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ABSTRACT 
Background.  SAS® Proc Mixed does not provide an option to report log-transformed analyses on the original scale. 
 
Objective.  Implement the delta method to report the means and confidence intervals of difference scores from log-
transformed longitudinal data, so that results can be reported on the original scale of the outcome.   
 
Demonstrate how this methodology can be implemented on output from lmm (linear mixed model) from SAS Proc 
Mixed. 
 
Compare results from the delta method to reporting percent change, another common approach to difference scores 
from log-transformed data. 
 
Methods.  We focused on a lmm for data with two treatment groups and two time points.  By using the delta method 
and the exponential function as the inverse, a formula was derived to obtain estimates for the differences between 
the means between two time points, along with confidence intervals.  
 
As a demonstration, the delta method was applied to nutrition outcome data from the Healthy Moms study, a 
randomized clinical trial that showed improved dietary outcomes among 275 Latina women. 
 
Results.  Using the delta method, the total fat outcome can be reported as decreasing between baseline and follow-
up by -12.4g (-17.8g, -7.1g) within the treatment group, with an intervention effect of -9.1g (-17.0g, -1.2g) relative 
to the control group.  Without the delta method, the results would be -16.7% (-23.0%, -10.0%) within the treatment 
group, with an intervention effect of -12.9% (-22.0%, -2.7%). 
 
Conclusion.  The delta method provides a vehicle for reporting intervention effects in units that are more meaningful 
in public health and clinical practice. 
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Background 
Reporting intervention effects in units that are meaningful in social work, public health, and clinical practice is 
important for improving the understanding and use of study results.  Common statistical software, such as SAS Proc 
Mixed, does not provide an option to report log transformed analyses on the original, and more interpretable, scale.   
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For example, consider a weight loss study, in which the data was log transformed and the results were reported with 
percent change.  If the treatment group lost an average of 10% of their body weight and the control group lost 1%, the 
intervention effect would not necessary sum to 9%.  However, by using the delta method, if the treatment group lost 
20 pounds and the control group lost 2 pounds, the intervention effect would be 18 pounds, which would be easier to 
interpret.  In the section below on reporting outcomes as percent change, there is a proof and an example of percent 
changes in the treatment and intervention groups not always adding to the percent change of the intervention effect.  
This demonstrates the advantage of the delta method in making the intervention effects easier to interpret in physical 
units. 
 

Introduction to the Linear Mixed Model1 With Log-Transformed Data 

• Let Xijk = original variable; (i, j, k) = (randomization, time point, subject).  
• Yijk = ln(Xijk). 
• i = 0 for control and 1 for treatment. 
• j = 1 for pre-intervention and 2 for post-intervention. 
• k = kth subject. 
• Let R = 0 for control and 1 for treatment. 
• Let T = 0 for pre-intervention and 1 for post-intervention. 

 
• Linear Mixed Model (LMM) for Xijk = α0 + α1R + α2T + α3RT + εijk, where εijk = error term and εijk ~ N(0, ∑). 
• Estimated Mean: E(Xij) = α0 + α1R + α2T + α3RT. 
• The means for the control group are α0 at pre-intervention and (α0 + α2) at post-intervention. 
• The means for the treatment group are (α0 + α1) at pre-intervention and (α0 + α1 + α2 + α3) at post-

intervention. 
• The change scores are α2 for the control group and (α2 + α3) for the treatment group. 
• The intervention effect is the difference in change scores for the treatment and control groups = α3.  

 
Why Reporting Outcomes as % Change2 

Next, consider the LMM for Y, the log transform of X. 
• Linear Mixed Model (LMM) Yijk = β0 + β1R + β2T + β3RT + ε’ijk, where ε’ijk is the error term. 
• Estimated Mean: E(Yij) = β0 + β1R + β2T + β3RT. 
• Post – Pre Mean for Control: ln(X02) – ln(X01) = β2; X02/X01 = exp(β2). 
• % Change Post – Pre Mean for Control =100%(exp(β2) – 1).  
• Post – Pre Mean Treatment: ln(X12) – ln(X11) = β2 + β3; X12/X11 = exp(β2 + β3). 
• % Change Post – Pre Mean for Treatment =100%(exp(β2 + β3) – 1). 
• Intervention Efffect = ln(X12) – ln(X11) – [ln(X02) – ln(X01)] = β3. 
• Intervention Efffect = ln(X12/X11) – ln(X02/X01) = β3. 
• 100%[(X12/X11)  – (X02/X01)]/(X02/X01) = 100%(exp(β3) – 1). 
 

Important Note: 100% × (exp(β3) – 1) is ratio of percent changes, not the difference in percent changes.  That’s why 
(percent change in the treatment group) - (percent change in the control group) is not always equal to the intervention 
effect, as we see from Table 1 below.  While the differences in mean changes will sum to the intervention effect when 
using the delta method, this property does not always hold for percent change, although the percent changes;  
-12.9% ≠ -16.7% –  (-4.4%). 
 
Table 1: Change in Fat Consumption Using Percent Change and Delta Method 
 
Group Total Fat Change (%) Total Fat Change (g), Delta Method 

Control -4.40%  -3.38 g 

Treatment -16.70% -12.45 g 

Intervention Effect -12.90%  -9.07 g 
 

The Univariate Delta Method3 

• Let Y ~ Normal(μ, σ2), μ, σ2 ≠ 0; n = sample size. 
• Let g(Y) be a differentiable function of  Y with non-zero first derivative. 
• Then, a first-order Taylor series for g(Y) = g(μ) + g’(μ)(Y – μ). 
• Mean of g(Y) ≈ g(μ) and Variance of (g(Y)) ≈ (g’(μ))2σ2. 
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• Delta Method Theorem:  ( ) ( )( ) ( )( )( )22lim 0, 'D

n
n g Y g Normal gµ σ µ

→∞
− → . 

• I.E., asymptotic distribution of g(Y) = Normal(g(μ), (g’(μ))2σ2) . 
 
• Example: Let Y ~ Normal(μ, σ2).  Let W = g(Y) = eY. 
• g’(μ) = eμ. 
• Using the delta method, mean of W = g(μ) = eμ and  
• Variance of W = (g’(μ))2σ2 = e2μσ2; Standard deviation of W = eμσ. 
• Asymptotic distribution of W = Normal(eμ, e2μσ2). 

 
The Multivariate Delta Method3 

• Let Y be a multivariate vector of m normal variables, Y = [Y1 Y2 … Ym]. 
• Y ~ N(μ, ∑), where ∑ is a m × m covariance matrix. 
• Let g(Y) be a differentiable function of  Y with non-zero first derivative. 

• The multivariate delta method states that if ( ) ( )lim 0,D

n
n Y Nµ

→∞
− → Σ , then 

( ) ( )( ) ( ) ( )( )lim 0,D T
g gn

n g Y g N J Jµ µ µ
→∞

− → Σ . 

• Where Jg(μ) is the Jacobian matrix, evaluated at Y = μ. 

• 
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evaluated at Y = μ. 

 
Application of the Multivariate Delta Method to Mean Estimates from a Linear 

Mixed Model 
• Recall Estimated Mean from LMM: Yij = β0 + β1R + β2T + β3RT.   
• The β’s are assumed to be multivariate normal, with covariance matrix ∑β. 
• Let Y01 = mean of control group at time 1 on log scale = β0. 
• Let W1  = Y01 on the original scale; Let g1(β) = exp(β0). 
• W1  = g1(β) = exp(β0).  Note that ∂g1(β)/∂β0 = g1(β) = exp(β0) and ∂g1(β)/∂βi = 0 if i>0.  
•   
• Let Y02 = mean of control group at time 2 on log scale = β0 + β2;  
• Let W2 = g2(β) = exp(β0 + β2).  Note that ∂g2(β)/∂β0 = g2(β),  ∂g2(β)/∂β2 = g2(β), and  

∂g2(β)/∂βi = 0 for i≠0 and i≠2.   
 

• Same property holds for g3 and g4 derivatives with respect to the β’s. 
• Let Y11 = mean of treatment group at time 1 on log scale = β0 + β1;  
• Let W3 = g3(β) = exp(β0 + β1). 
• ∂g3(β)/∂β0 = g3(β),  ∂g3(β)/∂β1 = g2(β), and ∂g3(β)/∂βi = 0 for i>1.   
•  
• Let Y12 = mean of treatment group at time 2 on log scale = β0 + β1 + β2 + β3;  
• Let W4 = g4(β) = exp(β0 + β1 + β2 + β3).   
• ∂g4(β)/∂βi = g4(β), 0 ≤ i ≤ 3.  
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Jacobian Matrix for g(β). 
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In simpler form, 
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Define the covariance matrix for the β’s as 

2
00 01 02 03

2
01 11 12 13

2
02 12 22 23

2
03 13 23 33

β β β β

β β β β
β

β β β β

β β β β

σ σ σ σ
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 
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Σ = . 

 
The covariance matrix for W (estimates for each group at each time point) will be ∑W = Jg(β) × ∑β × (Jg(β))T. 
To multiply the above three matrices, the authors suggest using a symbolic matrix calculator, such as 
http://wims.unice.fr/~wims/en_tool~linear~matrix.html 
 
Because SAS Proc IML will multiply numerical matrices, but not matrices with characters, the above symbolic matrix 
calculator is recommended. 
 
Important Findings – Simple Formula for Variances When the Only Covariates are 
Binary Indicators for Treatment Group and Time Point.   
First, when the estimator for the mean has only covariates for treatment group and time point that are either 1 or 0, 
such as Yij = β0 + β1R + β2T + β3RT, the variances of the point estimates have a simple form. 

• Var(W1) = Var(control group at baseline) = exp(2β0)σ2
β00;  

• standard error(W1) = exp(β0)σβ00 = W1 × Std error(estimate of Y01 on log scale). 
 

• Standard errors of W2, W3, W4 have also the same format as in the univariate example with the delta method 
earlier in this paper. 

 
• Var(W2) (control group at follow-up) = exp(2(β0 + β2))[σ2

β00 + σ2
β22 + 2σβ02]. 

• Standard error(W2) = exp(β0 + β2)[σ2
β00 + σ2

β22 + 2σβ02]1/2.
 =  

• W2 × Std err(estimate of Y02 log scale). 
 
• Var(W3) (treatment group at baseline) = exp(2(β0 + β1))[σ2

β00 + σ2
β11 + 2 σβ01]. 

• Standard error(W3) = exp(β0 + β1)[σ2
β00 + σ2

β11 + 2σβ01]1/2.
 =  

• W3 × Std err(estimate of Y11 log scale). 
 
• Var(W4) (treatment group at follow-up) =  
• exp(2(β0 + β1 + β2 + β3 ))[σ2

β00 + σ2
β11 σ2

β22 + σ2
β33 + 2σβ01 + 2σβ02  + 2σβ03 + 2σβ12  + 2σβ13 + 2σβ23].  

• Standard error(W4) = exp(β0 + β1 + β2 + β3)[Var(β0 + β1 + β2 + β3)]1/2.
 =  

• W4 × Std err(estimate of Y12 log scale). 
 
Second, if randomization to the two treatment groups was successful, then (W1, W2) will be independent from       
(W3, W4) and therefore Cov((W1, W3) = Cov((W1, W4) = Cov((W2, W3) = Cov((W2, W4) = 0.  The ∑W matrix will have 
the following form: 

http://wims.unice.fr/~wims/en_tool~linear~matrix.html
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Σ =  

 
Below is a picture of the ∑W matrix from nutrient analysis from the “Healthy Mothers on the Move” project4. 
 

W1 W2 W3 W4 
14.17 7.22 0 0 
7.22 13.65 0 0 

0 0 6.28 5.07 
0 0 5.07 7.02 

 
Delta Method With Adjusted Estimates  

• If adjusting for covariates, such as age (assuming average age of 50), Yij = β0 + β1R + β2T + β3RT + 50βAge. 
• Use same procedure, check whether ∑W matrix has a form with simple formulas, such as standard error(W1) 

= exp(β0)σβ00 .   
 
• For the above example, I found the same pattern of formulas for the estimates by group and time point. 
• Let Y01 = mean of control group at time 1 on log scale = β0 + 50βAge. 
• Let W1  = Y01 on the original scale; Let g1(β) = exp(β0 + 50βAge). 
• W1  = g1(β) = exp(β0 + 50βAge).   
• ∂g1(β)/∂β0 = g1(β) = exp(β0 + 50βAge) = W1, ∂g1(β)/∂βi = 0 if i>0 and i≠Age. 
• ∂g1(β)/∂βAge = 50g1(β) = 50exp(β0 + 50βAge) = 50W1. 
 
• Let Y02 = mean of control group at time 2 on log scale = β0 + β2 + 50βAge;  
• Let W2 = g2(β) = exp(β0 + β2 + 50βAge).   
• ∂g2(β)/∂β0 = g2(β),  ∂g2(β)/∂β2 = g2(β), and ∂g2(β)/∂βi = 0 for i not in (0,2, Age). 
• ∂g2(β)/∂βAge = 50g2(β) = 50exp(β0 + β2 + 50βAge) = 50W2. 

 
• Same properties holds for g3 and g4 derivatives with respect to the β’s. 
• Let Y11 = mean of treatment group at time 1 on log scale = β0 + β1 + βAge;  
• Let W3 = g3(β) = exp(β0 + β1 + βAge). 
• ∂g3(β)/∂β0 = g3(β),  ∂g3(β)/∂β1 = g2(β), and ∂g3(β)/∂βi = 0 for i>1 and i≠Age.  
• ∂g3(β)/∂βAge = 50g3(β) = 50exp(β0 + β1 + 50βAge) = 50W3. 
•  
• Let Y12 = mean of treatment group at time 2 on log scale = β0 + β1 + β2 + β3 + βAge;  
• Let W4 = g4(β) = exp(β0 + β1 + β2 + β3 βAge).   
• ∂g4(β)/∂βi = g4(β), 0 ≤ i ≤ 3 and ∂g4(β)/∂βAge = 50g4(β) = 50exp(β0 + β1 + + β2 + β3 + 50βAge) = 50W4. 

 

• ∑W = Jg(β) × ∑β × (Jg(β))T,  where 

1 1

2 2 2

3 3 3

4 4 4 4 4

0 0 0 50
0 0 50

( )
0 0 50

50

g

W W
W W W

J
W W W
W W W W W

β =

 
 
 
 
 
 

. 

• ∑W will always be a 4 x 4 matrix.  However, when the model is adjusted for covariates, such as age, 
∑W will usually not have zeroes in the upper and lower quadrants, as in the unadjusted model. 

• For this example, Jg(β) has dimensions (4 × 5), ∑β is (5 × 5), and (Jg(β))T is (5 × 4). 
 
Confidence Intervals (CI) for Difference Scores 

• Run the linear mixed model.  Output the estimates on the log scale for each group and each time point to 
Excel.  In SAS, the best estimates for the means by time point and randomization are produced by the 
LSMEANS statement. 
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• Output the covariance matrix for β from SAS Proc Mixed. 
• Compute ∑W in a matrix routine, such as Proc IML. 
• Output the estimate for ∑W to Excel.   

 
• W2 – W1 = Mean Follow-Up – Baseline Score for the Control Group. 

• 95% CI = ( ) 2 2
2 1 11 22 121.96 2W W WW W σ σ σ− ± + − . 

 
• Similarly, W4 – W3 = Mean Follow-Up – Baseline Score for the Treatment Group. 

• 95% CI = ( ) 2 2
4 3 33 44 341.96 2W W WW W σ σ σ− ± + − . 

 
• Intervention Effect = Difference Between Change Scores, Treatment – Control = (W4 – W3 ) – (W2 – W1 ).  

• 95% CI = 
( )

( )
4 3 2 1

2 2 2 2
11 22 33 44 12 13 14 23 24 341.96 2W W W W W W W W W W

W W W W

σ σ σ σ σ σ σ σ σ σ

− − +

± + + + + − − + + − −
. 

• At first, the formula for the variance of the intervention might look like a nightmare to compute, but here is a 
shortcut.   

• First, sum the diagonal entries on the ∑W matrix.  This can be done with the trace() function in SAS Proc IML 
or in Excel. 

• Next, sum 2 × entries in the upper triangle of ∑W, where each entry is multiplied by 1 or -1.  For example, 
multiply σ12 by -1 and σ14 by 1. 

 
If randomization worked, then the treatment and control group should be independent and  
Intervention Effect = Difference Between Change Scores, Treatment – Control = (W4 – W3 ) – (W2 – W1 ) =  

95% CI = 
( )

( )
4 3 2 1

2 2 2 2
11 22 33 44 12 341.96 2W W W W W W

W W W W

σ σ σ σ σ σ

− − +

± + + + + − −
.  So, the variance for the intervention 

effect, (W4 – W3 ) – (W2 – W1 ), will be the sum of the variances for the control group, (W2 – W1 ), and the 
treatment group, (W4 – W3 ). 
 

SAS Code – Procs Mixed and IML  
/* Add ODS output statements to Proc Mixed to create datasets for the LSMEANS */ 
/* covariance matrix for the betas, so that these datasets can be processed   */ 
/* in Proc IML. */ 

%Macro MixTime(DepVar, VarType, DSet); 
Proc datasets library=work memtype=data; 
delete LSMeans CovB;  /* delete output from previous run */  run; 
title "Outcome=&DepVar, Dataset=&DSet"; 
ods html;  ods graphics on; 
proc mixed data=&DSet method=REML NOCLPRINT; 
        class id TimepointN RandomizationN; 
        model &DepVar = randomizationN timepointN  timepointN*randomizationN  
           / solution influence (iter = 5 effect=id est) residual 
             ddfm = kr CovB; 
        Repeated timepointN / type = &VarType subject = id; 
        LSMEANS TimepointN*RandomizationN; 
ods output LSMeans=LSMeans CovB=CovB; 
run; 
ods graphics off;  ods html close; 
%MEnd MixTime; 
 
%MixTime(log_calories, CS,, MOMs_nutr); 
%MixTime(log_calories, UN,, MOMs_nutr); 
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/* Manipulate LSMeans dataset for Proc IML */ 
/* Create new variable, Effect, to represent Y1, Y2, Y3, Y4 */ 
data LSMeansIML; 
set LSMeans(keep=Effect timepointN  randomizationN  Estimate); 
if (timepointN=0 and randomizationN=0) then Effect='Y1'; 
if (timepointN=-1 and randomizationN=0) then Effect='Y2'; 
if (timepointN=0 and randomizationN=-1) then Effect='Y3'; 
if (timepointN=-1 and randomizationN=-1) then Effect='Y4';   
run; 
 
proc sort data=LSMeansIML; 
by Effect;  run; 
 
ods html path="c:\temp"; 
proc print data=LSMeansIML; 
run; 
ods html close; 
 
/* Manipulate CovB for Proc IML */ 
/* Rename the columns to correspond to B0, B1, B2, B3 */ 
/* Due to the class statements, SAS created extra columns that we don’t need. */ 
Data CovBIML; 
set CovB(keep=Col1 Col2 Col4 Col6); 
Rename Col1=B0 Col2=B1 Col4=B2 Col6=B3; 
If _N_ in (1,2,4,6);  Run; 

 
*** Use Proc IML to get covariance matrix of W ***; 
ods html path="c:\temp"; 
Proc IML; 
Use LSMeansIML;   
read all var {'Estimate'} into Y;   
Close LSMeansIML; 
 
expY=exp(Y); 
print Y, expY; 
 
Use CovBIML; 
Read all var {'B0' 'B1' 'B2' 'B3'} into CovB;   
Close CovBIML;   
print CovB; 
 
/* Construct W, 4x4 matrix */ 
print (expY[1]); 
W=j(4,4,0); 
W[1,1]=expy[1]; 
z={1 3}; 
W[2,z]=expy[2]; 
W[3,1:2]=expy[3]; 
W[4,]=expy[4]; 
print W; 
 
/* V=W*CovB*T(W) = cov matrix of expY */ 
/* reset fuzz statement will clean up values in scientific notation, */ 
/* such a 7E-10, that are actually zero, but have tiny values due to rounding. */ 
reset fuzz; 
V=W*CovB*T(W); 
print V; 
Quit;  ods html close; 

 

Views of LSMEANS and COVB Before And After Processing for Proc IML 
Below are pictures of the original and processed ODS output from LSMEANS and COVB, indicating the need for the 
above SAS code to process the output: 
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Table 2a: Raw LSMEANS Output 
 

Obs Effect timepointN randomizationN Estimate StdErr DF tValue Probt 

1 timepoint*randomizat -1 -1 3.7762 0.06568 432 57.50 <.0001 

2 timepoint*randomizat -1 0 4.0301 0.06566 425 61.38 <.0001 

3 timepoint*randomizat 0 -1 4.0231 0.06144 389 65.48 <.0001 

4 timepoint*randomizat 0 0 4.1016 0.06229 391 65.84 <.0001 
 
Table 2b: LSMEANS Output, Processed for Proc IML 
 
Obs Effect timepointN randomizationN Estimate 

1 Y1 0 0 4.1016 

2 Y2 -1 0 4.0301 

3 Y3 0 -1 4.0231 

4 Y4 -1 -1 3.7762 
 
Table 3a: Raw COVB Output 
 
   B0 B1  B2  B3 

Effect timepointN randomizationN Col1 Col2 Col3 Col4 Col5 Col6 

Intercept   0.00193 -0.0019  -0.001  0.00102 

randomizat
ionN 

 -1 -0.0019 0.00381  0.00102  -0.002 

randomizat
ionN 

 0       

timepointN -1  -0.001 0.00102  0.00228  -0.0023 

timepointN 0        

timepoint*r
andomizat 

-1 -1 0.00102 -0.002  -0.0023  0.00454 

timepoint*r
andomizat 

-1 0       

timepoint*r
andomizat 

0 -1       

timepoint*r
andomizat 

0 0       
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Table 3b: COVB Output, Processed for Proc IML 
 
Obs B0 B1 B2 B3 

1 0.003880 -0.00388 -0.00176 0.001758 

2 -0.00388 0.007655 0.001758 -0.00346 

3 -0.00176 0.001758 0.003948 -0.00395 

4 0.001758 -0.00346 -0.00395 0.007882 
 
Examples Demonstrating the Advantage to Using the Delta Method Over 
Reporting % Change 
The tables below are from published articles and display the outcomes as percent change and in the actual units, via 
use of the delta method.  Table 4A displays nutrition data from the “Healthy Mothers on the Move” study, a 
randomized controlled Diabetes prevention intervention trial with pregnant Latina women.  Table 4B is an additional 
example from the REACH Detroit study, a randomized controlled community health worker intervention among 
African American and Latino adults with Type 2 Diabetes. 

 
Table 4A*4: Unadjusted Intervention Effects (95% CI) for Nutrition Estimates, Comparison of % Change and 

Delta Method (Only covariates are time and treatment group, N = 275) 
 
Outcome Percent Change Delta Method 

Calories, kcal   -7.3% (-16.5%, 2.9%) -136.0 (-341.1, 69.1) kcal 

Fruit, servings    3.3% (-11.5%, 20.5%)      0.1 (-0.5, 0.7) servings 

Vegetables, servings  41.9% (19.2%, 68.8%)      0.7 (0.4, 1.1) servings 

Fiber, g  15.9% (3.1%, 30.3%)      3.1 (0.7, 5.6) g 

Added sugar, g -16.1% (-29.6%, -0.1%)    -8.1 (-16.0, -0.1) g 

Percent calories from added sugar   -9.7 (-21.0, 3.1)    -1.0 (-2.5, 0.4) % 

Total fat, g -12.9% (-22.0%, -2.7%)    -9.1 (-17.0, -1.2) g 

Total saturated fat, g -15.7% (-25.2%, -5.0%)    -4.1 (-7.1, -1.0) g 
 
*Data Source: Kieffer, E., Welmerink, D., Welch, K., Clayton, E., Schumann, C., Sinco, B., Uhley, V. Dietary 
Outcomes of Healthy MOMs/Madres Saludables: A Randomized Controlled Diabetes Prevention Intervention Trial 
with Pregnant Latina Women.  American Journal of Public Health: March 2014, Vol. 104, No. 3, pp. 526-533. 
 
 

Table 4B**5:  Adjusted Intervention Effects (95% CI) for Outcomes from a Diabetes Study, Comparison of % 
Change and Delta Method (Covariates are time, treatment group, gender, race/ethnicity, clinic site, age,  

N = 164) 
 
Outcome Percent Change* Delta Method 
Hemoglobin A1c -9.7% (-15.9%, -3.0%) -0.7 (-1.3, -0.1) 
LDL Cholesterol, (mg/dl) -5.8% (-15.6%, 5.1%) -6.6 (-18.3, 5.1) mg/dl 
Systolic Blood Pressure, (mm Hg) 1.0% (-3.1%, 5.1%) 1.9 (-3.3, 7.1) mg Hg 
Diastolic Blood Pressure, (mm Hg) 2.2% (-3.1%, 7.9%) 1.9 (-2.2, 5.9) mg Hg 
Body Mass Index, kg/m2k 2.1% (-1.0%, 5.3%) 0.6 (-0.5, 1.6) kg/m2k 
PAID (Problem Areas In Diabetes), 
0 – 100 scale -21.9% (-49.0%, 19.4%) -2.2 (-7.5, 3.2)  
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**Data Source: Spencer, M., Rosland, A.R., Kieffer, E., Sinco, B., Valerio, M., Palmisano, G., Anderson, M., Guzman, 
J.R., Heisler, M., Effectiveness of a Community Health Worker Intervention Among African American and Latino 
Adults With Type 2 Diabetes: A Randomized Controlled Trial.  American Journal of Public Health: June 2011, No. 12, 
Vol. 101, pp. 2253-2260. 
 
 
 
Conclusions 

• When the analysis is done on the log scale to reduce skewness, the delta method is a useful tool to convert 
the results from percent change to the original scale of the outcome. The delta method provides a vehicle for 
reporting intervention effects in units that are more meaningful in social work, public health, and clinical 
practice. 

• The equations from the delta method can be implemented with SAS.  All that is needed is the ability to 
output the covariance matrix of the mixed model coefficients and then manipulate the matrix in a program, 
such as Proc IML.  

• After outputting the estimates by treatment group and time point, along with the covariance matrix of the 
estimates (W) on the original scale to Excel, confidence intervals can be obtained by programming cell 
formulas into Excel. 

• Limitations.  First, implementation of the delta method does require Proc IML, in addition to Proc Mixed.  
Second, since physical data is seldomly a perfect normal distribution, the delta method may not always 
produce the desired intervals, although it has worked fine on samples above N ≥ 164, based on my 
experience.   
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