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ABSTRACT 

Interactions between two (or more) variables often add predictive power to a binary logistic regression model beyond 
what the original variables offer alone.  In the simplest case, if X1 and X2 are zero-one valued variables, then their 
interaction variable is X1_X2 = X1*X2.  However, X1_X2, in combination with X1 and X2, use 3 degrees of freedom.  
A nominal variable XC with four levels can be defined from X1 and X2 with values XC = compress(X1 || X2).  Perhaps 
a collapsing of the four levels of XC to three values (having 2 d.f.) would provide nearly as much predictive power as 
the saturated model X1, X2, X1_X2 while providing more predictive power than X1, X2 alone.  In this paper this 
question is answered for interactions of nominal or ordered X1 and X2, each with 2 or more levels.  First, the user 
creates XC.  Then a “best-collapse” algorithm optimally collapses the levels of XC until a stopping point is reached that 
provides a trade-off between degrees of freedom and predictive power. 

INTRODUCTION 

This paper is an extension of a paper given at MWSUG 2013.
1
  In this paper a SAS® macro called 

%BEST_COLLAPSE was introduced.  This is a macro whose purpose is to provide a tool kit for collapsing (binning) a 
predictor variable (numeric or character) for use with a binary target Y in logistic regression (PROC LOGISTIC).  It 
requires only BASE SAS (DATA step, PROC MEANS, PROC APPEND).  In the usual application of 
%BEST_COLLAPSE a nominal or ordered predictor X with generally under 20 levels and having no zero cells 

2
 is 

collapsed in preparation for weight-of-evidence (WOE) coding.  %BEST_COLLAPSE collapses the levels of X so that 
at each step the value of the Information Value (IV) statistic is maximized.  Alternatively, the user may select 
collapsing so that Log Likelihood is maximized at each step.

3
  Details of %BEST_COLLAPSE are given later in the 

paper.  

In this paper %BEST_COLLAPSE is applied to the question of how to combine two predictor variables (nominal or 
ordered) in order to obtain the predictive power from the "interactions" of two variables.  Here, the term "interaction" is 
used loosely.  In fact, the "interaction variable" created by this technique is similar to a variable that would be formed 
from the terminal nodes of a binary-target decision tree having two predictors. 

4
  

RELATED WORK 

Doug Thompson presented a paper at MWSUG 2012 where he discussed several methods of constructing 
interactions to be subsequently used in logistic regression.  He then compared the effectiveness of these methods 
when they were used in fitting a logistic regression model.  Method #5 from his paper has similarity to the method of 
this paper.  The approach of method #5 is to utilize the decision tree software from SAS Enterprise Miner. 

A SIMPLE EXAMPLE 

We begin the paper with a simple example to motivate the following sections.  Consider two nominal binary predictors 
X1 and X2, a binary target Y, and a frequency variable W as shown in the DATA step below.   

EXAMPLE 1 (hypothetical data) 

data interact;  

length X1 X2 $1; 

input Y X1 $ X2 $ W; 

datalines; 

0 A 1 4 

1 A 1 6 

0 B 1 8 

1 B 1 4 

0 A 2 2 

1 A 2 5 

0 B 2 3 

1 B 2 9 

; 

                                                           
1
 Lund B. and Brotherton, D (2013) 

2
 A zero cell occurs when there is a value of X where the count for the response (Y = 1) or non-response (Y = 0) is zero. 

3
 IV and LL are never increased when two levels of X are collapsed. 

4
 The technique is not limited to interactions of two predictors.  But the product of the number of levels from the predictors is a 

limiting consideration.  Perhaps a product equaling  40 is a practical upper limit. 
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Then X1 and X2 are concatenated in the next DATA step. 
 
data interact2; set interact; 

length Xc $2; 

Xc = X1||X2; 

 

proc print data = interact2; 
 

Obs    X1    X2    Y    W    Xc 

 1     A     1     0    4    A1 

 2     A     1     1    6    A1 

 3     B     1     0    8    B1 

 4     B     1     1    4    B1 

 5     A     2     0    2    A2 

 6     A     2     1    5    A2 

 7     B     2     0    3    B2 

 8     B     2     1    9    B2 

 

We might consider these variables and their values as follows:  

X1: A=drive slow, B=drive fast,  
X2: 1=drive but not drinking, 2=drive and drinking,  
Y: Y=0: no accident, Y=1: accident. 

Main Effects Model:  The value of  -2 * log-likelihood (i.e. -2 * Log L) of the main effects model is 51.446.  It is 

obtained by running: 

proc logistic data = interact2; class x1 x2; model y = x1 x2; freq w; 

 

Saturated Model: The saturated model gives -2 * Log L  = 50.608.  It is obtained by running the code below. 

 proc logistic data = interact2; class Xc; model y = Xc; freq w;5 

 

Another Model - The best collapse of XC with 2 d.f.   Consider the variable  Xc_best  formed from collapsing A2 and 

B2 as shown in the DATA step creating Interact3.  We will show that Xc_best is the best collapse (that is, having 

minimum -2 * Log L) of XC with 2 degrees of freedom. 

data interact3; set interact2; length Xc_best $5; 

if Xc in ("A2" "B2") then Xc_best = "A2+B2"; 

else Xc_best = Xc; 

 

proc logistic data = interact3; class Xc_best; model y = Xc_best; freq w; 

 

XC_best gives  -2 * Log L = 50.637. 

There are six distinct ways to collapse XC to a variable with 2 d.f. as shown in Table 1.  Xc_best is seen to be the best.   

Given our earlier definitions of X1, X2, and Y, it seems appropriate to collapse A2 and B2 while keeping A1 and B1 
separate.  The outcome for driving and drinking, regardless of driving speed, is likely to be bad. 

Table 1 – Collapsed Levels from Example 1 with 2 d.f. 

Levels -2 * log L  

A1+A2, B1, B2 50.847  

A1+B1, A2, B2 52.188  

A1+B2, A2, B1 51.174  

A2+B1, A1, B2 53.243  

A2+B2, A1, B1 50.637  Best 

B1+B2, A1, A2 54.940  

 

Xc_best with 2 d.f.  has a value of -2 * Log L which is between the value -2 * Log L of the main effects model with 2 d.f. 
and the saturated model with 3 d.f.

6
  One can conclude that Xc_best is superior to the main effects model.   

Additionally, there are 7 ways to collapse the levels of XC to a variable with 1 d.f.  One of these, {A1+A2+B2, B1} 
gives -2 * Log L = 51.200 which is better than the  -2 * Log L = 51.446 from the Main Effects Model. 

 

                                                           
5
 This model is equivalent to: proc logistic data = interact2; class X1 X2; model y = X1 | X2 @2; freq w; 

6
 Although the main effects model has 2 d.f., it cannot be obtained by collapsing XC. 
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Definition:  A variable that results from concatenating X1 and X2 via XC  =  compress(X1 || X2) followed by 

collapsing of one or more levels of XC will be called an Interaction Variable of X1 and X2.  This is not the standard 

usage of "interaction" but hopefully will be viewed by the reader as an appropriate extension. 

Xc_best Defined:  Generally, “Xc_best“ will refer to the collapse of Xc having minimum -2 * Log L for a given number of 

degrees of freedom. 

THE GENERAL CASE 

Goal:  Given X1 and X2 with K1 and K2 levels respectively, create XC = compress(X1 || X2) and find an Interaction 

Variable for use in PROC LOGISTIC so that: 

Upon stopping the collapsing, the XC_best has no more d.f. than the main effects but has greater Log Likelihood.
7
 
8
  

There are (K1*K2)*((K1*K2)-1)/2 distinct ways to collapse XC to a variable with (K1*K2)-1 levels (and (K1*K2)-2 d.f.)  
when X1 has K1 levels and X2 has K2 levels.  The number of possible collapses increases greatly when considering  
also the collapses with fewer than (K1*K2)-1 levels.  An exhaustive manual search of all collapses is not practical.   

We discuss the macro %BEST_COLLAPSE and its role in forming interaction variables. When %BEST_COLLAPSE 

is applied to finding interactions of X1 and X2, it provides a fast and easy-to-use method to collapse the levels of 
XC = compress(X1 || X2)  in an optimal manner as discussed below.  The modeler can select a stopping point for 
collapsing and compare the log likelihood for the collapsed variable to the log likelihood of the main effects model. 

%BEST_COLLAPSE PARAMETERS 

The user has the choice of two METHODS, either Log Likelihood (LL) or Information Value (IV), as the criterion for 

selecting which two levels of a predictor X to collapse at each step.  The best-collapse algorithm finds the pair of 
levels to collapse that maximize LL or IV versus all other “eligible” choices of pairs.

9,10
 However, the sequencing of 

collapsing is not necessarily the same for both LL and IV.
11

 

Pairs of levels that are eligible for collapse are determined by selecting the MODE of ALL pairs or ADJACENT (in the 

ordering of X ) pairs.   

Parameter Definitions of %BEST_COLLAPSE (v6a): 
 
DATASET: A dataset name - either one or two levels 
X: Character or numeric variable which can have MISSING values.  Missing values are ignored in all 

calculations. 
Y: Binary Target which is numeric and must have values 0 and 1 without MISSING values. 
W: Numeric frequency variable which has values which are positive integer values.  (If there is no weight 

variable in DATASET, a weight variable must be created in Dataset with a constant value of 1.) 
METHOD: IV or LL (Information Value or Log Likelihood 

12
)
 
 

  For METHOD = IV the criterion for selecting two eligible levels to collapse is to maximize the IV.  
The levels that are eligible for collapse are determined by the MODE parameter.  

  For METHOD = LL the criterion for selecting two eligible levels to collapse is to maximize the Log 
Likelihood.  The levels that are eligible for collapse are determined by the MODE parameter.   

MODE: A or J 
  For MODE = A all pairs of levels are compared when collapsing 
  For MODE = J only adjacent pairs of levels are compared when collapsing (in the ordering of X) 
VERBOSE: If YES, then the entire history of collapsing is displayed in the SUMMARY REPORT.  Otherwise, this 

history is not displayed in the SUMMARY REPORT. 
LL_STAT: If YES, the LL for the Model, -2 * Log L, and the Likelihood Ratio Chi Square Probability are displayed. 

 
Since both IV and LL compute a logarithm, all X * Y cells in the DATASET must have non-zero counts.   

In this paper the %BEST_COLLAPSE parameters of METHOD = LL and MODE = A are used for the collapsing of an 
interaction variable XC = compress(X1||X2).  In particular, the collapsing by LL allows a direct comparison in terms of 

model fit to the main effects model.  Using MODE = J would only be appropriate if the ordering of XC was meaningful. 

  

                                                           
7
 For practical use, the values of K1 and K2 should be modest in value, perhaps K1*K2 < 40 

8
 Comparison with the saturated model is not very useful when K1 and K2 exceed 2 since the d.f. used would be unacceptable. 

9
 Stratified Sampling of Y:  In the case of LL, I have no example to show that collapsing results could be different for stratified 

sampling of Y with Xk as the strata (e.g. 100% of 1’s and 10% of 0’s by strata) versus not sampling.  But I have no proof to rule this 
out.  Stratified sampling, as above, would not affect the collapsing results using IV.     
10

 In this paper the phrases "maximize Log Likelihood" and "minimize - 2 * Log Likelihood" are used interchangeably. 
11

 See example in Lund and Brotherton 2013 
12

 See Appendix for methodology 
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OTHER METHODS OF COLLAPSING A PREDICTOR WITH BINARY TARGET 

Clustering 

A method of collapsing nominal predictors (using any-pairs collapsing) is based on clustering of levels using SAS 
PROC CLUSTER.  This method selects the pair for collapsing which maximizes the Pearson chi-square.   A stopping 
criterion is defined by selecting the iteration which produces the minimum chi-square statistic probability (right tail 
probability) of association between the target and the collapsed predictor.

 13
  

The clustering method is illustrated by Manahan (2006) who provides SAS macro code.  Additional code is needed to 
apply the chi-square probabilities.  See Manahan (2006) for other references. 

Decision Tree  

The predictor X can be nominal or ordinal.  The leaf nodes that are the result of the splitting process define the 
collapsed levels.  A stopping criterion must be specified.  Further discussion of a particular decision tree process is 
given at the end of this paper. 

%BEST_COLLAPSE APPLIED TO EXAMPLE 1 

Macro call:  %BEST_COLLAPSE(interact2, Xc, Y, W, LL, A, YES, YES); 

There are four Reports produced by %BEST_COLLAPSE.  Two are discussed here.  The third and fourth are not 
discussed in this paper.   

1) The COLLAPSE STEP reports show the detail of collapsing of XC step by step.   

 
2) The SUMMARY report gives statistics for the result of each step including  -2 * Log L, IV, and X_STAT where:     

 

 IV is Information Value statistic. 

 X_STAT is the model “c” (or AUC) for the model:   PROC LOGISTIC;  CLASS Xc;  MODEL Y = Xc;   
 

Both IV and X_STAT are helpful in determining a stopping point for the collapsing. 

The history of collapsing, step-by-step, is given if VERBOSE = YES in the macro call. 

COLLAPSE STEP REPORTS 

There is one report for each step in the collapsing of XC. 

Table 2A4 
Dataset= interact2, Predictor= Xc, Target= Y, Method= LL, Mode= A 
Collapse Step: Levels = 4 

Obs Xc _TYPE_ G B 

   (Y=1) (Y=0) 

1  0 24 17 

2 A1 1 6 4 

3 A2 1 5 2 

4 B1 1 4 8 

5 B2 1 9 3 

 
Table 2A3 
Dataset= interact2, Predictor= Xc, Target= Y, Method= LL, Mode= A 
Collapse Step: Levels = 3 

Obs Xc _TYPE_ G B 

   (Y=1) (Y=0) 

1  0 24 17 

2 A1 1 6 4 

3 A2+B2 1 14 5 

4 B1 1 4 8 

“A2+B2” shows that A2 and B2 have been collapsed 
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 SAS course notes “Predictive Modeling Using Logistic Regression” (2007).   
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Table 2A2 is similar to the above tables and is not shown. 
 
SUMMARY REPORT 

 
Table 2B 

Dataset= interact2, Predictor= Xc, Target= Y, Method= LL, Mode= A 
Summary Report (partial list of columns) 
 

k  -2*Log L IV X_STAT L1 L2 L3 L4 

        

4 50.6084 0.51783 0.68750 A1 A2 B1 B2 

3 50.6373 0.51441 0.68382 A1 A2+B2 B1  

2 51.2002 0.45335 0.65196 A1+A2+B2 B1   

EXAMPLE 2: %BEST_COLLAPSE APPLIED TO MULTI-LEVEL X1 AND X2 

“DEMO1” and “DEMO2” are used in a model to predict a customer’s satisfaction with an automotive retail outlet.  
DEMO1 gives age ranges.  DEMO2 gives educational attainment.  DEMO1 has 6 levels and DEMO2 has 4 and these 
variables are regarded as ordinal.

14
   

“Satisfaction” is coded as a binary variable Y with 1 = satisfied and 0 = not satisfied.   

There are 6,241 observations in the analysis data set called DEMO_SAT.  See Table 3 below for counts. 

%BEST_COLLAPSE will be used to create an interaction variable from DEMO1 and DEMO2. Although DEMO1 and 
DEMO2 are ordered, their concatenation Xc = DEMO1 || DEMO2 is not ordered.

15
       

Some Preliminaries:  Before running %BEST_COLLAPSE three tables are given.  A frequency count of DEMO1 * 
DEMO2 is given in Table 3.  Table 4 gives the count of Y = 1 in each cell.   

Table 3 – Counts by Grid Cell Table 4 – Counts of Satisfied Responses by Grid Cell 

DEMO1 DEMO2 DEMO1 DEMO2 

 
1 2 3 4 Total  1 2 3 4 Total 

B 76 189 321 102 688 B 41 113 193 50 397 

C 136 287 418 152 993 C 109 224 292 104 729 

D 263 451 538 219 1471 D 208 326 384 160 1078 

E 298 564 550 243 1655 E 233 421 422 207 1283 

F 290 350 265 202 1107 F 248 275 205 181 909 

G 114 95 76 42 327 G 97 74 62 33 266 

Total 1177 1936 2168 960 6241 Total 953 1454 1594 740 4741 

  

Table 5 shows the percentage of Y=1 in each cell of the DEMO1 * DEMO2 grid.  The color coding in Table 5 shows 

there is not a simple pattern for finding cells with high or low density of Y = 1.   

The highest percentages (red) are found in F1, G1, E4, F4.  The lowest percentages (blue) are generally up and to 
the right in the grid. 

Table 5  DEMO1-DEMO2 Grid 
16

 

DEMO1 DEMO2 

 
1 2 3 4 Total 

B 76.3% 70.9% 71.3% 53.9% 69.2% 

C 80.1% 78.0% 69.9% 68.4% 73.4% 

D 79.1% 72.3% 71.4% 73.1% 73.3% 

E 78.2% 74.6% 76.7% 85.2% 77.5% 

F 85.5% 78.6% 77.4% 89.6% 82.1% 

G 85.1% 77.9% 81.6% 78.6% 81.3% 

Total 81.0% 75.1% 73.5% 77.1% 76.0% 

 

The usefulness of Table 5 depends on the fact that DEMO1 and DEMO2 are ordinal.  If both of DEMO1 and DEMO2 

were nominal, the table would be informative but statements such as "up and to the right" would have no meaning. 
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 DEMO1: under 35, 35-44, 45-54, 55-64, 65-74, 75 and up.  DEMO2: High School Grad or less, Some College/Trade School, 
College Degree, Post College Graduate 
15

 For example, "age 35-44 || some-college/trade school" is not greater than or less than "age 45-54 || high-school grad or less". 
16

 Tables 3 and 4 were ODS output from PROC FREQ to Excel.  Table 5 was created by a manual Excel manipulation using Tables 
3 and 4. 
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Main Effects Model:  The first step was to provide a baseline  -2 * Log L from the Main Effects Model for comparison 

to interactions.  The fit of the Main Effects Model with DEMO1 and DEMO2 as CLASS variables is shown below.  The 
Main Effects  Model gives 2 * Log L = 6810.203 and both DEMO1 and DEMO2 are significant predictors. 

PROC LOGISTIC DATA = DEMO_SAT; CLASS DEMO1 DEMO2; MODEL Y = DEMO1 DEMO2; 
17

 
(partial output) 

 

         Model Fit Statistics  

              Intercept    Intercept and 

Criterion          Only     Covariates 

-2 Log L       6883.555       6810.203 

 

         Type 3 Analysis of Effects 

                           Wald 

Effect         DF    Chi-Square    Pr > ChiSq 

DEMO1           5       47.0306        <.0001 

DEMO2           3       15.2170        0.0016 

 

The Challenge: Can an interaction variable with no more than 8 d.f. be found by %BEST_COLLAPSE 
with  -2 * Log L smaller than the 6810.203 from the Main Effects Model? 

RUNNING %BEST_COLLAPSE 

 %BEST_COLLAPSE was run on XC = DEMO1 || DEMO2 as shown: 
 

data interact; set Demo_Sat; 

length Xc $2; 

Xc = DEMO1 || DEMO2; 

 

%BEST_COLLAPSE(interact, Xc, Y, W, LL, A, NO, YES);  

 
The results are shown in the SUMMARY report given in Table 6. 

 
Table 6 

Dataset= DEMO_SAT, Predictor= Xc, Target= Y, Method= LL, Mode= A 

Summary Report (some columns are omitted) 

 k -2 * Log L IV X_STAT 

24 6763.62 0.10857 0.58527 

23 6763.62 0.10857 0.58527 

22 6763.62 0.10857 0.58526 

21 6763.62 0.10857 0.58526 

20 6763.62 0.10857 0.58526 

19 6763.63 0.10856 0.58524 

18 6763.63 0.10856 0.58523 

17 6763.65 0.10854 0.58518 

16 6763.67 0.10852 0.58515 

15 6763.69 0.10850 0.58511 

14 6763.74 0.10846 0.58506 

13 6763.78 0.10842 0.58498 

12 6763.85 0.10836 0.58497 

11 6763.94 0.10827 0.58475 

10 6764.05 0.10818 0.58469 

 9 6764.37 0.10792 0.58407 

 8 6764.93 0.10740 0.58362 

 7 6765.87 0.10657 0.58283 

 6 6766.96 0.10566 0.58125 

 5 6769.49 0.10261 0.58086 

 4 6772.66 0.09977 0.57656 

 3 6785.62 0.08913 0.57372 

 2 6819.21 0.06029 0.53864 
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 DEMO1 and DEMO2 might be recoded as numeric and used in PROC LOGISTIC DATA = DEMO_SAT; DEMO2; MODEL Y = 
DEMO1 DEMO2; This imposes an unrealistic interval scale on DEMO2 and requires the selection of a representative age from each 
age range including the open-end ranges. 
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As stated by Siddiqi (2006) page 81, an IV value of 0.10857 (for the saturated model) is just within the range that 

Siddiqi designated as “medium strength” (per Siddiqi: 0.1 to 0.3).   

The main effects model used 8 degrees of freedom and produced  -2 * Log L of 6810.20.  Each of k = 3, …, 9  (with 
d.f. 2, …, 8) provides  -2 * Log L for XC_best which is lower than the main effect benchmark of  6810.20. 

HOW TO SELECT k:   

The selection of a stopping point “k” is somewhat subjective.  The modeler seeks predictive power as measured by 
log-likelihood, IV, and X_STAT but also the pattern of cells within a level of XC_best across the DEMO1-DEMO2 grid 
(Table 5) should be coherent.

18
  Specifically, the cells collapsed together in a level should be connected and 

clustered within the DEMO1-DEMO2 grid. 

This led to the selection of k = 4.  Tables 7 and 8 show the levels of XC_best for k = 4 (Table 7) and the pattern of the 
cells within these levels across the DEMO1-DEMO2 grid (Table 8).  Although the cells in the fourth level 

E4+G1+F1+F4 are disconnected, we think we have a behavioral rationale for this pattern.   

The "price" for selecting k = 4 was a lower IV statistic than for selecting, for example, k = 9.  But selecting k = 4 
provided a savings of 5 degrees of freedom, a coherency in the grid pattern, and still an out-performance of the main 
effects model. 

Table 7 

Dataset= DEMO_SAT, Predictor= Xc, Target= Y, Method= LL, Mode= A 
Collapse Step: Levels = 4 

Xc_best 
Sat. Not Sat. Sat. Rate 

Y = 1 Y = 0 %(Y=1) 

TOTAL 4741 1500 76.0% 

B1+E3+F3+E2+C1+G3+C2+G2+E1+D1+F2+G4 2324 678 77.4% 

B2+B3+D3+D2+D4+C3+C4 1629 659 71.2% 

B4 55 47 53.9% 

E4+G1+F1+F4 733 116 86.3% 

 
Table 8 DEMO1-DEMO2 Grid – Color Coding of Cells in Each Level  

DEMO1 DEMO2 

1 2 3 4 Total 

B 76.3% 70.9% 71.3% 53.9% 69.2% 

C 80.1% 78.0% 69.9% 68.4% 73.4% 

D 79.1% 72.3% 71.4% 73.1% 73.3% 

E 78.2% 74.6% 76.7% 85.2% 77.5% 

F 85.5% 78.6% 77.4% 89.6% 82.1% 

G 85.1% 77.9% 81.6% 78.6% 81.3% 

Total 81.0% 75.1% 73.5% 77.1% 76.0% 

 
If the modeler has available a validation sample whose only purpose is to confirm predictor variable preparation, then 
the satisfaction rates from Xc_best for k=4 from the training sample can be compared to the same rates from the 
validation sample.  If the rates are similar, then the preparation of the predictor variable is validated. 

If there is no validation sample, then the modeler would proceed to include Xc_best among the group of variables being 
considered for selection for the logistic regression model. 

THERE IS THE REQUIREMENT FOR JUDGMENT BY THE MODELER 

In this paper the creation of tables like Table 8 for k = 3, …, 9 was manual and their interpretation was subjective.   

BUT THERE IS A PROBLEM 

An optimal collapse of XC at level k can lead to a sub-optimal collapse at level k-1.  This, in fact, is the case for 
EXAMPLE 2.  A better k = 4 solution is given in Table 9A.  Cell E2 moved from row 1 in Table 7 
(%BEST_COLLAPSE solution) to row 2 in Table 9A. 
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 The orderings of DEMO1 and DEMO2 provide the basis for determining "coherency". 
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Table 9A – Better Solution for k = 4 

Xc_best 
Sat. Not Sat. Sat. Rate 

Y = 1 Y = 0 %(Y=1) 

TOTAL 4741 1500 76.0% 

G3+C1+D1+F2+G4+E1+C2+G2+F3+E3+B1 1903 535 78.1% 

B2+B3+C3+C4+D2+D3+D4+E2 2050 802 71.9% 

B4 55 47 53.9% 

F4+F1+E4+G1 733 116 86.3% 

 
Table 9B – Better Solution for k = 4 (since  -2 * Log L in Table 9B is less than in Table 9C) 

Summary Report 

k -2 * Log L IV X_STAT 

4 6772.38 0.10014 0.57672 

 
Table 9C – Results for k = 4 from Table 6 

Summary Report 

k -2 * Log L IV X_STAT 

4 6772.66 0.09977 0.57656 

 
However, the differences between Table 9B and Table 9C in the values of -2 * Log L, IV, and X_STAT are small 

enough to be ignored.   

We determined that the k = 4 collapse was not optimal by comparing the results of %BEST_COLLAPSE with the 
results of splitting XC using a Decision Tree as discussed below. 

DECISION TREES 

 
JMP® 

19
 has a decision tree called PARTITION.  In the case of a single predictor X and a nominal binary target Y, the 

entropy criterion (denoted by G^2 in JMP output ) is used to determine where to split.  Here, the entropy criterion for 

splitting is equivalent to Log Likelihood criterion for collapsing.
20

   

The determination that %BEST_COLLAPSE was not optimal at k = 4 was made by running JMP PARTITION on XC 
and then comparing the “leaves” after 3 splits to the %BEST_COLLAPSE for k = 4 levels. 

Collapsing is stepwise top-down (starting with terminal leaves) and partitioning is stepwise bottom-up (starting at the 
trunk).  Despite both using Log Likelihood as the collapsing / splitting criterion, results of these processes may not be 
the same.  In fact, the splitting process by PARTITION using entropy also may become sub-optimal.

21
 

WHAT TO DO? 

If the collapsing process ends after a few steps, the opportunity that a collapse occurred that led to sub-optimality is 
small.  If the collapsing is extensive, as in Example 2, there is more chance that the collapsing process becomes sub-
optimal.  The difference between ideal and achieved solutions may be negligible but the magnitude of this difference 
would be unknown to the user when using %BEST_COLLAPSE.   

However, the user does know the values -2 * Log L, IV, and X_STAT and can compare the achieved -2 * Log L to the 
-2 * Log L from the main effects model.  These are solid criteria by which to judge the usefulness of an interaction 
variable. 

Additionally, if the user has JMP available, then PARTITION can be run using entropy as the splitting criterion.  The 
user can inspect the first split.  If the cells in the left and right branches are the same as the cells from 
%BEST_COLLAPSE levels for k = 2, then %BEST_COLLAPSE was optimal, at least, at the final step.

22
 

 See Lund and Raimi (2012) and Lund and Brotherton (2013) for related discussions. 

  

                                                           
19

 See jmp.com.  In this paper JMP version 9 was used. 
20

 G^2right + G^2left = -2 * Log L where  -2 * Log L  is computed for the binary variable S that is “1” for right and “0” for left in the 
logistic regression:  PROC LOGISTIC; CLASS S; MODEL Y = S; FREQ W; 
21

 For EXAMPLE 2 the k=22 collapse from %BEST_COLLAPSE is F2+G4, B3+D3 and 20 other single cells for -2*log L = 6763.62  
The corresponding split from JMP PARTITION is F2+G4, B4+D3 and 20 other single cells for -2*log L = 6775.15.  Both 
%BEST_COLLAPSE and PARTITION selected F2+G4 and 22 other single cells for k=23.   
22

 It is possible that %BEST_COLLAPSE and PARTITION could become sub-optimal at an intermediate step but return to optimality 
by the final step.  This is the case, for example, for PARTITION when going from k=22 (sub-optimal) to k=23 (optimal). 
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SAS MACROS 

The macro %BEST_COLLAPSE (version 6a) is included in the MWSUG 2013 paper by Lund, B. and Brotherton, D. 
“Information Value Statistic" http://www.mwsug.org/proceedings/2013/AA/MWSUG-2013-AA14.pdf.  Contact the 
author for updates to %BEST_COLLAPSE.  The current version is "version 8f". 
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APPENDIX 

%BEST_COLLAPSE METHODOLOGY FOR LOG LIKELIHOOD 

Let Gk be the count of records with Y = 1 where X = Xk.  Let Bk be the count of records with Y = 0 where X = Xk. 

The Log Likelihood of X and Y is given by LL = ∑k=1
K
 ( Gk* log(Gk/(Gk + Bk)) + Bk* log(Bk/(Gk + Bk)) )  

 

The k
th

 term of LL will be defined as shown: 

 

LLk = Gk* log(Gk/(Gk + Bk)) + Bk* log(Bk/(Gk + Bk)) 

 

If the i
th

 and j
th

 levels of X are collapsed, then the new LL includes this term: 

 

LLi_j = (Gi + Gj) * log((Gi + Gj)/(Gi + Gj  + Bi + Bj)) + (Bi + Bj) * log((Bi + Bj)/(Gi + Gj  + Bi + Bj)) 

 

Among eligible pairs (i,j) the %BEST_COLLAPSE algorithm finds the (i,j) pair that minimizes the expression D where: 

 

D = LLi + LLj - LLi_j 


