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ABSTRACT 

A familiar adage in firefighting—If you can predict it, you can prevent it—rings true in many circles of accident 

prevention, including software development. If you can predict that a fire, however unlikely, someday might rage 

through a structure, it’s prudent to install smoke detectors to facilitate its rapid discovery. Moreover, the combination 

of smoke detectors, fire alarms, sprinklers, fire retardant building materials, and rapid intervention may not prevent a 

fire from starting, but they can prevent it from spreading and facilitate its immediate and sometimes automatic 

extinction. Thus, as fire codes have grown to incorporate increasingly more restrictions and regulations and as fire 

suppression gear, tools, and tactics have continued to advance, even the harrowing business of firefighting has 

become more reliable, efficient, and predictable. As operational SAS data processes mature over time, they too 

should evolve to detect, respond to, and overcome dynamic environmental challenges. Erroneous data, invalid user 

input, disparate operating systems, network failures, memory errors, and other challenges can surprise users and 

cripple critical infrastructure. Exception handling describes both the identification of and response to adverse, 

unexpected, or untimely events that can cause process or program failure, as well as anticipated events or 

environmental attributes that must be handled dynamically through prescribed, predetermined channels. Rapid 

suppression and automatic return to functioning is the hopeful end state but, when catastrophic events do occur, 

exception handling routines can terminate a process or program gracefully while providing meaningful execution and 

environmental metrics to developers both for remediation and future model refinement. This text introduces fault-

tolerant Base SAS exception handling routines that facilitate robust, reliable, and responsible software design. 

INTRODUCTION 

Exception handling is so ubiquitous within software applications that it often may be overlooked and, in many cases, 

seamless programmatic adaptation without user alert or intervention is the objective. In other instances, a user may 

be alerted to the exception but functionality is not impacted. For example, when a user scrolls through the “Recent 

Documents” tab in Microsoft Word and selects a document to open, under normal conditions, the document opens 

without hiccup. The application has responded to an event—the user’s selection—and opens the selected document. 

But under exceptional conditions—for example, if the document has been moved or deleted—the application cannot 

locate the ghost document, displays an error message, but continues otherwise undaunted. The exception—the 

unavailability of the document—is “caught” (or detected) and subsequently “handled” (or processed) and the user is 

alerted without significant interference or detriment. Exceptions attributed to user input should be anticipated and 

articulated through business rules and exception handling routines. Thus, in robust applications, a user’s actions—

however menacing, malicious, or aberrant—never should result in abrupt termination of the application. 

Events, however, describe not only user actions and inputs but also hardware, systems, network, and environmental 

states and attributes. While the occurrence of adverse events inherently may be unpredictable, their existence 

typically should not elude or surprise developers. As the complexity and dynamism of a software's objective and 

operational environment increase, so too must that software's ability to respond flexibly to environmental and other 

factors. For example, in an organization in which SAS programs run on both Windows and UNIX machines, and in 

both development and production environments, the identification and handling of SAS automatic macro variables 

can ensure that code flexibly adapts to these respective environments without user awareness. Moreover, if warnings 

or errors are detected during program execution, reliable software will attempt to circumnavigate incidents to return to 

normal functioning. And, when process or program functioning still cannot be restored, exception handling routines 

can facilitate graceful termination to ensure dependent processes and data are not corrupted by preceding failures.  
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Data analytics development often differs from traditional software development because it relies less on user action 

and input and more on the ingestion, transformation, and analysis of diverse data sets. Because of this disparity, 

exception handling routines often are utilized in complex extract transform load (ETL) infrastructures to provide 

quality assurance methods for data processes, and quality control mechanisms that validate data products and 

solutions. Exceptional data—falling outside the expected type, scope, completeness, quantity, quality, or frequency—

just as easily as user or environmental factors can cause data flows to fail when quality assurance and quality control 

methods are not emplaced. 

Because the Base SAS language does not support inherent exception handling functions, a disparity exists between 

SAS and many object-oriented programming (OOP) and third generation languages (3GLs) that adroitly and natively 

handle exceptions. Java and Python, for example, seamlessly integrate exception handling routines that dynamically 

alter program flow and which are more readable and intuitive than similar routines that must be hacked in SAS. Given 

these SAS functional limitations, concepts such as "asking forgiveness not permission"—commonplace in and 

advantaging OOP languages—simply do not exist in SAS. Moreover, because SAS exception handling often 

convolutes already complex code, SAS literature and examples often omit this critical conduit to quality because of 

the confusion it introduces. Notwithstanding these limitations, critical SAS infrastructures warrant exception handling 

routines to deliver responsible, reliable, robust solutions that are flexible and fault tolerant. 

To be clear, SAS programs that are simple, straightforward, exist in static environments, and are intended for a 

limited distribution and duration may not require reliability or robustness. In these instances, exception handling might 

unnecessarily delay project completion or increase costs, while providing neither immediate nor enduring business 

value to the customer. However, SAS software supporting critical components, enduring projects, diverse 

environments, dependent processes, or a large user base should adopt commensurately high quality standards that 

can benefit from exception handling routines that not only can detect smoke, but often put out the fire. 

TOWARD QUALITY 

Software quality often is assessed in regard to the combination of functional requirements and performance 

requirements. Functional requirements specify capabilities that software must demonstrate and describe what 

software does, such as ingesting data into an ETL process to support data analytics. Performance requirements—

also known as non-functional requirements—demonstrate not what software does but rather how and how well it 

does it. For example, is the ETL process reliable? Is it robust enough to recover from memory errors? Can the 

application be ported from a Windows to a UNIX environment? Is the software easily maintained and modified when 

defects are discovered or changes are necessary? Thus, software may be functionally sound, but if it cannot perform 

reliably or is easily thwarted by environmental and other factors, it may require timely and costly upgrades or be 

abandoned for higher quality software. 

One of the most basic performance requirements is that software be reliable. In other words, does it function 

accurately without failure and, if it fails, with what frequency? Because software failure often can be caused by user, 

data, system, or environmental injects or attributes, robustness assesses the ability of software to navigate through 

dynamic or unpredictable environments. A third common performance requirement is efficiency and, especially in the 

era of big data, customers are eager to implement solutions that rapidly process voluminous data to deliver tactical 

business intelligence and data-driven decisions. Portability, a fourth requirement, depicts the degree to which 

software can be used on different systems or in different environments. While these four attributes represent only a 

fraction of all performance requirements, each can benefit from exception handling routines discussed and 

demonstrated in this text. 

Quality software does not, however, imply rogue inclusion of all performance attributes. Rather, the inclusion or 

exclusion of specific performance attributes should be defined in project scope in relation to specific software 

objectives, the intended user base, anticipated risks, and the expected functional environment. Thus, SAS developers 

need to understand whether they are building a Miata or a Mercedes, and all stakeholders should maintain a unified 

vision of software quality and performance. And, after all, quality is not free in the zero sum game of software 

development. The addition of performance requirements can add complexity, increase cost, delay development, or 
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even cause a team to forfeit or deprioritize the delivery of certain functional requirements. Notwithstanding, only 

through the combination of both functional and performance requirements can quality software be delivered. 

EXCEPTION HANDLING – FORGIVENESS VERSUS PERMISSION 

Many OOP languages include inherent exception handling functions that facilitate code functioning, flow, and 

readability. An extremely abridged introduction to the Python Try-Except handling follows and demonstrates this 

functionality. A single line of Python code, for example, will produce an error because the variable X has not been 

defined. 

print(X) 

The generated error reads: “NameError: name ‘X’ is not defined.” This is undesirable because it causes the program 

to terminate with an error. The error can be avoided through three mechanisms, including: business rules to ensure 

that X is always defined, asking permission to print before execution is attempted, or asking forgiveness after 

execution is attempted. Thus, permission equates to error prevention through tests that determine all requirements 

have been met a priori, while forgiveness represents detection methods that provide notification that an error has 

occurred. Asking permission yields the following Python statement, which prints the value of X if the variable exists. 

if ‘X’ in locals(): 

 print(X) 

else: 

 print(‘Variable not defined’) 

The code is straightforward in this example, but in actual software that encompasses dozens of variables and 

complex business logic, convoluted if-then-else decision trees can obfuscate readability and make code maintenance 

difficult. Moreover, in asking permission, the developer often must test for specific rather than general faults. Imagine, 

for example, the additional overhead incurred by having successive conditional logic statements that additionally 

must test the type or structure of X or its value. Thus, a preferred method in software development often is to ask for 

forgiveness rather than permission, as demonstrated in the following example. 

try: 

 print(X) 

except NameError: 

 print(‘Variable not defined’) 

Asking for forgiveness through the Try-Except structure instructs Python to attempt to print X but, if that statement 

fails, process flow switches to the Except statement and displays a warning message rather than producing an error. 

If the print statement succeeds, however, the Except block is skipped and process flow continues. In actual code, 

rather than simply displaying a message, the Except block could contain instructions that request the user to define 

the value of X, transfer process control elsewhere, write to an error log, or any number of other options. And, because 

a single Try-Except block can contain limitless statements that are tested and executed in sequence, at the first sign 

of trouble, process flow is switched safely to the Except block, improving both functionality and readability of code. 

In Base SAS, exception handling typically occurs by asking for permission. The equivalent request to evaluate the 

existence of X before printing it is demonstrated below in SAS macro statements. 

%macro test; 

 %if %symexist(X) %then %put &X; 

 %else %put Variable not defined; 

%mend; 

%test; 

In SAS, just as in Python, asking for permission is simple in straightforward conditional logic statements. However, as 

business rules, anticipated risks, and the number of other attributes that must be tested increase, the complexity 
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quickly can produce unwieldy, inscrutable code. In nested conditional logic, SAS developers have the option of 

utilizing either the much disparaged %GOTO statement to transfer process control or the nested %IF-%THEN-

%ELSE statements. SAS unfortunately has no equivalent functionality to ask for permission, but this can be 

approximated by testing the SAS automatic macro variable &SYSCC. Displaying the “current condition” of the SAS 

environment, &SYSCC will be “0” after successful execution, “4” after a warning code, or a higher number if runtime 

errors were encountered. The following code represents an attempt to ask for forgiveness in SAS. 

%put SYSCC BEFORE: &SYSCC; 

%put &X; 

%put SYSCC AFTER: &SYSCC; 

This code produces the following output to the SAS log: 

%put SYSCC BEFORE: &SYSCC; 

SYSCC BEFORE: 0 

%put &X; 

WARNING: Apparent symbolic reference X not resolved. 

&X 

%put SYSCC AFTER: &SYSCC; 

SYSCC AFTER: 4 

By testing the value of &SYSCC at the end of the code or after every boundary step (i.e., RUN or QUIT statement) or 

macro statement, code can respond dynamically if a runtime warning or error was encountered. Because &SYSCC is 

a read-write variable, its value can be reset manually after encountering a warning or error with the %LET SYSCC=0 

statement. This test is extremely useful to test final disposition—successful or failed—of a macro or module of code, 

but will not indicate where the warning or error occurred. Unlike the versatility of Try-Except blocks, multiple tests of 

&SYSCC are required to redirect SAS process flow immediately after an error occurred, because the SAS default 

option NOERRORABEND causes subsequent SAS processes to execute even after an error is encountered. 

Although the ERRORABEND system option will cause execution to terminate immediately, the &SYSCC code in this 

example is "4" and represents a warning that would not be affected by activating the ERRORABEND option.  

The following example highlights the repetitive post hoc testing required after every boundary step in SAS code that 

asks forgiveness, demonstrating the functional limitations and redundancies when implemented in SAS. Moreover, 

because a macro wrapper is required to conditionally execute SAS Data steps and procedures and because 

individual %GOTO statements are required to redirect process flow, readability of code quickly is diminished. 

%macro test; 

data x (keep=id var1); 

  set temp1; 

run; 

%if &SYSCC>0 %then %goto err; 

data y (keep=id var2); 

 set temp2; 

run; 

%if &SYSCC>0 %then %goto err; 

data merged; 

 merge x y; 

by id; 

 run; 

%if &SYSCC>0 %then %goto err; 

%err: %put An error occurred; 

%mend; 
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The SAS automatic macro variable &SYSERR also has utility for exception handling, as it returns the numeric 

warning or error code from the most recent procedure or Data step. But, because the value resets after each 

boundary step, &SYSERR must be implemented immediately after a RUN or QUIT statement. Moreover, because 

macro code does not trigger boundaries, macro errors will not be reported. Consider the following code that highlights 

an initial erroneous data step, a subsequent successful data step, and a final erroneous macro function. 

%put SYSERR &SYSERR; 

data x; 

 set y;   /* does not exist */ 

run; 

%put SYSERR &SYSERR; 

data x; 

run; 

%put SYSERR &SYSERR; 

%gobble   /* macro gobble does not exist */ 

%put SYSERR &SYSERR; 

This code produces the following results, which demonstrate &SYSERR correctly identifies the error caused by the 

missing Y data set. However, &SYSERR fails to identify that the macro %GOBBLE does not exist. 

%put SYSERR &SYSERR; 

SYSERR 0 

data x; 

 set y;   /* does not exist */ 

ERROR: File WORK.Y.DATA does not exist. 

run; 

  

NOTE: The SAS System stopped processing this step because of errors. 

WARNING: The data set WORK.X may be incomplete.  When this step was stopped there 

were 0 observations and 0 variables. 

WARNING: Data set WORK.X was not replaced because this step was stopped. 

NOTE: DATA statement used (Total process time): 

       real time           0.03 seconds 

       cpu time            0.05 seconds 

        

 %put SYSERR &SYSERR; 

 SYSERR 1012 

 data x; 

 run; 

  

 NOTE: The data set WORK.X has 1 observations and 0 variables. 

 NOTE: DATA statement used (Total process time): 

       real time           0.02 seconds 

       cpu time            0.04 seconds 

  

 %put SYSERR &SYSERR; 

 SYSERR 0 

 %gobble   /* macro gobble does not exist */ 

            _ 

            180 

 WARNING: Apparent invocation of macro GOBBLE not resolved. 

 ERROR 180-322: Statement is not valid or it is used out of proper order. 

  

 %put SYSERR &SYSERR; 
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 SYSERR 0 

The automatic macro variable &SQLRC represents the process return code for the SQL procedure, similar to the 

&SYSERR macro variable in Data steps and SAS procedures. Because the SQL procedure can contain numerous 

statements before the QUIT statement is encountered, a successful statement that completes without errors will 

change the value of %SQLRC to 0 (i.e., no error), even if the prior statement contained runtime errors within the 

same procedure. Due to this functionality, an evaluation of &SQLRC would need to occur after each statement within 

the SQL procedure if multiple statements exist. A more efficient yet less specific solution is to use the automatic 

macro variable &SQLEXITCODE that contains the highest error value encountered during the entire SQL procedure.  

Other automatic macro variables that detect errors and warnings include &SYSERRORTEXT and 

&SYSWARNINGTEXT. However, because both variables are read-only and because they do not reset even after 

program termination, their use should occur only with extreme caution. For example, if code is first run that contains 

warnings and errors, and code is subsequently run in the same SAS session that does not contain warnings or errors, 

the last warning and error encountered in the first program will persist if either of these macro variables is referenced 

during the second program. Because of this idiosyncrasy, incorrect interpretation of the meaning of these macro 

variables can lead to either false positive or false negative return codes being reported. 

Thus, regardless of which method is attempted to ask for forgiveness in SAS, functional limitations are encountered. 

Whereas Python catches an error and immediately redirects process flow to an Except block, SAS produces an 

actual error. This triggers the error to be recorded in the SAS log and, when executed inside Enterprise Guide, an 

undesirable red X will appear on the code node icon. Moreover, if the ERRORABEND system option is selected, the 

program will terminate even before the code has had a chance to detect errors. For all these reasons, while 

forgiveness remains the preferred method in most languages to accomplish exception handling, in Base SAS, 

permission often will need to be asked. And, in the most robust systems, post hoc testing of &SYSCC or 

&SQLEXITCODE automatic macro variables should be implemented to further validate process success. 

EXCEPTION HANDLING – IS BIGGER ALWAYS BETTER? 

Exception handling should be applied commensurately to the intended degree of quality as well as function, intent, 

and scope of software, but is bigger handling always better? The primary goal of exception handling is to improve the 

responsiveness of software by making it more flexible or adaptable. Examples of exception handling utilizing SAS, 

however, often do little to alter program flow or add functionality or capabilities, but rather provide user feedback on 

runtime status via the log. In many cases, while this additional information may assist the developers during 

development to build more fault-tolerant code, it doesn't actually add quality to the software because the user gains 

no benefit from these unseen messages. Especially in end-user development environments in which developers 

represent the sole users of their programs, gratuitous exception handling unfortunately flourishes. Consider the 

following example, which highlights the error received when a data set that does not exist (test.states) is referenced. 

data x; 

 set test.states; 

ERROR: File TEST.STATES.DATA does not exist. 

run; 

A simple macro wrapper can test for library and data set existence before attempted access in the data step. While 

both tests in this example could be completed in a single statement, they are separated to give an idea of the kind of 

nested logic common in actual data processes. 

%macro testdata; 

 %if %sysfunc(libref(test))=0 %then %do; 

  %if %sysfunc(exist(test.states)) %then %do; 
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   data x; 

    set test.states; 

   run; 

   %end; 

  %else %put Data Set does not exist; 

  %end; 

 %else %put Library does not exist; 

%mend; 

While the addition of this macro code does prevent the above error, additional functionality is not gained by the user 

because the end result remains consistent: the data set X was not generated. Therefore, in the above example, a 

simple post hoc check of the macro variable &SYSCC would have been sufficient and would have eliminated the 

gratuitous exception handling. Or, better yet, simply let the native SAS error suffice and add no exception handling 

routines whatsoever. The revised example below demonstrates a more dynamic attempt to a priori determine if the 

data set is valid. 

macro testdata(lib=, dsn=); 

 %global err; 

 %let err=library or data set does not exist; 

 %if (%sysfunc(libref(&lib))=0 and %sysfunc(exist(&lib..&dsn))^=0) %then %let 

err=; 

%mend; 

 

%macro wrapper; 

%testdata (lib=test, dsn=states); 

%if %length(&err)=0 %then %do; 

 data x; 

  set test.states; 

 run; 

 %end; 

%mend; 

 

%wrapper; 

Notwithstanding this improvement to the flexibility of the code, it still provides no additional value to the user, because 

the data set X is not created. Thus, as omission of test.states represents a catastrophic exception that must be 

handled, at this point exception handling can either signal to terminate the process or the program. The following 

code modifies the macro %WRAPPER and, by demonstrating the process flow more contextually, finally highlights 

the first true performance improvements—robustness and resilience. The code now skips data sets that do not exist, 

thus allowing subsequent data sets in the &FILELIST macro variable to be processed in a fault-tolerant fashion. 

%macro wrapper; 

%let filelist=states cities counties; 

%let i=1; 

%do %while(%length(%scan(&filelist,&i))>1); 

 %let fil=%scan(&filelist,&i); 

 %testdata (lib=test, dsn=&fil); 

 %if %length(&err)=0 %then %do; 

  data x; 

   set test.states; 

  run; 

  %end; 

 %let i=%eval(&i+1); 

 %end; 

%mend; 
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%wrapper; 

SAS developers should be cautioned that while exception handling can be utilized to relay warning and error 

messages to the SAS log, the true advantage of exception handling is its ability to alter program flow during 

execution. Thus, before embarking on an exception handling crusade, developers should determine for each project 

the specific added functionality or performance that proposed exception handling routines will provide. Those 

benefits, once enumerated, should be compared against the anticipated added cost, time, or complexity required for 

exception handling implementation to determine if their inclusion is warranted. Thus, the increased use of exception 

handling can—but does not always—denote increased business value or higher quality software. 

EXCEPTION HANDLING TO MONITOR ENVIRONMENTAL STATE 

Portability describes software's ability to function across diverse environments, such as on both Windows and UNIX 

operating systems. Although the majority of Base SAS language is portable between these operating environments, 

some functional or language components differ. For example, the SLEEP function operates in Windows, but must be 

replaced with the CALL SLEEP function in UNIX environments. The following macro code excerpt demonstrates the 

ability to interpret the automatic macro variable &SYSSCP that denotes the type of operating system, and to respond 

by conditionally executing the respective appropriate SLEEP function. 

%if &SYSSCP=WIN %then %let sleeping=%sysfunc(sleep(10)); 

%else %if &sys=UNIX %then %do; 

 data _null_; 

  call sleep(10,1); 

 run; 

 %end; 

%end; 

Another environmental difference that often exists is the distinction between development and production 

environments. SAS practitioners may design, develop, test, and validate code on one system, after which only 

validated code is transferred to a separate production system. Although the operating systems may be functionally 

identical, differences may exist between disparate systems such as directory structures, file names, or the type and 

nature of runtime log and error reporting. The &SYSSITE automatic macro variable reflects the SAS site number for 

each SAS license and, by testing this number, code conditionally can execute in either testing or production 

environments. By implementing flexible, conditional logic, developers can maintain single version source code 

applicable to all environments, thus obviating the error-prone method of maintaining disparate development and 

production code bases. The following example demonstrates a conditionally defined SAS library, thus facilitating one 

version of code to be maintained and executed across diverse development and production environments. 

%if &SYSSITE=1234512345 %then %do; /* development environment */ 

 libname final '/folders/dev/'; 

 %end; 

%else %if &SYSSITE=5555599999 %then %do; /* production environment */ 

 libname final '/folders/prod/'; 

 %end; 

Some environmental errors—such as memory errors—can be detected through quality assurance routines and 

resolved through a variety of mechanisms. A SORT procedure that causes an out of memory error might be resolved 

by stopping other SAS sessions that are hogging resources and subsequently restarting the offending program. While 

appropriate by laissez faire development standards, this manual approach would be neither pragmatic for nor 

possible in a production environment. A responsible solution should automatically terminate processes dependent on 

the failed SORT procedure. A more creative solution might, after detecting the memory error on the SORT procedure, 

immediately initiate a user-created macro %SAFESORT that iteratively performs sorts of subsets and later joins the 

results. Such a macro might take significantly longer to execute, given its additional complexity, but nevertheless 
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would run without memory errors unlike the out-of-the-box SORT procedure. And, despite its longer runtime, the 

automated detection and immediate response would create a much more efficient, end-to-end process flow. 

Other environmental states or errors, however, require an even broader perspective. One comprehensive solution 

implements the SYSTASK statement to execute exception handling within a high quality, production-grade 

environment
i
. This facilitates the implementation of post hoc testing for process success based on return codes that 

are generated from separate batch jobs. Even environmental errors such as a process timeout can be captured by 

enclosing processes within the SYSTASK wrapper for execution. Notwithstanding, some SAS or systems errors will 

defy even identification utilizing SAS. For example, when the SAS server becomes comatose and crashes, no 

amount of exception handling routines can identify or resolve this issue because the scripts are written on a system 

that has stopped functioning. In these extreme but hopefully rare circumstances, two possible solutions exist for 

catastrophic exception detection. Some systems implement a ping that executes a SAS script to test system health at 

regular intervals, the results of which can be ported to a BI interface, dashboard, or other dynamic report. In this type 

of system, absence of ping results will demonstrate that the system has stopped functioning. A second automated 

method employs scripts external to the SAS environment that regularly interrogate health of the SAS server or its 

data sets. Each method provides the assurance that server failure will be detected as an exception through routinized 

methods rather than through ad hoc discovery as analysts email their administrator asking "Is the server down?" 

EXCEPTION HANDLING TO MONITOR FILE STATE 

Testing to determine library and data set existence already has been demonstrated and, as discussed, should be 

implemented only when performance is improved, for example, by creating fault-tolerant process flows. Thus, in 

those instances in which data set absence signals certain defeat, native SAS error reporting may be a better solution 

than complex exception handling routines. Data availability, however, implies not only that a data set exists but also 

that it can be accessed. If a data set is being created by one process, other processes or users attempting to access 

that data set will fail because an exclusive lock is held by the first process. A single locked data set can cripple a 

complex data infrastructure but, by installing processes that test for data set availability before attempted use, 

process continuity can be maintained. The macro %LOCKITDOWN
ii
 was created by the author and tests data set 

availability by identifying file locks and, after encountering a lock, repeatedly testing until access can be gained or the 

process times out. The %LOCKITDOWN macro is not described in detail in this text but its use in modifying process 

flow through exception handling routines is presented below in which the lock status is tested every 5 seconds for 

300 seconds or until access is gained. 

%include '/folders/myfolders/lockitdown.sas'; 

%macro test; 

 %LOCKITDOWN(lockfile=test.states, sec=5, max=300); 

 %if %length(&lockerr)=0 %then %do;  /* thus, if data set is available */ 

  data x; 

   set test.states; 

  run; 

  %end; 

 %else %put ERROR; 

%mend; 

 

%test; 

SAS literature is full of examples that depict the benefits of combining related input/output (I/O) tests into modular, 

reusable macros that simultaneously can test the existence, availability, or appropriateness (i.e., naming conventions) 

of SAS libraries, data sets, or external files. One example, the Validator
iii
, demonstrates exception handling routines 

that support a number of dynamic situations, including validating SAS data sets. By combining similar functionality, 

macro reuse is maximized because the macro is generalizable to diverse purposes and projects. As long as each 

macro contains a return code that demonstrates its success, failure, and possibly other process metrics, these 

modular pieces easily can be linked together for process validation efforts. An automated dashboard developed by 

the author dynamically and comprehensively monitors both file states and data structures of all permanent data sets 
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within a SAS server. By iteratively pinging data sets in a continuous manner, this smoke detector signals to users and 

developers if a data set is locked for an unexpected amount of time or if structural components of the data set have 

been unexpectedly modified.
iv
 Integrated systems such as this that maintain a pulse on the SAS environment can 

provide invaluable feedback, including immediate recognition of process or product failure. 

EXCEPTION HANDLING TO MONITOR DATA STRUCTURE 

The preceding examples of exception handling have demonstrated quality assurance routines that flexibly respond to 

errors, environmental attributes, and other injects to facilitate robust program execution. Quality control measures, 

conversely, monitor and validate products to ensure that they meet stated functional objectives and quality standards. 

In data analytic development environments, common products include data products such as data sets or analytic 

reports that are generated by ETL processes or derivative analysis. Validation of a data product can demonstrate to 

an analyst that a data set is accurate and ready to be incorporated into analyses. It also can signal to dependent 

processes that the data set is ready to be parsed, transformed, or integrated into a data store or infrastructure. 

Because data often are ingested from unreliable third-party sources, data validation methods can be executed not 

only on data sets that are created by SAS process flows, but also on those that are ingested. Thus, in production-

grade SAS environments, data quality validation can occur at any point throughout the process flow, on ingested, 

intermediate, and output data sets. 

Data structure validation describes the validation of data set metadata, including everything that can be known about 

an empty data set. This includes the name, number, type, and format of fields, as well as whether indexes, sorting 

algorithms, data constraints, descriptions, labels, or other attributes are present. Transactional data sources are a 

common candidate for data structure validation because transactional updates typically are received with 

standardized frequency and format. Thus, if a data set historically received with eight fields suddenly has ten, some 

alert to stakeholders is warranted because this variance should be investigated if not expunged. 

One method to identify or test metadata is through the CONTENTS procedure, which produces a 41-attribute 

description of each field in a data set. The following example exports this metadata into a temporary data set (Temp) 

for manual viewing or validation through automated means. 

proc contents data=test.states details out=temp; 

run; 

A second method is to utilize the SQL procedure to extract metadata from the sashelp.vcolumn dictionary table, 

which produces an 18-attribute data set that describes each field in one or multiple data sets. The advantage of the 

SQL procedure is it can be optimized for faster performance with the WHERE clause.  

proc sql; 

 create table first as select * from sashelp.vcolumn 

 where libname="TEST" and memname="STATES"; 

quit; 

run; 

A third method is to access metadata through SAS I/O functions, such as VARNAME or VARTYPE. The primary 

advantage of this method is that access can be achieved entirely through macro coding with use of the %SYSFUNC 

macro function. For example, the following code prints the field name and type (e.g, character or numeric) for the first 

field in the data set test.states, all of which could be imbedded within a Data step if necessary. 

%macro test; 

 %let dsid=%sysfunc(open(test.states)); 

 %let varname=%sysfunc(varname(&dsid,1)); 

 %let vartpe=%sysfunc(vartype(&dsid,1)); 

 %put &varname &vartype; 

%mend; 
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Regardless of which method is utilized to extract metadata, the common objective is to compare all attributes of a 

newly ingested or newly created data set against its baseline—i.e., the metadata expected and known to be correct. 

One way to accomplish this is to maintain a library (baseline) of empty data sets, for example, containing the data set 

baseline.states having zero observations but all other file attributes. To validate future data sets that are either 

created or received, a developer only would need to compare each new data set against its respective baseline.  

The following exception handling routine extracts metadata from baseline.states, extracts metadata from a newly 

created data set test.states, and compares these using the COMPARE procedure. Note that the fields representing 

library name, member name, number of observations, create date, and modify date must be removed because these 

inherently will differ between baseline and comparison data sets. Because the OUTNOEQUAL option only outputs 

observations when discrepancies exist, if the data set structures do match, the temporary data set Validate will have 

zero observations. Utilizing this logic, the macro %TEST attempts to validate the data set test.states and, if 

successful, prints a notification. In an actual production environment, this log entry would be replaced with further 

validation methods, business rules, or process flows that could proceed with freshly validated confidence. 

%macro validate (dsn1=, dsn2=); 

 %global err; 

 %let err=; 

 proc contents data=&dsn1 details out=temp1 (drop=libname memname nobs 

   crdate modate) noprint; 

 run; 

 proc contents data=&dsn2 details out=temp2 (drop=libname memname nobs 

   crdate modate) noprint; 

 run; 

 proc compare data=temp1 compare=temp2 noprint out=validate outnoequal; 

 run; 

 proc sql noprint; 

  select count(*) into :nobs 

  from work.validate; 

 quit; 

 run; 

 %if &nobs>0 %then %let err=does not validate; 

%mend; 

 

%macro test; 

 %validate (dsn1=baseline.states, dsn2=test.states); 

 %if %length(&err)=0 %then %put Validation Complete; 

%mend; 

 

%test; 

EXCEPTION HANDLING TO MONITOR DATA QUALITY 

Exception handling and all other methods that suffuse quality into software culminate with data quality. Because data, 

data products, data solutions, and data-driven decisions lie at the heart of data analytic development, data quality is 

discussed thoroughly throughout SAS literature. Whereas environmental, system, software, user, and other errors or 

attributes that must be handled in robust software can be done so through largely standardized methods that are 

generalizable across projects and even organizations, data quality must be enforced through sometimes complex 

business rules that are largely endemic to a field, organization, project, or data set. Thus, the additional complexity 

and need to understand both the industry-specific business rules as well as their technical implementation can make 

data quality exception handling an exceptionally taxing experience. 

Not only are the rules tougher to enforce, but the crime may be much more difficult to recognize. In process validation 

or data structure validation, often a runtime error is produced when exception handling fails. Once the error is 
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discovered, typically the exception handling routines can be modified (i.e., improved) and the process can be run with 

the assurance that at least that error will not occur again. With data quality validation, however, logic rather than 

runtime errors often are produced, thus test data cases represent one method to validate known injects through a 

process to ensure that output conforms to expectations. Data constraints, control charts, and other statistical tests 

also help validate output against expected norms, and can elucidate faulty business rules and logic that produce 

invalid results. 

Because SAS literature is so replete with methodologies to clean and validate data, only one example is provided 

here. It highlights, however, the common requirement to validate values of a categorical variable against a known set 

of discrete values. Where data constraints have not been enforced during data entry or collection, a common first 

task is the standardization of values that bins acronyms, abbreviations, and other spelling variations into cleaned 

fields. Thus, when values are encountered that lie outside the set of expected categorical values, exception handling 

routines can alert stakeholders or either delete or modify a value, observation, or data set to preserve its integrity. 

In the following example, the data set chem_data includes seizures of homemade explosive (HME) precursor 

material found in Afghanistan and recorded in an open-ended character field. Because of the lack of data constraints 

during data input, widely disparate spelling variations exist in the Chem field, some of which have been 

accommodated by the standardization model depicted in the conditional logic. But, because the value 

“aluminumnumnum” is not included in the binning algorithms, a quality control report should identify this outlier rather 

than ingesting it into the data set. Later, an analyst might decide that this value should in fact be binned as 

"aluminum" but, for now, it remains excluded from the data until the chemical data model has been updated. 

data chem_data; 

 infile datalines delimiter=','; 

 length RecNo $20 Province $ 40 Chem $50; 

 input RecNo $ Province $ Chem $; 

 datalines; 

1,Zabul,ammonium nitrate 

2,Kandahar,ammonium nitrate 

3,Helmand,calcium ammonium nitrate 

4,Ghazni,calcium ammonium nitrate 

4,Ghazni,ammmonium nitrate 

4,Ghazni,potassium chlorate 

5,Zabul,ammonium nitrate crystals 

6,Kandahar,aluminumnumnum 

; 

run; 

data chem_data_cleaned; 

 set chem_data; 

length Chem_cleaned $50; 

 if Chem in ('ammonium nitrate','ammmonium nitrate','ammonium nitrate crystals')  

 then Chem_cleaned='ammonium nitrate'; 

 else if Chem in ('calcium ammonium nitrate')  

  then Chem_cleaned='calcium ammonium nitrate'; 

 else if Chem in ('potassium chlorate') 

  then Chem_cleaned='potasssium chlorate'; 

 else Chem_cleaned='UNKNOWN!!!'; 

run; 

In this example, the exceptional event that is being handled is the incidence of the new value “aluminumnumnum” 

that does not appear in the current data model and which must be evaluated. A separate text by the author 

demonstrates a dynamic, macro-based implementation of categorical variable binning and standardization, followed 

by quality control validation and exception reporting for data that are not found within the data model.
v
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THE DREADED LOG – WHAT IS IT GOOD FOR? 

The SAS log, while critical to the development environment, is the least useful process metric in a production-grade 

environment. During software development, the log is useful for design feedback, debugging, optimization, and 

validation of business rules and other logic. However, once software is operationally deployed to a user base, these 

benefits cease and reliance on the SAS log in a production environment only will act to reinforce poor development 

practices. Consider that when a user opens Google Chrome and navigates to a Gmail account, no log is created or, if 

it is, the log is internal and unavailable to the end user. SAS software developers should code with the same fierce 

confidence and technical prowess when developing high-end data analytic programs. In a production environment, 

exception handling should be utilized both to prevent and detect errors, rather than relying upon too-little-too-late post 

hoc log analysis. There is no magical warning or error that appears solely in the SAS log that cannot be detected 

during program execution through competent exception handling. Not one. 

In an ad hoc environment in which end-user developers are tactically coding short-term solutions that don't require 

significant quality or performance attributes, the log is the perfect place to validate process completion. But, as 

software becomes more dynamic, distributed, depended upon, and enduring, reliance on the log for this validation 

should be avoided. In a SAS production environment, thus, the log is good for one and only one thing: continuous 

quality improvement (CQI.) No one gets it right the first try. Just when a developer believes he's conceptualized 

everything possible that could cause code failure, something will fail and a new fault will have been discovered. In 

these instances, hopefully an error is generated to the log, the log has been saved, the log file is parsed quickly 

through automated processes, and the developer is able to utilize this information to recreate the conditions under 

which the error occurred. In most situations, similar errors can be prevented or detected through additional exception 

handling routines, thus making the code more reliable, robust, and enduring than before the fault was uncovered.  

A best practice is thus to save log results for all production processes. Numerous SAS white papers detail extensive 

methods that automatically parse SAS logs, immediately identifying salient information such as unexpected warnings 

or errors. The vast majority of production logs should contain no unexpected warnings or errors and these clean logs 

can be deleted immediately by the log parser. But, on those rare occasions in which a production process fails 

unexpectedly, the existence of a log that has captured the event can ensure that developers engineer future 

processes that proactively handle and thus prevent recurrences of that specific failure. 

CONCLUSION 

Exception handling represents a common quality assurance method used in software development to facilitate the 

smooth execution of software despite environmental, system, user, and other adverse or unexpected events. 

Moreover, exception handling provides developers the means to build higher quality software that espouses 

performance requirements such as reliability, robustness, efficiency, portability, and modularity. Although Base SAS 

unfortunately has no inherent exception handling functions, this functionality nevertheless can be implemented 

through savvy design and creative solutions that maximize the use of SAS macro language, SAS automatic macro 

variables, and I/O functions. While not all SAS code necessitates performance enhancements like exception 

handling, all SAS developers should understand its benefits and functionality, and insist on its use in complex 

software projects that support critical infrastructure in diverse environments for distributed user bases. 
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