tableeditor

 file="&resultsHome\example12.html"

options(

 button_text = "Excel"

 pivotcol="year"

 pivotdata="profit"

 pivotdata_fmt="#,###"

 pivotcharts="yes"

 chart_type="cylindercol"

 chart_title="Profit Analysis"

 chart_yaxes_title="Profit"

 chart_xaxes_title="Product_line"

 chart_xaxes_orientation="45"

);

Title1 "Example 12 - Changing Pivot Chart Options";

proc print data=data.sales;

run;

ods tagsets.tableeditor close;

The Armchair Quarterback, continued

25

Display 27. A PivotChart with options set

There are many more chart options available. You are encouraged to examine the options in Appendix 1 and work
through different combinations to see the variety of charts and chart effects that can be produced. Also keep in mind
that examining and changing chart options through the Excel interface is relatively easy; once you produce basic
PivotCharts, your Excel users can create the charts that best fit their wishes.

CONCLUSION

This paper has attempted to show how easy it is to create Excel PivotTables and PivotCharts from SAS. We only
touched on a few of the options available yet saw how we can create a wide variety of PivotTables and PivotCharts.
Since the purpose of a PivotTable is to allow analysts and managers to see and interactively change interactions of
the data variables you will probably find you only need to provide basic PivotTables and the users will quickly learn to
exploit them on their own.

It also became clear that it can be considerably easier to generate – and re-generate – PivotTables and PivotCharts
from within SAS than using the Excel interface. Although the drag-and-drop interface is easy to use, creating SAS
programs to pass in a few parameters will usually be faster, and certainly less error prone.

Now, when your boss says “Can I have that in Excel?” you can still shudder, but you can also quickly and easily
provide the results.

REFERENCES

Parker, Chevell. 2008. “Creating That Perfect Data Grid Using the SAS® Output Delivery System.”
Proceedings of the SAS Global Forum 2008 Conference. Cary, NC: SAS Institute Inc.
www2.sas.com/proceedings/forum2008/258-2008.pdf.

Parker, Chevell. 2010. “Using SAS® Output Delivery System (ODS) Markup to Generate Custom
PivotTable and PivotChart Reports.”

The Armchair Quarterback, continued

26

Proceedings of the SAS Global Forum 2008 Conference. Cary, NC: SAS Institute Inc.
www2.sas.com/proceedings/forum2008/258-2008.pdf.

ACKNOWLEDGMENTS

I would like to acknowledge not only the good work of Chevell Parker, but also his willingness and ability to share his
knowledge – PWE

I would like to thank the two sections chairs for Hands-on Workshops 2012 , Maribeth Johnson and Nancy Brucken
for inviting me to present; we know there are many quality papers from which to choose and I thank them for
choosing my paper. It is always an honour and a privilege to present at SAS Global Forum.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Peter Eberhardt
Fernwood Consulting Group Inc.
288 Laird Drive
Toronto, ON, Canada M4G 3X5
(416)429-5705
peter@fernwood.ca
www.fernwood.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.fernwood.ca/

The Armchair Quarterback, continued

27

APPENDIX 1 – TABLEEDITOR OPTIONS

The following tables have the options that are available for the TableEditor tagset. Tagset options are entered in
name/value pairs. For example:

 pivotrow = "product_line"

The options are grouped by the nature of the option, that is Style options, Positioning options, Display options etc.

Style Options

banner_color_even="color" creates alternate row colors

banner_color_odd="color" creates alternate row colors

fbanner_color_even="color" creates alternate even foreground colors

fbanner_color_odd="color" creates alternate odd foreground colors

col_color_even="color

creates alternate even background column
colo

col_color_odd="color"

creates alternate odd background column
colo

gridline_color="color color internal rules

gridline="yes|no" removes internal gridline

background_color="color" controls background color

background_image="path" adds background image

scrollbar_color="color" modifies scrollbar color

image_path="path" adds logo or image

image_just="left|right|center" justifies logo or image

highlight_color="color"

creates mouse-over color;

generated when there is no background

color such as styles.mystyle

highlight_cols="column#color" modifies background color of columns

fontfamily="font" modifies fonts overall if none specified

header_bgcolor="color" modifies header background color

header_fgcolor="color" modifies header foreground color

header_size="size" modifies header font size

header_font="font" modifies header font name

rowheader_bgcolor="color" modifies header background color

rowheader_fgcolor="color" modifies header foreground color

rowheader_size="size" modifies header font size

rowheader_font="font" modifies header font

The Armchair Quarterback, continued

28

Style Options

data_bgcolor="color" modifies data background color

data_fgcolor="color" modifies data foreground color

data_size="size" modifies data font size

data_font="font" modifies data font

title_bgcolor="color" modifies title background color

title_style="slant|roman|italic" modifies data foreground color

title_size="size" modifies data font size

title_fgcolor="color" modifies foreground of title

Dynamic Positioning

pageheight="value" specifies height before scroll bars

pagewidth="value" specifies width before scrollbars;

percentage value works best

frozen_headers="yes|no" freeze column headers;

single table option.

frozen_rowheaders="yes|no|column#" freeze row headers;

single table option used for wide and

not long tables; do not use for tables

over 700 observations, which would be

excessively slow

Page Setup Options

print_header="string" generates header text; uses ActiveX and is
supported

by I.E. and Windows only

print_footer="string" generates footer text; uses ActiveX and is
supported

by I.E. and Windows only

print_zoom="value" scale printed output

The Armchair Quarterback, continued

29

Page Setup Options

orientation="landscape" modifies orientation; uses ActiveX and is
supported

by I.E. and Windows only

(To use this option you have to go to the
below

file and download the activex control
http://www.meadroid.com/scriptx/)

pagebreak="yes|no|number" deletes, add page breaks;

also specifies the number of tables per page

left_margin="value" changes the left margin

right_margin="value" changes the right margin

top_margin="value" changes top margin

bottom_margin="value" changes bottom margin;

fit2page="yes|no" allows output to be scaled to fit the printed
page; you can also use this in conjunction with
the orientation and the margin properties to
reduce scaling

Table of Contents Options

open_image_path="path" adds open image

closed_image_path="path" adds closed image

leaf_image_path="path" adds leaf image

toc_background="path" adds toc background color

toc_print="yes|no" adds print button to the toc;

this prints the individual body file

toc_expand="yes|no" expand toc

Display Options

drag="yes|no" allow items on page to be dragged;

dragged items are not persisted when

the page is saved

zoom="percentage" scale items on the screen;

applies to all tables

zoom_toogle="yes|no" adds dynamic selection list to page

The Armchair Quarterback, continued

30

Display Options

table_zoom="100%,200%,300%" scales list of tables separated by commas

sort="yes|no" sort data by clicking on headers

sort_arrow_color="color" color of arrows

sort_image="image path" image indicating sort ;

sample images located in zip file

sort_underline="yes" underline column header;

alerts reader that headers are sortable

header_underline="yes|no" underline column header;

underlines regardless sort

exclude_summary="yes" allows filters and sorts to exclude summary;

allows sort and filters to exclude

grand total in report

data_type="value1,value2" overrides the default data type for columns;

valid types are Number,Numberx(formatted
numbers),

String, Date, None

describe="yes|no" add color to identify data type

design_mode="yes|no" allows the HTML to be edited;

edited output is not persisted when

the page is saved

pagebreak_toggle="yes|no" interactive control of page breaks

zoom_toggle="yes|no" interactive scaling control

autofilter="yes|no" allows data to be filtered

autofilter_width="value" allows the width of the filter to be modified;

by default the width is the same as

the width of the cell

autofilter_endcol="value" column number to end filter

autofilter_table="value" table to filter;

the default is ALL

filter_cols="1,2,3" column to add filter info

style_switch="yes" allows styles to be switched on the fly;

requires that you read existing CSS

files to add to the selection

The Armchair Quarterback, continued

31

Display Options

hide_cols="yes|no" allows removal of columns;

double click on column headers to remove

reorder_cols="yes|no" provides the ability to dynamically reorder
columns

web_tabs="Label1,Label2" allows tabs on web page which names output

web_tabs_bgcolor="blue" specifies background color for tabs

web_tabs_fgcolor="red" specifies foreground color for web_tabs

panelcols="number" number of columns to panel tables and graphs

header_display="yes|no" allows removal of the column headers

header_vertical="yes|no" allows the headers to be displayed vertically

nowrap="yes|no" prevents wrapped text in the browser or when
exported to Excel

align_cols="left,right" Allows columns to be aligned based on the
position in the list

Exporting Data

excel_sheet_prompt="yes|no" prompt to name sheet

excel_save_prompt="yes|no" prompt to save file

excel_save_dialog="yes|no" provide dialog to save file

excel_save_file="path" save file by providing path

excel_autofilter="yes|no|number" generate autofilters

excel_frozen_headers="yes|no|number” freeze headers

excel_orientation="yes|no" page orientation

sheet_name="name" specify a sheet name

sheet_name="first"

excel_table_move="1" table from the page to move to Excel;

this can a single value or a list of

values separated by commas (This was
depracated with release v2.30)

excel_table_move="1,2,3"

file_format="ext" supply format of excel file ;

default is xls which is native Excel

format; other formats are

txt, csv, doc, xml, slk, html

The Armchair Quarterback, continued

32

Exporting Data

auto_format="format name" specifies Excel's format

auto_format_select="yes|no" allows Excel's format to be chosen
dynamically+B206

excel_macro="'file!macro'" specify VBA macro to execute

excel_scale="number" scale output printed output

excel_zoom="number" specifies zoom for the worksheet

excel_default_width="number" default width of each cell;

helps prevent wrapping

excel_default_height="number" default height of each cell;

helps prevent wrapping

query_range="value" location to begin writing data;

query_ange="A11"

query_target="file-path" file which is updated

query_file="file-path" file which will provide the updating

to

update_target="xls-file" file to update;

can be used with the sheet_name= and the

excel_table_move option to update workbooks

update_range="value" location to write the file

update_range="11,1"

update_sheet="sheet name" specifies the sheet to update

open_excel="yes|no" determines if Excel is visible or not

quit="yes|no" quits Excel and frees memory

pivotrow="name(s)|number(s)" column names or numbers for pivot rows;

to select more than one, separate

list items with commas

pivotcol="names(s)|number(s)" column names or number for pivot columns;

to select more than one, separate

list items with commas

pivotpage=’names(s)|number(s) column names or numbers for pivot page;

to select more than one, separate

list items with commas

The Armchair Quarterback, continued

33

Exporting Data

pivotdata="name(s)|number(s) column names or numbers for data;

to select more than one, separate

list items with commas

Pivotrow_fmt="@" formats the row fields in the pivot table

Pivotcol_fmt="@" formats the column fields in the pivottable

Pivotdata_fmt="#,###,$###" formats one or more values specified inthe
data area

Pivotdata_stats="max,min" provides summary functions for one or more
values specifed in the data area

default is sum statistic;

other summary functions are

average, count, countnums, max,min,
product,stddev,stddev,sum,var, varp

Pivotcalc="row" performs calculation on the statistics such as
percentage of row, column and total;

valid values are row, column, total, percentOf,
index, and runningTotal

Pivot_format="light1" provides excel style for the pivot table;

Pivot_series="yes" specifies that one or more pivot tables are
created from the same worksheet

pivotcharts="yes" indicates that you want to generate a
pivotchart;

used in conjunction with the chart_type=
option

ptsource_range="range" range of data to add to pivot table

ptdest_range="range" range to write the pivot tables;

if omitted, pivot table writes to

a new worksheet

chart_type="type" Excel's chart type to be used

chart_source="d:d" data range to use for the chart

chart_title="string" string sprecified for chart title

chart_title_size="size" provides font size to the chart title

chart_title_color="color" provides color for the chart title

chart_xaxes_title="string" specifies a title for the X axes

chart_xaxes_size="size" specifies size for the X axes title

The Armchair Quarterback, continued

34

Exporting Data

chart_xaxes_orientation="45" modifies the orientation of the axis

chart_yaxes_title="string" specifies a title for the Y Axes

chart_yaxes_numberformat modifies the format of the axis

Chart_yaxes_title="string" specifies size for the Y axes title

chart_yaxes_orientation="45" modifies the orientation of the axis

chart_yaxes_maxscale="4000" modifies the axis scale

chart_yaxes_minscale="1000" modifies the axis scale;

chart_area_color="color" specifies color for chart area

chart_plotarea_color="color" specifies color for the plot area

chart_datalabels="yes|no|value" adds data labels to the chart;

valid values are value, percent,

labelandpercent, showbubblesizes

Chart_location="same_sheet|new_sheet| sheet_name"

specifies location to place charts;

places charts on a new sheet by default

chart_location="0,100,300,400" specifies top,left,height and width
forembedded charts

chart_style="light1" specifies the style for charts;

values are light1-light13,medium1-
medium13,dar1-dark13

chart_legend="bottom" modifies the location of the legend

auto_excel="yes|no" starts export to Excel after the page has been
loaded

embedded_title="yes|no" adds titles within worksheets for a single table

embedded_tables="yes|yes" adds multiple tables within a worksheet

number_format="@|#,##" applies excel formats to each column
separated by a "|".

Informative and window Options

include="file" allows other files to be included to

the page such as HTML, RTF, PDF

window_title="string" name the window;

this title is also used whensaved

as favorite

The Armchair Quarterback, continued

35

Informative and window Options

load_msg="yes|no" generates a message while page is loading

load_image="image" generates message and image while
pageloading;

see zip file for animated image which can be
used

alert_text="string" specifies string to display when the page is
loaded

window_status="string" text to display in the task bar

window_size="500,500|max" allows window size to be specified;

can specify coordinates or max to

maximize window

fit2page_msg="yes|no" adds information on the percentage output is
scaled

caption_text="caption1,caption2" text added to the caption of the table

caption_just="left|right|center" justifies the caption of the table

caption_backround="color" specifies background color for the caption

caption_color="color" specifies foreground color for the caption

caption_style="normal|italic|oblique” modifies style of the caption

caption_image="path" provides image for the caption

doc="help" display valid options and description

button_text="string" replace text for export button

button_fgcolor="color" foreground color of export button text

button_bgcolor="color" background color of export button text

button_size="12pt" size of export button text

powerpoint_master="primary#secondary”

specifies text to display on the masterslide;

primary and sub title are separate by "#"

powerpoint_slides="a.html,b.html" specifies HTML files to provide as individual
slides

powerpoint_template="path" supplies a PowerPoint to use for the formatting

powerpoint_saveas="path" saves PowerPoint presentation to a slide

powerpoint_runs="yes|no" runs PowerPoint presentation

auto_powerpoint="yes|no" starts export to PowerPoint after the page has
been loaded

The Armchair Quarterback, continued

36

APPENDIX 2 – THE AUTOEXEC TO CREATE THE MACRO VARIABLES

/* autoexec.sas */

/* the autoexec to start the workshop */

%let home = C:\HoW\Eberhardt-Kong_13173;

%let solutionHome = &home.\solutions;

%let exerciseHome = &home.\exercises;

%let dataHome = &home.\data;

%let resultsHome = &home.\results;

%let javaHome = C:\\HoW\\Eberhardt-Kong_13173\;

%let javaDataHome = &javaHome.\data\;

%let javaResultsHome = &javaHome.\results\;

/* assign the libraries */

libname data "&dataHome";

options fullstimer source source2;

