
1

Paper BB-11-2014

Documentation Driven Programming: How Orienting Your Projects Around Their
Data Leads to Quicker Development and Better Results

Marcus Maher, Ipsos Public Affairs, Chicago, IL
Joe Matise, NORC at the University of Chicago, Chicago, IL

ABSTRACT

In this paper we show a modular, data-driven method of programming using a data dictionary based approach.
Constructing a data dictionary in a consistent, tabular fashion, one can write an application that reads in data, adds
formats and labels, performs data cleaning, and produces reports without almost any additional coding. This leads to
efficiency gains, accuracy gains, and more clear code. We explain the fundamentals of a data dictionary that can be
used for this purpose, with examples for different specific purposes, and show one implementation of a simple
system. We invite the reader to adapt the base concept to their specific needs, and suggest a few things to consider
when adapting this to more specific purposes.

The process applies to Base SAS version 9, and examples will be presented assuming the presence of Access to PC
Files, although the concept does not require it. Users will be expected to have an intermediate skill level with working
with SAS files, and some understanding of macros and automated code generation (using PROC SQL Select Into or
similar).

INTRODUCTION

SAS is a great product for automating data and reporting related tasks for many reasons, one being the ability to write
programs that are driven by data sources. Driving your program from data means identifying portions of your
program that are specific to some pieces of data – whether it be the primary dataset you are working with, or that
project’s metadata, or something you create specific to the purpose – and writing the program as a generic piece of
code that uses that data source as input parameters, rather than including that information in the code itself. This
leads to shorter codebases, more organized programs, more reusable code, and simpler updates. (If this sounds
suspiciously like Object-Oriented Programming to you, that’s because it comes from a similar mindset: structuring
code around data. If you are familiar with OOP techniques, you will see many parallels in this method.)

This paper looks at a specific type of data driven programming, which we call documentation or metadata driven
programming, covering its benefits and discussing implementation. It is geared towards projects that consist of
performing analyses or reporting on sets of data, but many of the concepts can be utilized in other areas. We will
discuss the concepts at a higher level during the paper, and present a complete program in the appendix
implementing this approach on a sample data source (the 2010-2012 ANES Evaluations of Government and Society
Study).

WHAT IS DOCUMENTATION DRIVEN PROGRAMMING?

A high level definition: It is an approach to programming that first creates metadata in a tabular format for the fields in
your data that describes these fields and contains instructions for a series of actions that you wish to perform. The
programmer will then implement a generic SAS program to interpret the metadata and generate SAS code from it.

WHY SHOULD YOU USE DOCUMENTATION DRIVEN PROGRAMMING?

Documentation driven programming is not only useful as a method of keeping your manager off your back to
document your process. Organizing your documentation in a way that allows you to drive your programming with it
enables you to work with others more effectively (in particular with non-programmers), and leads to greater
transparency, writing fewer lines of code, increased accuracy with less QA required, and greater reusability of code.

COLLABORATION AND EFFICIENCY

Documentation driven programming helps collaboration in two key ways: it clarifies communication, and it enables
more efficient utilization of resources. Not every programmer knows SAS, and not everyone can read programming
syntax. By driving your programming with documentation that does not require a programmer to fill out, you can move
a substantial portion of the work to project staff and other non-programmers. Ideally it can be the method by which
your requirements are delivered to you, allowing you to turn requirements into production code with much less effort.

2

TRANSPARENCY AND READABILITY

If your documentation set-up is clear enough that it can be explained to someone with a non-SAS or non-technical
background, it also makes your work more transparent. If other researchers, supervisors, or collaborators want to
know how you did something, for example dichotomizing a variable, you can send them your documentation, which
includes complete information for that process. It is also easier for you to answer questions after the analysis is
complete (when you have moved on and forgotten the specifics) because spreadsheets are more organized and
easier to read than programming code.

Your programs will be much clearer and easier to read as a result of moving the data definitions to a spreadsheet.
This takes the clutter out of the program, which then makes them much more focused on the logic of the process you
are developing. Removing much of the code needed to read in data and perform normal cleaning, validation, and
preparation from your main program makes it easier to focus on the interesting elements of your program.

For example, compare these two short programs.

data my_data;
 infile "myfile.txt" dlm=',';
 informat
 x y $10.
 a b $15.
 c datetime17.
 d date9.
 e f $20.
 g $35.
 ;
 format
 c datetime17.
 d date9.
 ;
 input
 (x y a b) ($)
 c
 d
 (e f g) ($)
 ;
run;

data my_data_cleaned;
 set my_data;
 if x in ('BADDATA','MOREBAD')
 then delete;
 else if x in ('BADVAL','BADVAL2')
 then x=' ';
 if datepart(c) le '01JAN2010'd
 then delete;
 else if datepart(c) ge '01JAN2014'd
 then delete;
run;

data my_data;
 infile "myfile.txt" dlm=',';
 &informatlist.;
 &formatlist.;
 &inputlist.;
run;

data my_data_cleaned;
 set my_data;
 &cleanrulelist.;
run;

Okay, we cheated some with the second program, but that is the point: all of that code was removed from the body of
the core program, and can be located either in other program file(s) or in an earlier portion of the main program,
easily skipped over while browsing the code as it has clear purpose and in a production environment would be oft-
reused code. The core portion of the data step is stripped clean, allowing users to read exactly what is happening (of
course, using well-named macro variables).

Now if you were to include a few lines of code in the data for a specific purpose, those lines would be obvious to any
reader and easy to spot, not hidden in the middle of dozens of lines of input statements, formats, informats, and
labels. Data driven programming reads like a story, and the details are tucked away in footnotes.

Figure 1. Two Examples of Input Code.

ACCURA

Utilizing a s
reuse secti
definitions
have tasks
names, an
beneficial f
and progra
circumstan

All of this a
perform, yo
process fro
easier to se
possible to
statements

MODULA

One key co
means writ
module is t
need from
increases a
contained m
also simplif
known to w

In the end,
Non-progra
less time, a

In the rest
first at a ge
backgroun
applicable

THE CO

The autom
driver. It co
validate yo
examples i
same thing

ACY AND REU

spreadsheet dr
ions of code or
to another sou

s that are super
d run. Your co
for regularly sc
ammatically def
nces for your re

accumulates to
ou can easily s
om run to run is
ee where chan

o miss one. Not
s saves times a

AR PROGRAM

oncept to docu
ting programs t
then one recipe
the book and p
accuracy by vir
modules, and i
fies the develo

work for compa

 we utilize prog
ammers can m
and your progra

of the paper w
eneral level and
d, so these imp
in a variety of c

NTROL TAB

mated reporting
ontains the info
our data, as we
in this paper, a
g.

USABILITY

riven approach
r even entire pr
urce or data set
rficially identica
ode is less likely
heduled progra
fine the input/o
egularly schedu

make it much
structure your d
s easier too, as
nges need to be
t having to pag
and reduces er

MMING

mentation drive
that accomplish
e in your cookb
putting them int
rtue of re-using
t improves effic

opment of new
rative purpose

gramming from
ore easily unde
am will be muc

e will demonst
d then working
plementations w
contexts given

BLE (DATA

solution is driv
ormation neces
ll as to generat
nd references

Figure

h makes your p
rograms with n
t removes muc
al you can drop
y to have error
ams, as you ca

output files, and
uled runs - eve

easier to deve
documentation
s the organizati
e made. Updat
e through man
rors.

en programmin
h a particular s
book; beginning
to practice. Th

g tested code, i
ciency by redu
modules thems
s.

m metadata or d
erstand what y
ch more portab

rate how docum
through a spe
will reflect that
appropriate cu

DICTIONAR

ven by the cont
sary to input o
te reports from
to “control spre

2. Example C

3

program more g
early no chang

ch of what is pro
p in a new spre
rs, as it is tried-
an set them up
d not need any
n if the data ch

elop accurate p
to allow you to
ional structure
ing a series of

ny lines of hard

ng is that of mo
small, self-conta
g a new project
his is part and p
t improves rea
cing the start-u
selves, as they

documentation
you did, you can
ble and focused

mentation drive
cific example.
industry exper

ustomization.

RY)

trol table, which
r subset your d
 your data. It i
eadsheet” or “c

Control Table

generic, meani
ges other than
oject or task sp

eadsheet, upda
-and-tested cod
to look for the
changes to the

hanges some.

rograms. If you
o re-use code fo

provided by a
hardcoded ma
coded formats

odular program
ained task as a

ct is as simple a
parcel of many

adability by sep
up time for new
y can be easily

because it low
n transition fro

d on the proces

en programmin
The paper auth
rience; howeve

h is both a data
data, format an
is often an Exc
control sheet” c

e as Excel file

ng it is more lik
the spreadshe
pecific from the

ate the output fi
de from other p
correct (or new

e SAS code un

u have a series
or those action
spreadsheet o

acro calls is not
, labels, macro

mming. Modula
a stand-alone p
as grabbing the
y of the above o
parating the tas
w projects. Mod

tested alongsi

wers risk and in
m specs to com
ss flow.

ng would be ap
hors come from
er, the general

a dictionary and
nd label the var
cel spreadshee
can be assume

kely that you ca
et. Moving

e program, so i
ile and input file
projects. This a
west) spreadsh
nder normal

s of similar acti
ns. Updating th
or table makes
t hard, but it’s s

o calls, and inp

ar programming
program. That
e recipes that y
objectives; it
sks into self-
dular programm
de other modu

creases produ
mpleted progra

pplied to reporti
m a survey rese
process is cert

d the program
riables, clean o
t, as it will be in

ed to refer to th

an

f you
e
also is

heet

ons to
he
it
still
ut

g

you

ming
ules

ctivity.
am in

ing,
earch
tainly

or
n the
e

The basic s
than that c
will describ
on your ex
functionalit

The contro
application
Depending
split up diff

We group t
columns, th

INPUT CO

While your
are it usua

One comm
informat of

These will

@[posi

This will be
into column

If your data
blank value
character i

structure of the
olumn, you can

be the most com
act needs. On
ty based on ne

ol table does no
s, you might st

g on your needs
ferent groups o

the column typ
he data cleanin

OLUMNS

r data may com
lly will not. In t

mon data source
f the data elem

later be used t

ition] vari

e a consistent t
ns of the contro

a is in a delimit
e and a variabl
ndicator colum

e table is one ro
n pick and choo
mmon possible
ne of the great a
ed.

ot have to be a
tore the informa
s, you might pr

of information th

es into four ba
ng columns, an

me to you in a S
these cases yo

e is the flat fixe
ents. You put

o construct inp

iable [infor

theme througho
ol table.

ed text file, you
e order column

mn).

ow per dataset
ose what colum

e columns here
advantages of

spreadsheet; d
ation in Access
refer to contain
hat are used in

sic concepts.
nd the reporting

SAS dataset wi
ou need to inpu

ed-column text
each of those

put statements

rmat][lengt

out this solution

u may want to
n. You could a

Figure 3. C

4

t variable. The
mns you need d
e, but there are

a solution like

depending on y
s table(s), SQL
 all information

n different place

There are the i
g columns.

th exactly the c
ut your data.

file. To read th
values in a sep

of the form

h]

n: deconstructi

include a colum
lso use an info

Control Table

e first column is
depending on w
 many differen
this is the flexi

your needs and
L Server tables
n in a single sh
es, or perhaps

input columns,

columns and ro

his in, you nee
parate column,

ing SAS statem

mn that indicate
ormat column if

 Input Cells

s the SAS varia
what your appl
t potential com
ibility to add or

d comfort level
, SAS datasets
eet or table, or
have different

 the formatting

ows you are int

d to know the p
 as below.

ments and load

es character va
f you need to (r

able name. Oth
lication needs;

mbinations depe
subtract

l with different
s, or text files.
r you might pre
responsible pa

g and metadata

terested in, the

position, length

ing their conte

ariables with a
rather than the

her
we

ending

efer to
arties.

a

e odds

h, and

nts

$ or
e

Another typ
variables in
you wish to
you might h
(for your m

Further, in
data cleani
deliver to a
“Input” vari
SAS datas

FORMAT

Using form
complexity

The simple
a delimiter
to key this
using a bui

This is app
are either v
lend itself a
separate th
variable dir
glance.

Another op
dictionary i
create a se
format nam
the other s
name will t

pe of input may
n them, of whic
o keep (a simp
have a “source

merge variable).

some cases yo
ing or validatio

an end user or
iables and “Ou
et. This can be

TTING AND M

mats is often two
y of your data a

est way to defin
. In the examp
in excel). We
ilt-in SAS forma

propriate when
very different fr
as easily towar
he application f
rectly in the da

ption is to put th
is useful becau
econd sheet in
mes from this s
heet. This also

typically be der

y be SAS datas
ch you need a h
le 1/0 flag). Yo

e” column that d
.

ou may need s
n) but are not d
client). The co
tput” variables,
e combined wit

METADATA C

o steps: creatin
nd your needs

ne and apply yo
ple below, we h
will use this bo
at, you can sim

your formats a
rom each other
rds reusing cus
from the creatio
ta dictionary’s

he formats onto
use you can de
the workbook
heet in the “for
o means that th
rived from the v

F

set(s). You mig
handful. If this
ou might also n
defines which d

some variables
desired in the o
olumn flag can
, where “Input”
th any of the ot

COLUMNS

ng custom form
, you may acco

our formats is t
have the format
oth to create a f
mply include it i

are fairly simple
r or you do not
stom formats, s
on of the forma
main sheet, ma

o a separate ta
fine a single fo
labeled “Forma

rmat” column o
he format name
variable name

Figure 4. Exam

5

ght download p
 is the case, yo

need to combin
dataset a varia

for processing
output dataset
be expanded t
meant we bro

ther input types

mats, and apply
omplish the cre

to include them
ts defined in an
format for the v
n this column w

e (either one va
have too many

so in cases whe
ats. This has th
aking it easier

ab. Separating
ormat and then
ats”, and define
n the first shee
e can be more
rather than the

mple Values c

public use SAS
ou can include
ne multiple data
able comes from

g your data (for
(particularly if y

to have multiple
ught them in b
s.

ying formats to
eation in a few

m in a single co
n excel column
variable, and to
without values.

alue to one valu
y different varia
ere reuse is pre
he advantage o
to see what va

 the format val
reuse it. We s

e our formats in
et, which will th
 descriptive (in

e options).

column

S datasets that
a column that

asets together;
m, with “all” ind

r example, flags
you are creatin
e values; in on
ut did not save

variables. De
different ways

lumn with equa
n, separated by
o apply that for

ue, or one rang
ables. This ap
eferred it is ofte
of showing the
alues a variable

ue list from the
show an examp
n this sheet. W

hen apply the fo
n the single colu

have hundred
indicates varia
 if this is the ca

dicating all data

s that are usef
ng a dataset to
e project, we h

e them in the fin

pending on the
; we show two

alities separate
y newlines (alt+
rmat. If you are

ge to one value
proach does n
en easier to
values for the

e can take at a

e main data
ple here where

We then use the
ormats we crea
umn version, th

s of
ables
ase,
asets

ul in

had
nal

e
here.

ed by
+enter
e

e) and
ot

e we
e
ate on
he

Variable la
the variable

Other meta
column for
reporting, t

DATA CL

Data clean
will cover t

One of the
reports is t
skip pattern
checks. So
project, but

In general,
in the meth
observation

bels should be
e for the user.

adata fields ma
defining the or

to pull groups o

LEANING AN

ing and validat
his to a medium

major tasks yo
o ensure the d
n checks for va
ome of this will
t some of it can

 we will be crea
hods section we
ns and/or varia

e stored in anot

ay be useful, su
rder the variab
of questions tha

D VALIDATIO

tion can encom
m depth, and p

ou must undert
ata conforms to
ariables that mi
l inevitably be p
n be generalize

ating columns
e will explain h

ables that fail th

Figure 5. E

Figure 6.

ther column, w

uch as variable
les will be in th
at are related, o

ON COLUMN

mpass a numbe
point to where t

take in taking d
o the rules you
ight be conting
project-specific
ed.

indicating parti
how to perform
hese checks, w

Example of sep

Example Colu

6

hich often will s

e lengths (partic
he output datas
or to pull quest

NS

er of things, fro
this could be ex

data from anoth
u expect. This
ent on the valu

c, and may enc

icular checks to
those checks.

with indicators o

parate Values

umns for impl

serve the data

cularly for num
set, or variable
tions with a sim

m very simple
xpanded.

her source and
includes range

ue in another v
compass the m

o be performed
 Typically, data

of how they fail

s tab

lementing edi

dictionary purp

eric variables),
classes (which

milar scale).

operations to v

d using it in you
e checks for ind
variable, and m
majority of the co

d on particular
aset(s) will be
l those checks.

it checks

pose of describ

, an output ord
h could be usef

very complex.

ur analyses or
dividual variabl
ore in depth lo
ode you write f

variables, and
created contai
.

bing

er
ful in

We

es,
gical
for a

then
ning

Range che
indicates w

You also c
are valid (1
The exact

Skip patter
another va
You might

First, you m
you might i
Q52 might
Q52 is yes
“Did you ev
being ‘yes’

You could
typically lim
Commonly
out of it; an
unlikely tha
program cl
and we adv

For some p
datasets (f
would be c
that could e

REPORT

The conten
standardize
statistic is a
may have s
variables a
that is repo
frequency t
but encour

ecks often sync
whether a varia

ould include in
1 through 5 for
syntax is unim

rn shows when
riable has a pa
create a colum

might have a va
include values
be “Did you lo
). You might in
ventually find y
).

conceivably al
mit this usage to
y using complex
nd it may be ea
at non-program
eaner and mor
vise you to pick

projects, you lik
or example, a

custom impleme
easily be modif

ING COLUM

nts of the repor
ed it is; but the
associated with
some column(s

are used in wha
ort-oriented rath
table for each v
rage you to thin

c up with custom
ble should be f

that column th
normal answe
portant, so long

 a variable is e
articular value,
mn in your data

alue “All” that in
like “Q52=1” th
se your luggag
ndicate “not(Q5
your luggage?”

low any legal S
o fairly simple s
x syntax makes

asier to write th
mmers will use y
re focused on t
k the path that

kely could com
respondent can
entations for ea
fied for each pr

NS

rting columns w
e general forma
h a particular c
s) that define c
at report (proba
her than variab
variable), it ma
nk outside the b

Figu

m formats for c
flagged if it doe

he valid range f
rs, and then 7,
g as you have

either required t
or is required N
dictionary that

ndicates a varia
hat indicate a q
ge”, and Q53 m
53=1)” if it shou
and Q53a mig

SAS syntax in t
syntax (ie, som
s the documen
at in a SAS pro
your document
the logic of the
makes most se

me up with more
n have up to 5
ach project, like
roject.

will vary depend
at will be simila
column (Yes/No
omposites of v

ably one colum
ble-oriented, bu
ay be contained
box when using

ure 7. Exampl

7

categorical vari
es not have a v

for a variable (i
8,9 for refused
a consistent se

to have a value
NOT to have a
t indicates this

able is all-base
question should

might be “Did yo
uld have a valu
ght be “Did you

this column, alt
mething that wo
nt harder to rea
ogram rather th
tation, including
overall proces
ense in your en

e in-depth logic
rows, one for e
ely, but you co

ding on what k
r. You may ha
o, 5 on a 1-5 sc
variables; and y
n per report).

ut for simple ap
d on the variab
g this in your ow

le of Reporting

iables. As suc
value defined in

in the form [sta
d/don’t know/NA
et of rules and

e for every reco
 value if anothe
through a few

ed (should have
d have a value
ou eventually fi
ue only of Q53
 file an insuran

though it is pro
ould fit in a 20 c
ad, which make
han in an exce
g all qualificatio

ss. Both approa
nvironment.

cal checks, suc
each store the

ould easily deve

kind of reporting
ave some colum
cale, 8-10 on a
you will have so
Often this need

pplications (suc
le sheet. We p
wn environmen

g columns

h, we might cre
n its format.

art..end start..e
A), then [1..5 7
communicate

ord, is required
er variable has
different mean

e a value for ev
if Q52=1 but n

ind your luggag
does not equa

nce claim?”, de

obably more rea
character wide
es it harder for
l column or sim
on logic will he
aches have ben

ch as record co
respondent sh

elop some gen

g you typically
mn(s) that defin
a 0-10 scale, >5
ome column(s)
ds to be a sepa

ch as where a r
present one sim
nt.

eate a column

nd], so if 1..5 7
7..9] or [1..5 7,8
them to your u

d to have a valu
s a particular va
ns.

very record). T
not otherwise (s
ge?”, only aske

al 1 (Q53 might
epending on Q5

adable if you
 column or so)
users to get va

milar. However,
elp keep your
nefits and shor

ounts for relatio
hopped at). Th
eralized versio

do, and how
ne what kind of
50, mean, etc.)
) that define wh
arate spreadsh
report consists
mple example h

that

7,8,9
8,9]).
sers.

ue if
alue.

Then
so
ed if
t be
53 not

.
alue
, if it is

rtfalls

onal
hese
ons

f
); you
hich
heet

of a
here,

Here we ha
column tha
on this colu
Y. For exam
take % (8,9
percentage

For a more
suppose th
responses,
delimiter (s

Another op
would be m
unfavorabl

Here we ad
row for the
combined i
favorable r

IMPLEM

Now that w
operations
data diction
will most lik
common ty

In this sect
INTO to co
your needs

DATA IN

The most b
this examp
CSV). This
column, an

ave three repo
at is defined in
umn. In our ind
mple, we migh
9,10) out of 1-1
e of “highly unfa

e complicated r
hat we desire to
, the mean, and
say, a semicolo

ption would be
marked with an
e responses yo

dd another leve
 composite itse
into a composi
responses (in th

ENTATION

we have a comp
on the data. T

nary. We will
kely differ from
ypes of code ne

tion, we assum
onvert data into
s and preferenc

NPUT

basic utilization
ple we will show
s uses the colu

nd the informat

Figure 8

rting columns.
the report has

dustry much of
t have a likert s

10, to show the
avorable” respo

report featuring
o report the pro
d the median. W

on).

to add a total o
‘X’ or a ‘1’ if yo

ou would input

el of complexity
elf which allows
te “DoctorSatis
his case ‘5’ on

MACROS

pleted data dic
This comes in t
not go into eve
 the base conc
eeded.

me you are fami
o macro variabl
ces; use which

n of the data dic
w an implemen
umns containin

for the column

. Example of

 Each have the
some text here
our reporting is
scale on 1-5 an

e percentage of
onses, and we

g multiple statis
oportion of high
We could add

of four columns
ou desire to se
the range of re

y, a column de
s us to more ea
sfaction”, which
a 5 point scale

tionary, we nee
the form of mac
ery type of mac
cept, given you

iliar with autom
es. There are
ever fits best a

ctionary is to in
tation using a f
g the variable

n. Here, again,

Reporting col

8

e name of a rep
e identifying wh
s on scale data
nd then we take
f “highly favora

e may frequentl

stics per variab
hly favorable re
multiple statisti

s, one for each
ee them reporte
esponses that f

fining which co
asily request it
h is then used i
e).

ed to have som
cros that are pa

cro here - and i
r needs will be

mated code gen
several other m

and you are mo

nput your data f
fixed width colu
name, the posi
is the screensh

lumns with m

port as the colu
hat statistic you
a, where we typ
e % of 5 out of

able” responses
y take the mea

le, there are se
esponses, the p
ics in the single

statistic requir
ed. In the colum
fit that category

omposite(s) a v
on a particular
in a report usin

me SAS code th
arameterized b
n particular, th

e unique - but w

neration, such a
methods that m
ost comfortable

from an extern
umn file (as op
ition the variab
hot of the cont

multiple statisti

umn header, a
u would include
pically take the
f 1-5, or a scale
s. We also ofte
an or median o

everal options.
proportion of hi
e Statistic colu

red. The mean
mns for the favo
y.

variable is a pa
r report. Q5, Q
ng the proportio

hat performs th
based on the in
is is where you

we will cover se

as using PROC
might be prefer
e with.

nal source such
pposed to a del
ble starts in, the
rol file from abo

ics and a com

nd in the body
e in the report b
e top X values o
e of 1-10 and w
en would take t

of a column.

 For example,
ighly unfavorab
mn, separated

or median colu
orable and

art of, and then
Q6, and Q7 are
on of highly

he necessary
nformation in th
ur implementat
everal of the m

C SQL and SEL
rable depending

h as a text file.
imited file, suc
e length of the
ove:

posite

each
based
out of
we
the

ble
 by a

umn

add a

he
ion
ost

LECT
g on

 In
h as a

To utilize th

%macro
 @&st
%mend;

Then we us

proc s
 sele
 in
 fr
 wh
quit;

This gener
SQL statem

%read_
%read_
%read_

LABELLI

Generating
accommod

%macro
 &var
%mend;

his information

o read_in(v
tart. &var.
;

se PROC SQL

sql noprint
ect cats('%
nto :read_i
rom prepped
here start

rates calls that
ment, which wil

_in(version
_in(c2_case
_in(c2_samp

NG AND FOR

g the code to la
date the more c

o labelcode
r.="&label.
;

, we need a ba

var,start,fm
 &fmt.&leng

L to generate a

t;
%read_in(',v
in_flat sepa
d_control
ne ' ';

look like the fo
ll cause the ma

n,1,$,30.)
eid,32,,4.)
pwt,37,,12.)

RMATTING

abel your variab
complex strings

e(var,label)
"

Fi

asic macro that

mt,length);
gth.

list of calls to t

variable,',
arated by '

ollowing. Durin
acro calls to ap

)

bles is a simila
s you might see

);

gure 9. Input

9

t takes as para

this macro whic

',start,','
 '

g development
ppear in your re

rly straightforw
e in a variable

t section of Co

meters variable

ch we will later

',format,','

t, you can remo
esults window f

ward process, w
label. The ma

ontrol Dataset

e, start, length

r use in our inp

',length,')

ove the NOPR
for ease in deb

with two slight d
acro is simple:

t

, and format:

ut datastep.

')

RINT from the P
bugging.

differences to

PROC

10

The PROC SQL code, however, is slightly different:

proc sql noprint;
 select cats('%labelcode(',variable,',%nrstr(',label,'))') length=1024
 into :labelcode separated by ' '
 from prepped_control
 where label ne ' ';
quit;

Note the length option on the select statement, which overrides the default length of CATS in a PROC SQL statement
(200), which might be less than our variable labels’ lengths. Also differing is the addition of the %NRSTR wrapper
around the label, which protects us from special characters causing unintentional macro variable resolution. (If you
intentionally include macro variables in your labels, leave this off.)

The last step in our initial data input is to generate some basic formats. At this stage we assume that you have loaded
your formats from your control file into your format catalog using PROC FORMAT; full code for this step is included in
the appendix.

%macro apply_formats(var,fmtname);
 &var. &fmtname.
%mend;

Now we are ready for a data step to input, label, and format our data. Notice that we call the three macro variables
that we generated above in our data step. Recall the data step in Figure 1 here; this is nearly identical.

data input;
 infile datafile lrecl=32767 pad;
 format
 &formatcode.
 ;
 input
 &read_in.
 ;
 label
 &labelcode.
 ;
run;

At this stage, we have a complete dataset with labels, formats, and of course data. It is ready for the next step, which
in our case is data validation.

DATA VALIDATION

The two data validation methods we present here are fairly basic, validating ranges and bases, and hopefully denote
the minimum one would do to validate a dataset for delivery or analysis. Further validation methods could be
included, depending on the needs of the project and the researchers; this might include logical validation, referencing
an external lookup table, or foreign key validation, among others.

First we check that all of the data is in our defined range using the range_check macro. Here we would only pull into
the macro variable rows that have valid ranges listed.

%macro range_check(var,range);
 if not(missing(&var.)) and not(&var. in(&range.)) then do;
 type='RANGE';
 question="&var.";
 output;
 end;
%mend;

11

Any instance where a variable has data and is not in our pre-defined range will be output to our checking dataset
along with a flagging variable, which we are calling ‘type’ stating which check it failed.

Since this is survey data, the allowable responses on the questionnaire provide our constraints. In other instances
one could flag data based on prior knowledge of what is “reasonable” and follow-up on outliers. One could also put a
keyword into this field to trigger an execution of PROC UNIVARIATE that flags your most extreme cases or gives you
a histogram to show you the distribution of the data.

The second check we will perform verifies that you have data if and only if you expect to have data. Here there are
two distinct possibilities. You could expect the field to have data always, then all one needs to do is leave the ‘base’
column blank in the control file and the program will catch blank records. The second is that you expect to have data
in particular situations. Input your constraints in the ‘base’ column and the program will check in both directions. Do
you have data when you expect it, and is it missing when you don’t expect it?

%macro base_check_all(var);
 if missing(&var.) then do;
 type='BASE';
 question="&var.";
 output;
 end;
%mend;

%macro base_check_restricted(var,base);
 if (&base.) and missing(&var.) then do;
 type='BASE';
 question="&var.";
 output;
 end;
 if not(&base.) and not(missing(&var.)) then do;
 type='BASE';
 question="&var.";
 output;
 end;
%mend;

Remember that &BASE. here is a logical SAS statement (that evaluates to TRUE or FALSE). When we create the
two lists of macro calls, we use the presence or absence of data in the Base column to determine which list a variable
falls into. Here we assume that all questions should be checked; if your project expects some variables to have
missing values, and considers that acceptable, you may have a different call.

proc sql noprint;
 select cat('%base_check_all(',variable,')')
 into :base_check_all separated by ' '
 from prepped_control

where missing(base) ;
 select cats('%base_check_restricted(',variable,',%nrstr(',base,'))')
 into :base_check_restricted separated by ' '
 from prepped_control

where not(missing(base));
quit;

You can call these three macro lists in a later data step. We choose to create a vertical dataset with all of the errors
and an identifier showing which error check it failed (base or range) – thus the output statements in the macros.

data checking;
 format question type $32.;
 set input;
 &base_check_all.;
 &base_check_restricted.;
 &range_check.;
 keep c2_caseid type question;
run;

12

This dataset could then be used to create an error log for your users to check, either using a PROC FREQ to identify
problematic variables (particularly during development) or by viewing an export of this dataset directly to a file if there
are few errors (during production in particular). In the appendix we show a simple error log as an example.

AUTOMATIC CORRECTION

In the case of our data source, we have a lot of data to clean. People who did not respond to questions were marked
with a negative number of varying values depending on the reason why the person did not answer the question. We
can take all of our entries into the control file for validation and just as easily turn them into cleaning statements, if
needed. We only recommend doing this in conjunction with verifying the errors in the validation step, as this could
cause serious issues, either by masking a more serious error (such as a failure point/break off in the questionnaire) or
could be a result of improperly defined validation specifications.

If you analyze your errors and decide you want to automatically clean them, as we do, you could use a macro like
this. You could also supply in another column more complex cleaning instructions, such as different special missing
values for different reasons for invalid data. In our case we are comfortable with simply setting these invalid data
points to missing.

%macro range_clean(var,range);
 if not(missing(&var.)) and not(&var. in(&range.))
 then call missing(&var.);
%mend;

%macro base_clean(var,base);
if not(&base.) and not(missing(&var.)) then call missing(&var.);
%mend;

We then utilize these macros (pulled into macro variable lists) in a data step to generate our final cleaned dataset. In
a more complex project we might have additional cleaning instructions included in this data step that were not
generated automatically, but instead were either listed in a SAS program to %INCLUDE, or stored in an editing
database to be applied in a similar fashion here.

data cleaned_data;
 set input;
 &range_clean.;
 &base_clean.;
run;

REPORTING

Reporting needs vary significantly from project to project, so our reporting solution is geared around separating the
calculation and report production into separate modules, allowing users to build a cookbook of reporting solutions
over time that can be mixed and matched to produce reports as needed. Here we will show a fairly simple example,
with two calculation macros and one report production macro.

The basic shell of a calculation macro consists of a call to a summarization procedure, whether that is PROC
TABULATE, PROC SURVEYFREQ, PROC SUMMARY, or similar procedures. Following that is a data step that
converts the output from the summarization procedure into a generic format that can be consumed by the report
production macro(s) without having to know how the data was summarized.

In our approach, the calculation macro is responsible for providing five variables: the table the row of results is for
(from the control spreadsheet); the statistic type, useful when a variable is summarized in multiple ways; the stub,
which is identifies which row in the report the result belongs on; the column variable, which stores which classification
variable created that row and which determines which column in the report the data is intended for; and the score,
which is the result itself. More complex reports might include additional columns, such as a statistical test result or a
standard error.

We also take an approach here in this example that is useful for allowing extensive customization and extremely
simple code, but comes at the cost of additional runtime when used with larger datasets. That approach is to run the
summarization procedure (in this case PROC TABULATE) once for each report row. This is generally insignificant
when running reports from small or medium sized datasets, but when run on very large datasets or with a very large
number of report rows it may be impractical to take this approach. In that case, a similar module might be created
that performs the tabulations in larger batches to avoid multiple runs against the dataset.

13

CALCULATIONS

The first tabulation macro (below) is used to report proportions. This might be the proportion of responses in a
particular range, or to report the distribution of responses across all values. It takes three parameters: VAR, FMT,
and TABLE. VAR indicates the variable that is being summarized, while TABLE includes which table the response
will be included in and the order in that table (for example, Table 3.01 would be Table 3, row order 1).

FMT is how the macro is able to flexibly calculate many different proportion types, even of a single variable. FMT
provides the name of a format that groups the values needed for reporting together, and can even be used to remove
unwanted values (such as if you want to see proportion of positive responses, and do not want to report negative or
neutral responses) by using ‘.’ to label those values.

In our case, we use two format types; one is a simple distribution, using the default format for the variable, and one is
a “top box” format, where we show the proportion of positive responses and the proportion of other responses. The
top box format is an example of a custom module here; it is dropped in to create a custom format that meets our
needs, but doesn’t require modifying the remainder of the program beyond adding the additional tabulation step,
which could be included as part of the module or built as a separate module if it is more generally useful.

%macro tab_prop(var,fmt,table);
 proc tabulate data=cleaned_data out=_table_&table.(rename=&var.=stub);
 class &var. &class./mlf missing;
 var weight_inv;
 table (&var.*colpctn weight_inv*sum),(all &class.);
 freq tabulateweight;
 format &var. &fmt.;
 label weight_inv='Total Respondents';
 where not(missing(&var.));
 run;

 data _table_&table.;
 format stub $256.;
 set _table_&table.;
 array classes &class.;
 do _i = 1 to dim(classes);
 if substr(_type_,_i+1,1)='1' then columnvar=classes[_i];
 end;
 if (substr(_type_,1,1)='1' and length(compress(_type_,'0'))=1)
 or compress(_type_,'0')=' '
 then columnvar='All';
 Score=round(coalesce(of pct:,weight_inv_Sum),1.0);
 Stattype=ifc(not(missing(weight_inv_Sum)),'Total Respondents','Percent');
 Table="&table.";
 if stattype='Total Respondents' then stub=vlabel(stub);
 if strip(columnvar)='.' then delete;
 keep table stattype stub columnvar score;
 run;
%mend;

The second tabulation macro calculates mean values, but otherwise operates similarly to the proportion macro. The
only significant external difference is that instead of the FMT parameter, a VARLABEL parameter is included to allow
the column to be given a custom label. This is specific to the means calculation, as a proportions calculation has a
logical column label derived from the formatted value. The %tab_mean macro is available in the appendix.

These macros are then called based on the data in the control sheet. First, the CLASS variables are brought into a
macro variable for use in the tabulations. Then, we generate our calls to the tabulation macros themselves. Here we
have two basic calls (one to %tab_prop and one to %tab_mean), and then a third custom call that comes from our top
box module.

proc sql noprint;
 select variable into :class separated by ' '
 from prepped_control
 where not(missing(class))
 order by class;

14

 select cats('%tab_mean(',variable,',',table_sas,', %nrstr(',label,'))')
 into :tab_mean separated by ' '
 from table_control
 where statistic='mean';

 select cats('%tab_prop(',variable,',',var_fmtname,',',table_sas,')')
 into :tab_prop1 separated by ' '
 from table_control
 where statistic='freq' ;

 select cats('%tab_prop(',variable,',',reporting_fmtname,',',table_sas,')')
 into :tab_prop2 separated by ' '
 from table_control
 where substr(statistic,1,4)='top ';
quit;

These calls are then executed, generating our table row datasets. Finally, these table row datasets are accumulated
into a single reporting dataset, called ALL_TABLES. This reporting dataset may be saved as an external table to
assist in quality assurance activities, as it contains all values that will be reported out.

REPORT GENERATION

Once the reporting dataset is generated, the appropriate reporting macro is called to generate the report. In the
implementation we show here, we first transpose the ALL_TABLES dataset so each columnvar is turned into a
column (rather than a row, as it is initially).

proc transpose data=all_tables out=for_report;
 id columnvar;
 idlabel columnvar;
 var score;
 by table descending stattype stub;
run;

Then, we generate three macro variable lists for PROC REPORT: the column variables (for the COLUMN statement),
the DEFINE statements, and the report macro calls (defined in the reporting dataset itself).

proc sql noprint;
 select label_sas
 into :columnord separated by ' '
 from format_cntlin
 where not(missing(class));

 select cats('%definecol(', label_sas,')')
 into :definecol separated by ' '
 from format_cntlin
 where not(missing(class));

 select distinct cats('%report(',scan(table,1,'-'),')')
 into :report separated by ' '
 from table_control;
quit;

Finally, the reporting macro, which is very simple. Most of the code has been pulled from the control file. Any style
options would likely be located in the %DEFINE macro (either as parameters or defaults for all rows). The report
calls are then placed inside an ODS statement based on which destination you want to output the report to.

15

%macro report(page);

 proc report data=for_report nowd spanrows;
 where substr(table,1,1)="&page.";
 columns
 (stub stattype)
 (All &columnord.)
 ;
 define stub/' ' display style={width=1.5in};
 define stattype/' ' display;
 define all/display;
 &definecol.;
 run;

%mend;

ADDITIONAL REPORTING OPTIONS

The reporting macro included here is very bare-bones in order to show the key concepts effectively. There is a lot of
room for improvement and/or additional options that is left to the reader. For example, details like titles and footnotes
could be added to tables, statistical tests or standard errors could be added, multiple files could be produced. Many
of these could be accomplished by adding a new column to the control table, and then adding a small bit of code to
add the functionality.

Adding titles, as an example, would require adding a column to the control table, in that column entering a report title
to each of the table rows (just the first of each overall table would suffice), and then modifying the report macro and
the call to that macro to add a title parameter and to use it in the title statement.

CONCLUSION

Documentation driven programming can be an effective way to improve efficiency and the accuracy of your results,
while maintaining flexibility for custom work. Developing a large cookbook of modules allows you to respond quickly
to requests while having to code very little. Further, using the data dictionary format as a requirement definition
allows the programmer to further reduce project-specific work while allowing the more project-specific work to be
done by those with the business or project knowledge.

REFERENCES

Data for the example in this paper was obtained courtesy of the ANES data repository at http://electionstudies.org/ .
Dataset documentation is located at
http://www.electionstudies.org/studypages/2010_2012EGSS/2010_2012EGSS.htm (accessed 9/7/2014), and data
may be obtained with (free) registration from their study database at
http://www.electionstudies.org/studypages/data/2010_2012EGSS/anes2010_2012egss2.zip

DeBell, Matthew, Catherine Wilson, Gary Segura, Simon Jackman, and Vincent Hutchings. 2011. Methodology
Report and User’s Guide for the ANES 2010-2012 Evaluations of Government and Society Study. Palo Alto, CA, and
Ann Arbor, MI: Stanford University and the University of Michigan.

RECOMMENDED FURTHER READING

For a good reference on list processing (the concept largely used in this paper), see Ron Fehd and Art Carpenter’s
2007 SGF paper, “List Processing Basics: Creating and Using Lists of Macro Variables”, found at
http://www2.sas.com/proceedings/forum2007/113-2007.pdf . We prefer the variation “Write Calls to a Macro
Variable”.

APPENDIX

Below is the full code necessary to implement this procedure, using the ANES data previously referenced. A control
spreadsheet will be distributed with this paper, or may be obtained from the authors. The examples above were
largely taken from the code below, but when implementing this we recommend using the code presented here, as
there may be minor differences.

16

%let datadir=d:\temp\DataDrivenProgramming;
 *specify the directory your data and control are stored in;
%let outdir=d:\temp\DataDrivenProgramming;
 *specify the directory your reports should be generated in;
%let reportname=DDPExample.pdf;
filename datafile "&datadir.\anes2010_2012egss2_dat.txt"; *the main datafile;

*Control file import and processing;
proc import out=control
 file="&datadir.\Control - Documentation Driven Programming.xlsx"
 dbms=excel replace;
run;
proc sql noprint;
 select cats('fmtval',max(countc(values,'0A'x))+1)
 into :max_distinct_fmt_vals
 from control;
quit;

data prepped_control;
 set control;
 format fmtval1-&max_distinct_fmt_vals. $64.;
 if not(missing(values)) then fmtname=cats(variable,'f');
 array fmtvals fmtval1-&max_distinct_fmt_vals.;
 if not(missing(values)) then do _i=1 to countc(values,'0A'x)+1;
 fmtvals[_i]=scan(values,_i,'0A'x);
 end;
 format reporting_fmtname $32.;
 if statistic=:'top ' then
 reporting_fmtname=cats('top',scan(statistic,2,' '),compress(range,':'),'f');
 format page $2.;
 page=scan(table,1,'-');
 table_sas = translate(table, '_', '-');

run;

*Standard variable format preparation section;
proc sort data=prepped_control(where=(not(missing(fmtname)))) out=format_control;
 by class fmtname;
run;

proc transpose data=format_control
 out=format_control_vert(where=(not(missing(col1))));
 by class fmtname;
 var fmtval:;
run;

data format_cntlin;
 set format_control_vert;
 format start end label $64.;
 start=scan(scan(col1,1,':'),1,'-');
 end=ifc(find(col1,'-')>0,scan(scan(col1,1,':'),2,'-'),start);
 label=strip(scan(col1,2,':'));
 label_sas = tranwrd(strip(label),' ','_');
run;

proc format cntlin=format_cntlin;
quit;

17

*Extra module adding Top Box and Bottom Box formats for tabulation;
data reporting_format_cntlin;
 set prepped_control(drop=fmtname label);
 format label $32.;
 where statistic =: 'top ';
 rename reporting_fmtname=fmtname;
 **Top Box portion;
 end=scan(range,2,':');
 start=put(input(end,8.)-input(scan(statistic,2,' '),8.)+1,2.);
 label=catx(' ','Top',scan(statistic,2,' '),'Box');
 output;

**Bottom (remaining) portion;
 start=scan(range,1,':');
 end=put(input(end,8.)-input(scan(statistic,2,' '),8.),2.);
 label=catx(' ','Bottom',end,'Box');
 output;
 keep reporting_fmtname start end label;
run;

proc sort nodupkey data=reporting_format_cntlin;
 by fmtname descending start;
run;

proc format cntlin=reporting_format_cntlin;
quit;

proc sort data=prepped_control;
 by page table;
run;

data table_control;
 set prepped_control(where=(not(missing(table))));
 var_fmtname = cats(variable,'f.');
 reporting_fmtname = cats(reporting_fmtname,'.');
run;

**Input section;

%macro read_in(var,start,fmt,length);
 @&start. &var. &fmt.&length.
%mend;

%macro labelcode(var,label);
 &var.="&label."
%mend;

%macro apply_formats(var,fmtname);
 &var. &fmtname.
%mend;

proc sql noprint;
 select cats('%read_in(',variable,',',start,',',format,',',length,'.)')
 into :read_in_flat separated by ' '
 from prepped_control where start ne ' ';

 select cats('%labelcode(',variable,',%nrstr(',label,'))') length=1024
 into :labelcode separated by ' '
 from prepped_control where label ne ' ';

18

 select cats('%apply_formats(',variable,",",fmtname,".)")
 into :formatcode separated by ' '
 from prepped_control
 where fmtname ne ' ';
quit;

data input;
 infile datafile lrecl=20000 pad firstobs=2;
 format
 &formatcode.
 ;
 input
 &read_in_flat.
 ;
 label
 &labelcode.
 ;
run;

**Error Checking and Cleaning section;

%macro range_check(var,range);
 if not(missing(&var.)) and not(&var. in(&range.)) then do;
 type='RANGE';
 question="&var.";
 output;
 end;
%mend;

%macro base_check_all(var);
 if missing(&var.) then do;
 type='BASE';
 question="&var.";
 output;
 end;
%mend;

%macro base_check_restricted(var,base);
 if (&base.) and missing(&var.) then do;
 type='BASE';
 question="&var.";
 output;
 end;
 if not(&base.) and not(missing(&var.)) then do;
 type='BASE';
 question="&var.";
 output;
 end;
%mend;

proc sql noprint;
 select cats('%range_check(',variable,',%nrstr(',range,'))')
 into :range_check separated by ' '
 from prepped_control
 where not(missing(range));

 select cat('%base_check_all(',variable,')')
 into :base_check_all separated by ' '
 from prepped_control
 where missing(base) ;

19

 select cats('%base_check_restricted(',variable,',%nrstr(',base,'))')
 into :base_check_restricted separated by ' '
 from prepped_control
 where not(missing(base));
quit;

*Vertical dataset containing one row per variable per respondent that fails checks;
data checking;
 format question type $32.;
 set input;
 &base_check_all.;
 &base_check_restricted.;
 &range_check.;
 keep c2_caseid type question;
run;

proc sql noprint;
 create table badids as
 select distinct c2_caseid
 from checking;
 select nobs into :err_recs
 from dictionary.tables
 where memname='BADIDS' and libname='WORK';
quit;

%macro grab_bad_dat(respid,var);
 if c2_caseid=&respid. then do;
 bad_val=vvalue(&var.);
 variable="&Var.";
 output;
 end;
%mend;

%macro error_reporting(err_recs);

 %if &err_recs.=0 %then %do;
 data No_err;
 errors=&err_recs;
 output;
 run;

 title 'There are no errors, the data is clean. No error output forthcoming.';
 proc print data=no_err noobs;
 run;

 %end;

 %else %do;

 title;
 proc sql;
 select cat('There are ',count(1),
 ' records with errors. Error reports and datasets following.')
 from badids;
 quit;

 title 'Summary list of errors by question and by type within question';
 proc freq data=checking;
 table question question*type/list;
 run;
 title;

20

 proc sort data=prepped_control(where=(not(missing(variable))))
 out=control_for_el(keep=variable range base);
 by variable;
 run;

 proc sort data=checking out=err_list(rename=question=variable);
 by question;
 run;

 **Here we use a temporary file, because it is possible lthis may exceed;
 **the maximum length of a macro variable;
 filename bad2dat temp;

 data _NULL_;
 format grab_bad_dat $512.;
 set err_list;
 grab_bad_dat=cats('%grab_bad_dat(',c2_caseid,',',variable,')');
 file bad2dat;
 put grab_bad_dat;
 run;

 data checking_vert;
 set input;
 format variable $32.;
 %include bad2dat;
 keep c2_caseid bad_val variable;
 run;

 proc sort data=checking_vert;
 by variable;
 run;

 data abbrev_err_data;
 merge err_list(in=a) control_for_el(in=b) checking_vert(in=c);
 by variable;
 if c;
 label type='Type of Error'
 bad_val='Bad Value';
 run;
 %end;
%mend error_reporting;

%error_reporting(&err_recs);

%macro range_clean(var,range);
 if not(missing(&var.)) and not(&var. in(&range.))
 then call missing(&var.);
%mend;
%macro base_clean(var,base);
 if not(&base.) and not(missing(&var.))
 then call missing(&var.);
%mend;

proc sql noprint;
 select cats('%range_clean(',variable,',%nrstr(',range,'))')
 into :range_clean separated by ' '
 from prepped_control
 where not(missing(range));
 select cats('%base_clean(',variable,',%nrstr(',base,'))')
 into :base_clean separated by ' '
 from prepped_control
 where not(missing(base));
quit;

21

**Final cleaned datafile;
data cleaned_data;
 set input;
 &range_clean.;
 &base_clean.;
 tabulateweight=100000*c2_weight;
 if tabulateweight>0 then weight_inv=1/tabulateweight;
run;

**Reporting section;
proc sort data=prepped_control;
 by class;
run;

%macro tab_mean(var,table,varlabel);
 *First run PROC TABULATE to generate results;
 proc tabulate data=cleaned_data out=_table_&table.;
 class &class./mlf missing;
 var &var. weight_inv;
 table (&var.*mean weight_inv*sum),(all &class.);
 weight tabulateweight;
 label weight_inv='Total Respondents';
 where not(missing(&var.));
 run;

 *Then reformat those results for reporting;
 data _table_&table.;
 set _table_&table.;
 array classes &class.;
 do _i = 1 to dim(classes);
 if substr(_type_,_i,1)='1' then columnvar=classes[_i];
 end;
 if compress(_type_,'0')=' ' then columnvar='All';
 Score=ifn(not(missing(&var._mean)),
 round(&var._mean,0.1),
 round(weight_inv_Sum,1.0));
 Stattype=ifc(not(missing(weight_inv_Sum)),
 'Total Respondents',
 'Mean');
 Table="&table.";
 if stattype='Total Respondents'
 then stub="&varlabel.";
 if strip(columnvar)='.' then delete;
 keep stub table stattype columnvar score;
 run;
%mend;

%macro tab_prop(var,fmt,table);
 proc tabulate data=cleaned_data out=_table_&table.(rename=&var.=stub);
 class &var. &class./mlf missing;
 var weight_inv;
 table (&var.*colpctn weight_inv*sum),(all &class.);
 freq tabulateweight;
 format &var. &fmt.;
 label weight_inv='Total Respondents';
 where not(missing(&var.));
 run;

22

 data _table_&table.;
 format stub $256.;
 set _table_&table.;
 array classes &class.;
 do _i = 1 to dim(classes);
 if substr(_type_,_i+1,1)='1' then columnvar=classes[_i];
 end;
 if (substr(_type_,1,1)='1' and length(compress(_type_,'0'))=1)
 or compress(_type_,'0')=' '
 then columnvar='All';
 Score=round(coalesce(of pct:,weight_inv_Sum),1.0);
 Stattype=ifc(not(missing(weight_inv_Sum)),'Total Respondents','Percent');
 Table="&table.";
 if stattype='Total Respondents' then stub=vlabel(stub);
 if strip(columnvar)='.' then delete;
 keep table stattype stub columnvar score;
 run;
%mend;

proc sql noprint;
 select variable into :class separated by ' '
 from prepped_control
 where not(missing(class))
 order by class;

 select cats('%tab_mean(',variable,',',table_sas,', %nrstr(',label,'))')
 into :tab_mean separated by ' '
 from table_control
 where statistic='mean';

 select cats('%tab_prop(',variable,',',var_fmtname,',',table_sas,')')
 into :tab_prop1 separated by ' '
 from table_control
 where statistic='freq' ;

 select cats('%tab_prop(',variable,',',reporting_fmtname,',',table_sas,')')
 into :tab_prop2 separated by ' '
 from table_control
 where substr(statistic,1,4)='top ';
quit;

ods results=off;
ods html close;

*run calculation stage;
&tab_mean.;
&tab_prop1.;
&tab_prop2.;

*Collect tables together;
data all_tables;
 format stub $256.;
 set _table:;
run;

proc sort data=all_tables;
 by table descending stattype stub;
run;

23

*Transpose to make column variables into actual columns;
proc transpose data=all_tables out=for_report;
 id columnvar;
 idlabel columnvar;
 var score;
 by table descending stattype stub;
run;

proc sql noprint;
 select label_sas
 into :columnord separated by ' '
 from format_cntlin
 where not(missing(class));

 select cats('%definecol(', label_sas,')')
 into :definecol separated by ' '
 from format_cntlin
 where not(missing(class));

 select distinct cats('%report(',scan(table,1,'-'),')')
 into :report separated by ' '
 from table_control;
quit;

*This macro can be expanded to include style options for columns;
%macro definecol(var);
 define &var./display;
%mend;

*This runs the actual reports;
%macro report(page);
 proc report data=for_report nowd spanrows;
 where substr(table,1,1)="&page.";
 columns
 (stub stattype)
 (All &columnord.)
 ;
 define stub/' ' display style={width=1.5in};
 define stattype/' ' display;
 define all/display;
 &definecol.;
 run;

%mend;

options orientation=landscape;

ods pdf file="&outdir.\&reportname.";

 &report.;

ods pdf close;

24

ACKNOWLEDGEMENTS

Marcus would like to thank Alan Roshwalb at Ipsos Public Affairs for encouraging me to write this paper.

Joe would like to thank Rich Hebel for igniting the seed of data-driven programming on day one of his employment,
and Paul Silver for challenging him with new and different ways of approaching the problem.

Finally, both Marcus and Joe would like to acknowledge John Vidmar, Chairman of Ipsos US Public Affairs, who in
his zeal for methodological rigor in every aspect of survey research planted the idea many years ago, and gave us
the opportunity to refine our approach on project after project.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Joe Matise
NORC at the University of Chicago
65 E Monroe
Chicago, IL 60604
(312) 759-4296
matisejoe@gmail.com

Marcus Maher
Ipsos Public Affairs
222 S Riverside Plaza
Chicago, IL 60606
(312) 526-4933
marcus.maher@ipsos.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

