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ABSTRACT  

In this paper we show a modular, data-driven method of programming using a data dictionary based approach.  
Constructing a data dictionary in a consistent, tabular fashion, one can write an application that reads in data, adds 
formats and labels, performs data cleaning, and produces reports without almost any additional coding.  This leads to 
efficiency gains, accuracy gains, and more clear code.  We explain the fundamentals of a data dictionary that can be 
used for this purpose, with examples for different specific purposes, and show one implementation of a simple 
system.  We invite the reader to adapt the base concept to their specific needs, and suggest a few things to consider 
when adapting this to more specific purposes.   

The process applies to Base SAS version 9, and examples will be presented assuming the presence of Access to PC 
Files, although the concept does not require it.  Users will be expected to have an intermediate skill level with working 
with SAS files, and some understanding of macros and automated code generation (using PROC SQL Select Into or 
similar). 

INTRODUCTION 

SAS is a great product for automating data and reporting related tasks for many reasons, one being the ability to write 
programs that are driven by data sources.  Driving your program from data means identifying portions of your 
program that are specific to some pieces of data – whether it be the primary dataset you are working with, or that 
project’s metadata, or something you create specific to the purpose – and writing the program as a generic piece of 
code that uses that data source as input parameters, rather than including that information in the code itself.  This 
leads to shorter codebases, more organized programs, more reusable code, and simpler updates.  (If this sounds 
suspiciously like Object-Oriented Programming to you, that’s because it comes from a similar mindset: structuring 
code around data.  If you are familiar with OOP techniques, you will see many parallels in this method.) 

This paper looks at a specific type of data driven programming, which we call documentation or metadata driven 
programming, covering its benefits and discussing implementation.  It is geared towards projects that consist of 
performing analyses or reporting on sets of data, but many of the concepts can be utilized in other areas.  We will 
discuss the concepts at a higher level during the paper, and present a complete program in the appendix 
implementing this approach on a sample data source (the 2010-2012 ANES Evaluations of Government and Society 
Study). 

 

WHAT IS DOCUMENTATION DRIVEN PROGRAMMING? 

A high level definition: It is an approach to programming that first creates metadata in a tabular format for the fields in 
your data that describes these fields and contains instructions for a series of actions that you wish to perform. The 
programmer will then implement a generic SAS program to interpret the metadata and generate SAS code from it.  

WHY SHOULD YOU USE DOCUMENTATION DRIVEN PROGRAMMING? 

Documentation driven programming is not only useful as a method of keeping your manager off your back to 
document your process.  Organizing your documentation in a way that allows you to drive your programming with it 
enables you to work with others more effectively (in particular with non-programmers), and leads to greater 
transparency, writing fewer lines of code, increased accuracy with less QA required, and greater reusability of code. 

COLLABORATION AND EFFICIENCY 

Documentation driven programming helps collaboration in two key ways: it clarifies communication, and it enables 
more efficient utilization of resources. Not every programmer knows SAS, and not everyone can read programming 
syntax. By driving your programming with documentation that does not require a programmer to fill out, you can move 
a substantial portion of the work to project staff and other non-programmers.  Ideally it can be the method by which 
your requirements are delivered to you, allowing you to turn requirements into production code with much less effort. 
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TRANSPARENCY AND READABILITY 

If your documentation set-up is clear enough that it can be explained to someone with a non-SAS or non-technical 
background, it also makes your work more transparent. If other researchers, supervisors, or collaborators want to 
know how you did something, for example dichotomizing a variable, you can send them your documentation, which 
includes complete information for that process.  It is also easier for you to answer questions after the analysis is 
complete (when you have moved on and forgotten the specifics) because spreadsheets are more organized and 
easier to read than programming code. 

Your programs will be much clearer and easier to read as a result of moving the data definitions to a spreadsheet.  
This takes the clutter out of the program, which then makes them much more focused on the logic of the process you 
are developing.  Removing much of the code needed to read in data and perform normal cleaning, validation, and 
preparation from your main program makes it easier to focus on the interesting elements of your program. 

For example, compare these two short programs. 

data my_data; 
  infile "myfile.txt" dlm=','; 
  informat 
    x y $10. 
    a b $15. 
    c  datetime17. 
    d  date9. 
    e f $20. 
    g $35. 
  ; 
  format 
    c datetime17. 
    d date9. 
  ; 
  input 
    (x y a b ) ($) 
    c 
    d 
    (e f g) ($) 
  ; 
run; 
 
data my_data_cleaned; 
  set my_data; 
  if x in ('BADDATA','MOREBAD')  
    then delete; 
  else if x in ('BADVAL','BADVAL2') 
    then x=' '; 
  if datepart(c) le '01JAN2010'd  
    then  delete; 
  else if datepart(c) ge '01JAN2014'd  
    then delete; 
run; 
 

data my_data; 
  infile "myfile.txt" dlm=','; 
  &informatlist.; 
  &formatlist.; 
  &inputlist.; 
run; 
 
data my_data_cleaned; 
  set my_data; 
  &cleanrulelist.; 
run; 

 

 

Okay, we cheated some with the second program, but that is the point: all of that code was removed from the body of 
the core program, and can be located either in other program file(s) or in an earlier portion of the main program, 
easily skipped over while browsing the code as it has clear purpose and in a production environment would be oft-
reused code.  The core portion of the data step is stripped clean, allowing users to read exactly what is happening (of 
course, using well-named macro variables).   

Now if you were to include a few lines of code in the data for a specific purpose, those lines would be obvious to any 
reader and easy to spot, not hidden in the middle of dozens of lines of input statements, formats, informats, and 
labels.  Data driven programming reads like a story, and the details are tucked away in footnotes. 

Figure 1. Two Examples of Input Code.
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The PROC SQL code, however, is slightly different: 

proc sql noprint; 
  select cats('%labelcode(',variable,',%nrstr(',label,'))') length=1024  
    into :labelcode separated by ' '  
    from prepped_control  
    where label ne ' '; 
quit; 

 

Note the length option on the select statement, which overrides the default length of CATS in a PROC SQL statement 
(200), which might be less than our variable labels’ lengths.  Also differing is the addition of the %NRSTR wrapper 
around the label, which protects us from special characters causing unintentional macro variable resolution.  (If you 
intentionally include macro variables in your labels, leave this off.) 

The last step in our initial data input is to generate some basic formats. At this stage we assume that you have loaded 
your formats from your control file into your format catalog using PROC FORMAT; full code for this step is included in 
the appendix. 

%macro apply_formats(var,fmtname); 
  &var. &fmtname. 
%mend; 

 

Now we are ready for a data step to input, label, and format our data. Notice that we call the three macro variables 
that we generated above in our data step.   Recall the data step in Figure 1 here; this is nearly identical. 

 

data input; 
  infile datafile lrecl=32767 pad; 
  format 
    &formatcode. 
  ; 
  input 
    &read_in. 
  ; 
  label  
    &labelcode. 
  ; 
run; 

 

At this stage, we have a complete dataset with labels, formats, and of course data.  It is ready for the next step, which 
in our case is data validation. 

 

DATA VALIDATION 

The two data validation methods we present here are fairly basic, validating ranges and bases, and hopefully denote 
the minimum one would do to validate a dataset for delivery or analysis.  Further validation methods could be 
included, depending on the needs of the project and the researchers; this might include logical validation, referencing 
an external lookup table, or foreign key validation, among others.   

First we check that all of the data is in our defined range using the range_check macro.  Here we would only pull into 
the macro variable rows that have valid ranges listed. 

%macro range_check(var,range); 
  if not(missing(&var.)) and not(&var. in(&range.)) then do; 
    type='RANGE'; 
    question="&var."; 
    output; 
  end; 
%mend; 
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Any instance where a variable has data and is not in our pre-defined range will be output to our checking dataset 
along with a flagging variable, which we are calling ‘type’ stating which check it failed. 

Since this is survey data, the allowable responses on the questionnaire provide our constraints. In other instances 
one could flag data based on prior knowledge of what is “reasonable” and follow-up on outliers. One could also put a 
keyword into this field to trigger an execution of PROC UNIVARIATE that flags your most extreme cases or gives you 
a histogram to show you the distribution of the data. 

 

The second check we will perform verifies that you have data if and only if you expect to have data. Here there are 
two distinct possibilities. You could expect the field to have data always, then all one needs to do is leave the ‘base’ 
column blank in the control file and the program will catch blank records. The second is that you expect to have data 
in particular situations. Input your constraints in the ‘base’ column and the program will check in both directions. Do 
you have data when you expect it, and is it missing when you don’t expect it?  

 
%macro base_check_all(var); 
  if missing(&var.) then do; 
    type='BASE'; 
    question="&var."; 
    output; 
  end; 
%mend; 

 
%macro base_check_restricted(var,base); 
  if (&base.) and missing(&var.) then do; 
    type='BASE'; 
    question="&var."; 
    output; 
  end; 
  if not(&base.) and not(missing(&var.)) then do; 
    type='BASE'; 
    question="&var."; 
    output; 
  end; 
%mend; 
 

Remember that &BASE. here is a logical SAS statement (that evaluates to TRUE or FALSE).  When we create the 
two lists of macro calls, we use the presence or absence of data in the Base column to determine which list a variable 
falls into.  Here we assume that all questions should be checked; if your project expects some variables to have 
missing values, and considers that acceptable, you may have a different call. 

proc sql noprint; 
  select cat('%base_check_all(',variable,')')  
    into :base_check_all separated by ' '  
    from prepped_control  

where missing(base) ; 
  select cats('%base_check_restricted(',variable,',%nrstr(',base,'))')  
    into :base_check_restricted separated by ' '  
    from prepped_control  

where not(missing(base)); 
quit; 

 

You can call these three macro lists in a later data step. We choose to create a vertical dataset with all of the errors 
and an identifier showing which error check it failed (base or range) – thus the output statements in the macros. 

data checking; 
  format question type $32.; 
  set input; 
  &base_check_all.; 
  &base_check_restricted.; 
  &range_check.; 
  keep c2_caseid type question; 
run;  
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This dataset could then be used to create an error log for your users to check, either using a PROC FREQ to identify 
problematic variables (particularly during development) or by viewing an export of this dataset directly to a file if there 
are few errors (during production in particular).  In the appendix we show a simple error log as an example. 

AUTOMATIC CORRECTION 

In the case of our data source, we have a lot of data to clean. People who did not respond to questions were marked 
with a negative number of varying values depending on the reason why the person did not answer the question. We 
can take all of our entries into the control file for validation and just as easily turn them into cleaning statements, if 
needed.  We only recommend doing this in conjunction with verifying the errors in the validation step, as this could 
cause serious issues, either by masking a more serious error (such as a failure point/break off in the questionnaire) or 
could be a result of improperly defined validation specifications. 

If you analyze your errors and decide you want to automatically clean them, as we do, you could use a macro like 
this.  You could also supply in another column more complex cleaning instructions, such as different special missing 
values for different reasons for invalid data.  In our case we are comfortable with simply setting these invalid data 
points to missing. 

%macro range_clean(var,range); 
  if not(missing(&var.)) and not(&var. in(&range.))  
    then call missing(&var.); 
%mend; 
 
%macro base_clean(var,base); 
if not(&base.) and not(missing(&var.)) then  call missing(&var.); 
%mend; 
 

We then utilize these macros (pulled into macro variable lists) in a data step to generate our final cleaned dataset.  In 
a more complex project we might have additional cleaning instructions included in this data step that were not 
generated automatically, but instead were either listed in a SAS program to %INCLUDE, or stored in an editing 
database to be applied in a similar fashion here. 

data cleaned_data; 
  set input; 
  &range_clean.; 
  &base_clean.; 
run; 
 

REPORTING 

Reporting needs vary significantly from project to project, so our reporting solution is geared around separating the 
calculation and report production into separate modules, allowing users to build a cookbook of reporting solutions 
over time that can be mixed and matched to produce reports as needed. Here we will show a fairly simple example, 
with two calculation macros and one report production macro.   

The basic shell of a calculation macro consists of a call to a summarization procedure, whether that is PROC 
TABULATE, PROC SURVEYFREQ, PROC SUMMARY, or similar procedures.  Following that is a data step that 
converts the output from the summarization procedure into a generic format that can be consumed by the report 
production macro(s) without having to know how the data was summarized. 

In our approach, the calculation macro is responsible for providing five variables: the table the row of results is for 
(from the control spreadsheet); the statistic type, useful when a variable is summarized in multiple ways; the stub, 
which is identifies which row in the report the result belongs on; the column variable, which stores which classification 
variable created that row and which determines which column in the report the data is intended for; and the score, 
which is the result itself.   More complex reports might include additional columns, such as a statistical test result or a 
standard error. 

We also take an approach here in this example that is useful for allowing extensive customization and extremely 
simple code, but comes at the cost of additional runtime when used with larger datasets. That approach is to run the 
summarization procedure (in this case PROC TABULATE) once for each report row.  This is generally insignificant 
when running reports from small or medium sized datasets, but when run on very large datasets or with a very large 
number of report rows it may be impractical to take this approach.  In that case, a similar module might be created 
that performs the tabulations in larger batches to avoid multiple runs against the dataset.   
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CALCULATIONS 

The first tabulation macro (below) is used to report proportions.  This might be the proportion of responses in a 
particular range, or to report the distribution of responses across all values.  It takes three parameters: VAR, FMT, 
and TABLE.  VAR indicates the variable that is being summarized, while TABLE includes which table the response 
will be included in and the order in that table (for example, Table 3.01 would be Table 3, row order 1). 

FMT is how the macro is able to flexibly calculate many different proportion types, even of a single variable.  FMT 
provides the name of a format that groups the values needed for reporting together, and can even be used to remove 
unwanted values (such as if you want to see proportion of positive responses, and do not want to report negative or 
neutral responses) by using ‘.’ to label those values. 

In our case, we use two format types; one is a simple distribution, using the default format for the variable, and one is 
a “top box” format, where we show the proportion of positive responses and the proportion of other responses.  The 
top box format is an example of a custom module here; it is dropped in to create a custom format that meets our 
needs, but doesn’t require modifying the remainder of the program beyond adding the additional tabulation step, 
which could be included as part of the module or built as a separate module if it is more generally useful. 

%macro tab_prop(var,fmt,table); 
  proc tabulate data=cleaned_data out=_table_&table.(rename=&var.=stub); 
    class &var. &class./mlf missing; 
    var weight_inv; 
    table (&var.*colpctn weight_inv*sum),(all &class.); 
    freq tabulateweight; 
    format &var. &fmt.; 
    label weight_inv='Total Respondents'; 
    where not(missing(&var.)); 
  run; 
 
  data _table_&table.; 
    format stub $256.; 
    set _table_&table.; 
    array classes &class.; 
    do _i = 1 to dim(classes); 
      if substr(_type_,_i+1,1)='1' then columnvar=classes[_i]; 
    end; 
    if (substr(_type_,1,1)='1' and length(compress(_type_,'0'))=1)  
      or compress(_type_,'0')=' '  
      then columnvar='All'; 
    Score=round(coalesce(of pct:,weight_inv_Sum),1.0); 
    Stattype=ifc(not(missing(weight_inv_Sum)),'Total Respondents','Percent');  
    Table="&table."; 
    if stattype='Total Respondents' then stub=vlabel(stub); 
    if strip(columnvar)='.' then delete; 
    keep table stattype stub columnvar score; 
  run; 
%mend; 
 

The second tabulation macro calculates mean values, but otherwise operates similarly to the proportion macro. The 
only significant external difference is that instead of the FMT parameter, a VARLABEL parameter is included to allow 
the column to be given a custom label.  This is specific to the means calculation, as a proportions calculation has a 
logical column label derived from the formatted value.  The %tab_mean macro is available in the appendix. 

These macros are then called based on the data in the control sheet.  First, the CLASS variables are brought into a 
macro variable for use in the tabulations.  Then, we generate our calls to the tabulation macros themselves.  Here we 
have two basic calls (one to %tab_prop and one to %tab_mean), and then a third custom call that comes from our top 
box module.   

proc sql noprint; 
  select variable into :class separated by ' '  
    from prepped_control  
    where not(missing(class))  
    order by class; 
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  select cats('%tab_mean(',variable,',',table_sas,', %nrstr(',label,'))')  
    into :tab_mean separated by ' '  
    from table_control  
    where statistic='mean'; 
 
  select cats('%tab_prop(',variable,',',var_fmtname,',',table_sas,')')  
    into :tab_prop1 separated by ' '  
    from table_control  
    where statistic='freq' ; 
  
  select cats('%tab_prop(',variable,',',reporting_fmtname,',',table_sas,')') 
    into :tab_prop2 separated by ' '  
    from table_control  
    where substr(statistic,1,4)='top '; 
quit; 

 

These calls are then executed, generating our table row datasets.  Finally, these table row datasets are accumulated 
into a single reporting dataset, called ALL_TABLES.  This reporting dataset may be saved as an external table to 
assist in quality assurance activities, as it contains all values that will be reported out. 

 

REPORT GENERATION 

Once the reporting dataset is generated, the appropriate reporting macro is called to generate the report.  In the 
implementation we show here, we first transpose the ALL_TABLES dataset so each columnvar is turned into a 
column (rather than a row, as it is initially).    

proc transpose data=all_tables out=for_report; 
  id columnvar; 
  idlabel columnvar; 
  var score; 
  by table descending stattype stub; 
run; 

 

Then, we generate three macro variable lists for PROC REPORT: the column variables (for the COLUMN statement), 
the DEFINE statements, and the report macro calls (defined in the reporting dataset itself). 

proc sql noprint; 
  select  label_sas 
    into  :columnord separated by ' '  
    from format_cntlin  
    where not(missing(class)); 
 
  select cats('%definecol(', label_sas,')')  
    into :definecol separated by ' '  
    from format_cntlin  
    where not(missing(class)); 
 
  select distinct cats('%report(',scan(table,1,'-'),')')  
    into :report separated by ' '  
    from table_control; 
quit; 

 

Finally, the reporting macro, which is very simple.  Most of the code has been pulled from the control file.  Any style 
options would likely be located in the %DEFINE macro (either as parameters or defaults for all rows).  The report 
calls are then placed inside an ODS statement based on which destination you want to output the report to. 
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%macro report(page); 
 
  proc report data=for_report nowd spanrows; 
    where substr(table,1,1)="&page."; 
    columns 
      (stub stattype) 
      (All &columnord.) 
    ; 
    define stub/' ' display style={width=1.5in}; 
    define stattype/' ' display; 
    define all/display; 
    &definecol.; 
  run; 
 
%mend; 

ADDITIONAL REPORTING OPTIONS 

The reporting macro included here is very bare-bones in order to show the key concepts effectively.  There is a lot of 
room for improvement and/or additional options that is left to the reader.  For example, details like titles and footnotes 
could be added to tables, statistical tests or standard errors could be added, multiple files could be produced.  Many 
of these could be accomplished by adding a new column to the control table, and then adding a small bit of code to 
add the functionality. 

Adding titles, as an example, would require adding a column to the control table, in that column entering a report title 
to each of the table rows (just the first of each overall table would suffice), and then modifying the report macro and 
the call to that macro to add a title parameter and to use it in the title statement. 

 

CONCLUSION 

Documentation driven programming can be an effective way to improve efficiency and the accuracy of your results, 
while maintaining flexibility for custom work.  Developing a large cookbook of modules allows you to respond quickly 
to requests while having to code very little.  Further, using the data dictionary format as a requirement definition 
allows the programmer to further reduce project-specific work while allowing the more project-specific work to be 
done by those with the business or project knowledge. 
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RECOMMENDED FURTHER READING 

For a good reference on list processing (the concept largely used in this paper), see Ron Fehd and Art Carpenter’s 
2007 SGF paper, “List Processing Basics: Creating and Using Lists of Macro Variables”, found at 
http://www2.sas.com/proceedings/forum2007/113-2007.pdf .  We prefer the variation “Write Calls to a Macro 
Variable”. 

APPENDIX 

Below is the full code necessary to implement this procedure, using the ANES data previously referenced.  A control 
spreadsheet will be distributed with this paper, or may be obtained from the authors.  The examples above were 
largely taken from the code below, but when implementing this we recommend using the code presented here, as 
there may be minor differences. 
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%let datadir=d:\temp\DataDrivenProgramming;  
              *specify the directory your data and control are stored in; 
%let outdir=d:\temp\DataDrivenProgramming;  
             *specify the directory your reports should be generated in; 
%let reportname=DDPExample.pdf; 
filename datafile "&datadir.\anes2010_2012egss2_dat.txt";  *the main datafile; 
 
 
*Control file import and processing; 
proc import out=control  
  file="&datadir.\Control - Documentation Driven Programming.xlsx"  
  dbms=excel replace; 
run; 
proc sql noprint; 
  select cats('fmtval',max(countc(values,'0A'x))+1)  
    into :max_distinct_fmt_vals  
    from control; 
quit; 
 
 
data prepped_control; 
  set control; 
  format fmtval1-&max_distinct_fmt_vals. $64.; 
  if not(missing(values)) then fmtname=cats(variable,'f'); 
  array fmtvals fmtval1-&max_distinct_fmt_vals.; 
  if not(missing(values)) then do _i=1 to countc(values,'0A'x)+1; 
    fmtvals[_i]=scan(values,_i,'0A'x); 
  end; 
  format reporting_fmtname $32.; 
  if statistic=:'top ' then  
    reporting_fmtname=cats('top',scan(statistic,2,' '),compress(range,':'),'f'); 
  format page $2.; 
  page=scan(table,1,'-'); 
  table_sas = translate(table, '_', '-'); 
   
run; 
 
 
*Standard variable format preparation section; 
proc sort data=prepped_control(where=(not(missing(fmtname)))) out=format_control; 
  by class fmtname; 
run; 
 
proc transpose data=format_control 
  out=format_control_vert(where=(not(missing(col1)))); 
  by class fmtname; 
  var fmtval:; 
run; 
 
data format_cntlin; 
  set format_control_vert; 
  format start end label $64.; 
  start=scan(scan(col1,1,':'),1,'-'); 
  end=ifc(find(col1,'-')>0,scan(scan(col1,1,':'),2,'-'),start); 
  label=strip(scan(col1,2,':')); 
  label_sas = tranwrd(strip(label),' ','_'); 
run; 
 
proc format cntlin=format_cntlin; 
quit; 
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*Extra module adding Top Box and Bottom Box formats for tabulation; 
data reporting_format_cntlin; 
  set prepped_control(drop=fmtname label); 
  format label $32.; 
  where statistic =: 'top '; 
  rename reporting_fmtname=fmtname; 
  **Top Box portion; 
  end=scan(range,2,':'); 
  start=put(input(end,8.)-input(scan(statistic,2,' '),8.)+1,2.); 
  label=catx(' ','Top',scan(statistic,2,' '),'Box'); 
  output; 
 
 
   
**Bottom (remaining) portion; 
  start=scan(range,1,':'); 
  end=put(input(end,8.)-input(scan(statistic,2,' '),8.),2.); 
  label=catx(' ','Bottom',end,'Box'); 
  output; 
  keep reporting_fmtname start end label; 
run; 
 
proc sort nodupkey data=reporting_format_cntlin; 
  by fmtname descending start; 
run; 
 
proc format cntlin=reporting_format_cntlin; 
quit; 
 
 
proc sort data=prepped_control; 
  by page table; 
run; 
 
data table_control; 
 set prepped_control(where=(not(missing(table)))); 
 var_fmtname = cats(variable,'f.'); 
 reporting_fmtname = cats(reporting_fmtname,'.'); 
run; 
 
 
**Input section; 
 
%macro read_in(var,start,fmt,length); 
  @&start. &var. &fmt.&length. 
%mend; 
 
%macro labelcode(var,label); 
  &var.="&label." 
%mend; 
 
%macro apply_formats(var,fmtname); 
  &var. &fmtname. 
%mend; 
 
proc sql noprint; 
  select cats('%read_in(',variable,',',start,',',format,',',length,'.)')  
    into :read_in_flat separated by ' '  
    from prepped_control where start ne ' '; 
 
  select cats('%labelcode(',variable,',%nrstr(',label,'))') length=1024  
    into :labelcode separated by ' '  
    from prepped_control where label ne ' '; 
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  select cats('%apply_formats(',variable,",",fmtname,".)")  
    into :formatcode separated by ' '  
    from prepped_control  
    where fmtname ne ' '; 
quit; 

 
data input; 
  infile datafile lrecl=20000 pad firstobs=2; 
  format 
    &formatcode. 
  ; 
  input 
    &read_in_flat. 
  ; 
  label  
    &labelcode. 
  ; 
run; 
 
 
**Error Checking and Cleaning section; 
 
%macro range_check(var,range); 
  if not(missing(&var.)) and not(&var. in(&range.)) then do; 
    type='RANGE'; 
    question="&var."; 
    output; 
  end; 
%mend; 
 
%macro base_check_all(var); 
  if missing(&var.) then do; 
    type='BASE'; 
    question="&var."; 
    output; 
  end; 
%mend; 
 
%macro base_check_restricted(var,base); 
  if (&base.) and missing(&var.) then do; 
    type='BASE'; 
    question="&var."; 
    output; 
  end; 
  if not(&base.) and not(missing(&var.)) then do; 
    type='BASE'; 
    question="&var."; 
    output; 
  end; 
%mend; 
 
proc sql noprint; 
  select cats('%range_check(',variable,',%nrstr(',range,'))')  
    into :range_check separated by ' '  
    from prepped_control  
    where not(missing(range)); 
 
  select cat('%base_check_all(',variable,')')  
    into :base_check_all separated by ' '  
    from prepped_control  
    where missing(base) ; 
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  select cats('%base_check_restricted(',variable,',%nrstr(',base,'))')  
    into :base_check_restricted separated by ' '  
    from prepped_control  
    where not(missing(base)); 
quit; 
 
*Vertical dataset containing one row per variable per respondent that fails checks; 
data checking; 
  format question type $32.; 
  set input; 
  &base_check_all.; 
  &base_check_restricted.; 
  &range_check.; 
  keep c2_caseid type question; 
run; 
 
proc sql noprint; 
  create table badids as  
    select distinct c2_caseid  
    from checking; 
  select nobs into :err_recs  
    from dictionary.tables  
    where memname='BADIDS' and libname='WORK'; 
quit; 
 
%macro grab_bad_dat(respid,var); 
  if c2_caseid=&respid. then do; 
    bad_val=vvalue(&var.); 
    variable="&Var."; 
    output; 
  end; 
%mend; 
 
%macro error_reporting(err_recs); 
 
  %if &err_recs.=0 %then  %do; 
    data No_err; 
      errors=&err_recs; 
      output; 
    run; 
 
    title 'There are no errors, the data is clean. No error output forthcoming.'; 
    proc print data=no_err noobs; 
    run; 
 
  %end; 
          
  %else %do; 
 
    title; 
    proc sql; 
      select cat('There are ',count(1), 
        ' records with errors. Error reports and datasets following.')  
        from badids; 
    quit; 
 
    title 'Summary list of errors by question and by type within question'; 
    proc freq data=checking; 
      table question question*type/list; 
    run; 
    title; 
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    proc sort data=prepped_control(where=(not(missing(variable)))) 
      out=control_for_el(keep=variable range base); 
      by variable; 
    run; 

   
    proc sort data=checking out=err_list(rename=question=variable); 
      by question; 
    run; 
 
    **Here we use a temporary file, because it is possible lthis may exceed; 
    **the maximum length of a macro variable; 
    filename bad2dat temp; 
 
    data _NULL_; 
      format grab_bad_dat $512.; 
      set err_list; 
      grab_bad_dat=cats('%grab_bad_dat(',c2_caseid,',',variable,')'); 
      file bad2dat; 
      put grab_bad_dat; 
    run; 
 
    data checking_vert; 
      set input; 
      format variable $32.; 
      %include bad2dat; 
      keep c2_caseid bad_val variable; 
    run; 
 
    proc sort data=checking_vert; 
      by variable; 
    run; 
 
    data abbrev_err_data; 
      merge err_list(in=a) control_for_el(in=b) checking_vert(in=c); 
      by variable; 
      if c; 
      label type='Type of Error' 
      bad_val='Bad Value'; 
    run; 
  %end; 
%mend error_reporting; 
 
%error_reporting(&err_recs); 
 
%macro range_clean(var,range); 
  if not(missing(&var.)) and not(&var. in(&range.))  
    then call missing(&var.); 
%mend; 
%macro base_clean(var,base); 
  if not(&base.) and not(missing(&var.))  
    then call missing(&var.); 
%mend; 
 
proc sql noprint; 
  select cats('%range_clean(',variable,',%nrstr(',range,'))')  
    into :range_clean separated by ' '  
    from prepped_control  
    where not(missing(range)); 
  select cats('%base_clean(',variable,',%nrstr(',base,'))')  
    into :base_clean separated by ' '  
    from prepped_control 
    where not(missing(base)); 
quit; 
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**Final cleaned datafile; 
data cleaned_data; 
  set input; 
  &range_clean.; 
  &base_clean.; 
  tabulateweight=100000*c2_weight; 
  if tabulateweight>0 then weight_inv=1/tabulateweight; 
run; 
 
 
**Reporting section; 
proc sort data=prepped_control; 
  by class; 
run; 
 
%macro tab_mean(var,table,varlabel); 
  *First run PROC TABULATE to generate results; 
  proc tabulate data=cleaned_data out=_table_&table.; 
    class &class./mlf missing; 
    var &var. weight_inv; 
    table (&var.*mean weight_inv*sum),(all &class.); 
    weight tabulateweight; 
    label weight_inv='Total Respondents'; 
    where not(missing(&var.)); 
  run; 
 
  *Then reformat those results for reporting; 
  data _table_&table.; 
    set _table_&table.; 
    array classes &class.; 
    do _i = 1 to dim(classes); 
      if substr(_type_,_i,1)='1' then columnvar=classes[_i]; 
    end; 
    if compress(_type_,'0')=' ' then columnvar='All'; 
    Score=ifn(not(missing(&var._mean)), 
      round(&var._mean,0.1), 
      round(weight_inv_Sum,1.0)); 
    Stattype=ifc(not(missing(weight_inv_Sum)), 
      'Total Respondents', 
      'Mean');  
    Table="&table."; 
    if stattype='Total Respondents'  
      then stub="&varlabel."; 
    if strip(columnvar)='.' then delete; 
    keep stub table stattype columnvar score; 
  run; 
%mend; 
 
%macro tab_prop(var,fmt,table); 
  proc tabulate data=cleaned_data out=_table_&table.(rename=&var.=stub); 
    class &var. &class./mlf missing; 
    var weight_inv; 
    table (&var.*colpctn weight_inv*sum),(all &class.); 
    freq tabulateweight; 
    format &var. &fmt.; 
    label weight_inv='Total Respondents'; 
    where not(missing(&var.)); 
  run; 
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  data _table_&table.; 
    format stub $256.; 
    set _table_&table.; 
    array classes &class.; 
    do _i = 1 to dim(classes); 
      if substr(_type_,_i+1,1)='1' then columnvar=classes[_i]; 
    end; 
    if (substr(_type_,1,1)='1' and length(compress(_type_,'0'))=1)  
      or compress(_type_,'0')=' '  
      then columnvar='All'; 
    Score=round(coalesce(of pct:,weight_inv_Sum),1.0); 
    Stattype=ifc(not(missing(weight_inv_Sum)),'Total Respondents','Percent');  
    Table="&table."; 
    if stattype='Total Respondents' then stub=vlabel(stub); 
    if strip(columnvar)='.' then delete; 
    keep table stattype stub columnvar score; 
  run; 
%mend; 
 
proc sql noprint; 
  select variable into :class separated by ' '  
    from prepped_control  
    where not(missing(class))  
    order by class; 
 
  select cats('%tab_mean(',variable,',',table_sas,', %nrstr(',label,'))')  
    into :tab_mean separated by ' '  
    from table_control  
    where statistic='mean'; 
 
  select cats('%tab_prop(',variable,',',var_fmtname,',',table_sas,')')  
    into :tab_prop1 separated by ' '  
    from table_control  
    where statistic='freq' ; 
  
  select cats('%tab_prop(',variable,',',reporting_fmtname,',',table_sas,')') 
    into :tab_prop2 separated by ' '  
    from table_control  
    where substr(statistic,1,4)='top '; 
quit; 
 
ods results=off; 
ods html close; 
 
*run calculation stage; 
&tab_mean.; 
&tab_prop1.; 
&tab_prop2.; 
 
*Collect tables together; 
data all_tables; 
  format stub $256.; 
  set _table:; 
run; 
 
proc sort data=all_tables; 
  by table descending stattype stub; 
run; 
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*Transpose to make column variables into actual columns; 
proc transpose data=all_tables out=for_report; 
  id columnvar; 
  idlabel columnvar; 
  var score; 
  by table descending stattype stub; 
run; 
 
 
proc sql noprint; 
  select  label_sas 
    into  :columnord separated by ' '  
    from format_cntlin  
    where not(missing(class)); 
 
  select cats('%definecol(', label_sas,')')  
    into :definecol separated by ' '  
    from format_cntlin  
    where not(missing(class)); 
 
  select distinct cats('%report(',scan(table,1,'-'),')')  
    into :report separated by ' '  
    from table_control; 
quit; 
 
 
*This macro can be expanded to include style options for columns; 
%macro definecol(var); 
  define &var./display; 
%mend; 
 
*This runs the actual reports; 
%macro report(page); 
  proc report data=for_report nowd spanrows; 
    where substr(table,1,1)="&page."; 
    columns 
      (stub stattype) 
      (All &columnord.) 
    ; 
    define stub/' ' display style={width=1.5in}; 
    define stattype/' ' display; 
    define all/display; 
    &definecol.; 
  run; 
 
%mend; 
 
options orientation=landscape; 
 
ods pdf file="&outdir.\&reportname."; 
 
  &report.; 
 
ods pdf close; 
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